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3. Laplace Transform

Up to now, we have learned the method to solve 1%-order and 2"-order
CODEs. However, how to solve CODEs of higher order? Here, we will
introduce a method usually used in engineering, which is called the Laplace

transform named after its discoverer Pierre-Simon Laplace.
Definition of Laplace Transform

First, let’s present the definition of Laplace transform. Consider a
piecewise continuous function f(t) for t>0; in general, we assume f(t)=0 for t<0.

Define the Laplace transform of f(t) as
(3-1) LU} = f(t)edt

where t=0" is a negative infinitesimal value and the term st in e™ is

dimensionless. For convenience, we also denote the Lapalce transform as
(3-2) F(s)=| f(tle“dt

to emphasize that the Laplace transform £{f(t)}=F(s) is a function of s. Note

that te[0,o0] is a nonnegative real number and s is a complex number.

In engineering, since f(t) often represents a function of time t in sec, the

dimensionless of st implies that s is a frequency in sec™. Most importantly, f(t)
and F(s) form a pair of the Laplace transform, where f(t) is in the time-domain

and F(s) is in the frequency-domain.

In mathematics, the complex variable s=c+jw consists of the real part
Re(s)=c and imaginary part Im(s)=w. Besides, s=o+jw is also known as a point

on the complex plane, or s-plane, with axes oand j.
Convergence of Laplace Transform

The Laplace transform of f(t) in (3-2) converges absolutely if the integral

satisfies the following condition

(3-3) J, |ftes

which also implies

dt <o
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(3-4) [ [fewiondt =" e e | f (t)dt < oo

Since ‘e’j“" =|cos et + jsina)t|=\/cosza)t+sin2a)t =1, we know that (3-3) is

equivalent to
(3-5) [ e |f (t)dt <o

Hence, the Laplace transform is a kind of absolutely convergence. If the
Laplace transform of f(t) exists, then there exists a region related to Re(s)=c on
the s-plane, in which the condition (3-5) is satisfied. Such region is known as
the region of convergence, usually denoted as ROC for short.

jo
Due to the fact that |F(s]<oo in the ROC, the !
=a| ROC
Laplace transform of f(t) is formally expressed as !
(3-6) F(s)=["f(te*dt, Re(s)>a 0

where Re(s)>« is the ROC as shown in the figure.

In electrical engineering, fortunately, most of the practical signals satisfy
the condition (3-5) and their Laplace transforms exist in some specified ROCs.
For simplicity and without loss of generality, we often neglect the ROC, i.e.,
Re(s)>a, in (3-6) and only write F(s) to represent the Laplace transform, just
like the form in (3-2).

Dirac Delta Function

The lower bound t=0" in the integral is mainly used to include any
discontinuity of f(t) occurring at t=0, such as the singularity function 5(t),

named as Dirac delta function, or simply called delta function.

The delta function is shown in the figure, which is an ideal function

subject to the following conditions: &b)
(3-7) 5(t)=0, for t=0 1

o t
(3-8) [~ ot)t=1 5 >

Clearly, the delta function has an infinite discontinuity at t=0 and the number
‘1> marked on the arrow denotes that the area ‘under’ the arrow standing at t=0
is 1. In engineering, the delta function is usually called the unit impulse

2



Course: Differential Equationss/NCTU/ECE/Yon-Ping Chen

function since it is just like an impulse occurring at the moment t=0.

When the impulse happens at t=t,, not t=0, the conditions (3-7) and (3-8)

should be modified into the following expression:
(3-9) S(t—t,)=0, for t=t,

(3-10) [ ot-t,)dt=1
In addition, there is an important property shown as
(3-11) [ tst—t)dt=f(t;)

which is called the sifting property to sift f(t,) from f(t).

The existence of ROC in the Laplace transform implies that f(t) can be
uniquely determined from F(s) by the inverse Laplace transform, which is
expressed as
(3-12) f@):gﬂp@»ZE%.ffF@k%m
The inverse Laplace transform is a topic in the course “Complex Variable”, not
in this course. Later, we will not determine f(t) from F(s) based on (3-12).
Instead, we previously develop a mapping set of the pair £{f(t)}=F(s) for
some functions f(t) often used in engineering. When F(s) is given, we just

determine f(t) by checking the mapping set.

There is one important concept concerning the lower bound t=0" in the
integral of (3-1), which defines the Laplace transform. We have explained that
the lower bound t=0" is required if the delta function exists at t=0. On the other
hand, if a function f(t) without any area “standing” at t=0, then its Laplace

transform can be simply defined as

(3-13) LUT ()} =F(s)=]"f(t)edt

0
with lower bound t=0, not t=0". Since the integral in (3-13) neglects f(t) for t<0,

it can be expressed as

u(t)
(3-14) £{f ()} = £{f ()} 1
where u(t) is depicted in the figure and defined as
1, fort>0 0 >
(3-15) u(t)_{O, fort <0
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In mathematics, u(t) is also a singularity function and called the unit step

function.
Mapping Set of Laplace Transform

Next, let’s show the mapping set of the pair £{f(t)}=F(s) for some
—at

functions f(t) commonly used in engineering, such as &(t), u(t), r(t), e™,

e 1, cosayt, singt,and t". The mapping set is listed as below:.

(3-16) L{5(t)}=1

(317 £lu(t)=

(3-18) £ir(t)} =S—12

(3-19) B{eat}zi, (aeR)
(3-20) Lleiot)= s+—11w0 . (W)
(3-21) L1cos myt} = ssza)g

(3-22) Lisinayt}= 7 +Oa)§

(3-23) efr}= S”—'l

Now, let’s calculate all these Laplace transforms one by one. First, for the delta
function &(t) in (3-16), we have

(3-24) L) = 5(t)edt=e=" =1

and the ROC is the whole s-plane. As for the unit step function in (3-17), its
Laplace transform is

© —s _ l _st|® L _l _ l
(3-25) B{u(t)}zjo l-e tdt_—ge " =lim—=e . +s

N )
where lim—e™ =Ilim '

ee’). since |e)|=1, if Re(s)=0>0, we
t—>wo § too g+ Ja)

have Iim_—le‘St =0. Hence,

too §
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(3-26) Liu(t)}= % for Re(s)>0

where Re(s)>0 is the ROC. For the ramp function in (3-18), which is depicted

in the figure and defined as ()
t, fort>0 1

(3-27) r(t)={

0, fort<O

we can calculate its Laplace transform as 0

© sty 1 -
Lir(t))="te tdt_—gj tde ™

(3-28) 1 1 1 1
e T 1 [P astyt — T [T oSty
= Ste t:O+Sjoe dt—sjoe dt—52

If Re(s)=0>0, then —%test :';0 =0. Thus,

(3-29) L{r(t)}= Siz for Re(s)>0

where Re(s)>0 is the ROC.

Consider the exponential function e in (3-19) where a is real. Its

Laplace transform is calculated as below:

_ —atl_ [ q-atg-stqy _ [Ca(sta)qy 1 —(s+a)t|™®
(3-30) B{e }_Le e dt_Le dt= _s+ae o
If Re(s)>—a, then _ L ea” —_ 1 Therefore, it can be obtained that
s+a =0 s+a
1
3-31 Le ™ =——— forRe(s)>-a
(331) e ©

where Re(s)>—a is the ROC. Similarly, for the exponential function e " in

(3-20) with ax real, its Laplace transform is

B{e‘j%t}:fe‘j“"’te’“dt = [ ekt

3-32
452 __ 1 grlerimk
S+ Ja, =0
If Re(s)>0, then —#e‘(s*“"“)‘r =— = Hence, we have
S+ Jw, =0 S+ Jw,
(3-33) Lleitl=—=_ forRe(s)>0
S+ jay

where the ROC is Re(s) >0.
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The Laplace transforms of trigonometric functions in (3-21) and (3-22)

can be derived from (3-33) as below

i (o 1 S— ja
- Jant § _ _ — — 0
(3-34) £l = lcos mpt)— jL{sin ) St io ol
Hence,
(3-35) Licosmyt}= il
. a,
(3-36) Lisinayt}= 7 +°a)02

where the ROC is Re(s) > 0, same as that of B{e“""Ot }

Actually, (3-21) and (3-22) can be also derived by directly calculating

their Laplace transforms as below:

Lisinagt} = fsin ot e dt = —lj sin o t de™
(3-37) S

= —l(sin wte™
S

® St o
o —f e~ dsinamyt )
Obviously, if Re(s)=c>0 then

L{sin ot} = EJ' e d sin ayt
(3-38) S

- % J:i coswyt e dt = % L{cos ot}

Similarly, we have

® —sf 1 —s
L{cos ot} = ‘[07 cos gt e dt = _EI cos wyt de”

—st

1
=——|cosapte -
S t=0

- j e *d cos am,t j
(3-39)

_ 1 © —st
_—g(—1+a)o_|'0 sinat e dt)

1 o . 1 o
= _?Oﬁ{sm a)ot}:g —S—SB{COS ot}

From (3-38) and (3-39), it can be obtained that £{cosam,t}= and

52+2

Lisinat)=—2—  as expected.
a)

S+

Finally, let’s consider the function t" in (3-23), whose Laplace
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transform is

£l [ et =—% [ tde :—%(t”e‘“

) —J. e‘“dt”j
(3-40) =0
= % [ edt"= 2 [ et dt= 2 ey

where Re(s)=0>0. Hence, we have

e} Defe - 2 pfp ) P02 e

SZ

(3‘41) nln=1)---(n=(k - n—k SS n! n—k
- Mootk pleot) gy )

For k=n,

(342) £l oy 2= g b= )= 5

where the ROC is Re(s)=0>0.

Next, let’s discuss some important properties of the Laplace transform.
By the use of these properties, we can determine the transform pair
L{f(t)}=F(s) of some functions f(t) not in the mapping set from (3-16) to
(3-23).

Linearity

If F(s) and F,(s) are the Laplace transforms of f(t) and f,(t),

respectively, i.e., then

£iaf,(t) +bf,(t)} = [ (af,(t)+ b, (t)e "dt

(3-43) =a[” f(tle“dt+b[" f,(t)e"dt
=aF(s)+bF(s)

Scaling property

If F(s) is the Laplace transforms of f(t), then with a>0 the Laplace

transform of f(at) is
£{f(at)= [ flae=dt=|" f(r)es(;]d(gj
1 (e ar-2e(2)

(3-44)

a
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Shifting property in variable t

If F(s) is the Laplace transforms of f(t), then with 20 the Laplace
transform of f(t—z)u(t—7) is

(3-45) = [ f(t—c)ult—r)edt
= [ f(t-r)edt

Choose v=t—7,then dv=dt, t=v+7 and

[“ft-r)edt=|" f(vle~ldv

(3-46) ’ o

e J'Of f(vle¥dv=e""F(s)
Hence,
(3-47) L{f(t—rt—7)}=eF(s)

which is the shifting property of Laplace transform in variable t.

f(t) f(t—7) f(t—7u(t—7)

r 0 0 o 7

Note that f(t—zu(t—rz)= f(t—z) if f(t)#0 for t<0, as shown in the
above figure, which implies that
(3-48) L{ft-cut-7)=L{ft-7)
For example, let’s consider the difference between the Laplace transforms
Licos a,(t—t,)-u(t—t,)} and L{cosw,(t—t,)}. From (3-35) and (3-47), we
have

s
" +af

(3-49) Llcosa,(t—t,)-u(t—t, )} =~
For the Laplace transform £{cos a,(t —t, )}, it is expressed as

(3-50) Llcosa,(t—t,)} = I: cos o, (t —t, Je~dt

Let v=t—t;, then

t
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j: cos oy (t —t, Je~dt

- J:) coS a, (v )" dy = g0 J: cos w,(v)e™dv

3-51 - -
(3-51) =g ﬁ cos (Ve Vdv+e J.O_ cos e, (v)e ~dv
st [0 —sv —stg S
=e t JLIECOSO)O(V)e dV+e t m
Compared to (3-49), it is clear that
(3-52) Licos ay(t—t,)-ult —t, )} = L{cos g, (t—t, )}

Laplace Transform of Periodic Functions

fi(t)

Next, let’s introduce the case of 1
periodic functions. Let f,(t) be a finite }\/\ R
duration function as shown in the figure, 0 T
which is zero fort<Oand t>T . Consider a
periodic function f(t) for t>0 with period T iV
and f(t)=f(t) for 0<t<T . The 1}\](1/(0\“\/\“\/\
periodic function is shown in the figure and 0 T 2|'|' T
expressed as
(3-53) F(t)=3 1,(t-kT)

Then, the Laplace transform is
(3-54) L{f(t) = B{i f,(t—kT )} = iﬁ{fl(t —kT)}

where

L{f(t—KT )= L{f (t KT Ju(t—kT )}
= eiskT’B{f1(t)}

If F(s)=2{f(t)} and F,(s)=2£{f,(t)}, then

(3-55)

(3-56) =
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Since lim = 14 for Re(s)>0, we have
oo 1@t 1-e7°

(3-57) F(s)= % F(s), forRe(s)>0

where Re(s)>0 is the ROC.
Shifting property in variable s

Similarly, there is a shifting property in variable s. Let’s check the

Laplace transform of e f(t). From the definition, we have

(3-58) L{ef(t)}=| e f(t)edt=[" f(e " "dt=F(s+a)

which is the shifting property of Laplace transform in variable s.
Derivative of variable t

If F(s) is the Laplace transforms of a differentiable function f(t), then

what is the Laplace transform of f'(t)? From the definition, we have

£{t )=+t dt= e*df(t)=e " (), ~[ f(t)e"

(3-59) =lime* £ (t)- £(0")+s[ f(tl"dt

t—>wo

=lime™ f(t)- f(0")+sF(s)

t—oo

Assume the ROC exists such that lime™ f(t)=0, then

t—oo

(3-60) £{t(t)}=sF(s)- f(0)
Following the same procedure, we can obtain the Laplace transform of the

second derivative as
(3-61) £{f"(t)=se{f'(t)}- £'(0")=sF(s)-sf(0")- f1(0)
Continuing the procedure, the Laplace transform of n™ derivative can be

derived as

] Lt O(t)=s"F(s)-s"*f(0)
. 20 )t 090 ) 1090 )
which will be used to solve I\VVPs of n™ order CODEs.

Let’s use %cos ot =—m, sinw,t as an example. Then, taking Laplace

10
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transform leads to  £{sina,t}= —iﬁ{gt cos coot}. Based on (3-60), we have
Wy

Lisinagt}= 1 (s.2{cos gt} cosayt] . )
[ a

__i 52 _1 _ a’o
- 2 2 T a2 2
Wy \ S” +w, S"+w,

which is the same expression shown in (3-22).

(3-63)

Integral of variable t

If F(s)=2£{f(t)}, then what is the Laplace transform of I )z ?

Let’s define g(t)zj';f(r)dr, then g'(t)=f(t) and g(0)=0. From (3-60),

we have

(3-64) £{g'(t)}=s£{g(t)}- 9(0)=se{g(t)}
(3-65) L{f(t)}=F(s)=5s£{ j )7}
Hence,

(3-66) £{j r)dr}== F( )

It is clear that multiplying 1/s to F(s) in s-domain is similar to taking the
integral of f(t) in t-domain. Since the term 1/s is just like an integration

operator, Matlab/Simulink adopt the symbol 1/s to represent an integrator.

Derivative of variable s

If F(s) is the Laplace transforms of f(t), i.e., F(s):j;f(t)e‘“dt.

Then, taking the derivative of F(s) yields

G- L[ f(eor=[ f(t)(ge—stjdt

(3-67) ds

= [} 100 te* Je=—[ ¢ () “dt =it (1)
Hence,
(3-68) elif ()= - 9F6)

ds

11
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which, in a repeated manner, leads to

(3-69) £l f(o)f= -1y d:;n(s)
: _at 1
For example, since B{e }z—, we have
s+a
d d( 1 1
-7 atl_ Y —atl_ Y _
(3-70) B{te } dsﬂ{e } ds(s+aj (s+a)

which is derived from (3-68).
Initial Value Theorem and Final Value Theorem

Consider f(t) without any singularity function at t=0, then from (3-60)

we have

(3-71) sF(s)— £(0)=£{f'(t)} =" f'(tledt
Hence,

(3-72) lim(sF(s)— f(0))=lim [ f'(t)edt=0

S—®© s—0 J0
where the integral vanishes due to the attenuation of e as s—o0. That means
(3-73) f(0)=limsF(s)

S—

which is the so-called initial value theorem. Similarly, from (3-71) we have

(3-74) lim(sF(s)- f(0))= " f'(t)t=f (o)~ £(0)
Hence,
(3-75) f (o) = limsF(s)

s—0

which is the so-called final value theorem.

However, the final value theorem (3-75) is only suitable for a function
whose value is finite or 0 when t—oo. That means its Laplace transform must
satisfy the following conditions:

I. All the nonzero poles of F(s) must have negative real parts.
I1. F(s) cannot have more than one pole at s=0.

These conditions must be checked first when appying the final value theorem.
Convolution

In general, the convolution of f(t) with g(t) is denoted as f(t)*g(t) and

12



Course: Differential Equationss/NCTU/ECE/Yon-Ping Chen

defined by

(3-76) ft)*gt)=| f(r)gt-7)de

—00

An example is depicted in the following figures.

f(7) _ f(z
1 g(tl T) ( ) 1 t<-2
4 ! T
-1 [0 2 -1 [0 2
9(z) f(r
; o) | —t
3 T
-1 |0 3 -1 [0 2
g(_T) f(T)
" 1 t=1
T g(t_T)/ !
- o T 0 2 !
g(t-7) g(t-7) f(z
: : @) ot [
: NS |
. 0 . ! T
t(<0) t(>0) -1 |0 2
f
(0 o) [T
For convenience, f(7) is chosen as a ; .
rectangular function where f(z7)=1 for -HIe 2
—1<7<2. In addition, the process to get f(t)*g(t)

1.83

g(t—7) is also shown there below g(7).

First, flip g(z) with respect to the axis =0

to get g(—7). Then, shift g(-2) by t to get 0.5
g(~(7-1)) or g(t-2) S

Then, we start from t<-2, which results in f(7)g(t-7)=0, i.e.,

f(t)*g(t)=0 for t<—2. Further evaluate f(t)*g(t) at t=—1, 1, 3, 5. In each
case, the value of f(t)*g(t) is exactly equal to the area overlapped by f(z)

and g(t—7) due to f(7)=1 for —1<zr<2. The overlapped areas are 0.5 at t=—1,
1.83 at t=1 and 0.67 at t=3. These values are shown on the curve of f(t)xg(t)

in the figure.

From (3-76), we know that the convolution f(t)*g(t) is also a function of t,

13
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SO we can write it as
(3-77) a(t)= f©)*g(t)= " f(r)glt-r)dz

If a=t—7, we have

q(t)=f_°°f( a)y(a)-da)

(3-78)
= [ gl@)f(t-a)da =g(t)=f(t)
I.e., the convolution satisfies the commutative property:
(3-79) a(t)= f(t)*gt)=g(t)* f(t)
If the convolution is shifted by a in variable t, we have
(3-80) q(t—a)=_[: f(r)g(t—a-7z)dz = f(t)*g(t-a)
Hence,
(3-81) qlt-a)=f(t)xg(t-a)= f(t-a)+glt-a)

which means a shifting of f(t) or g(t), not both, in variable t will result in the

same amount of shifting of their convolution in variable t.

Now, let’s discuss the Laplace transform of f(t)*g(t). One thing to
emphasize is that we will only focus on the causal functions f(t) and g(t), i.e.,

f(t)=0 for t<0 and g(t)=0 for t<0. Their convolution is then given as
(3-82) f(t)*g(t)=] f(c)alt-r)dr

Define F(s):.[:f(l)e‘“d/l and G(s):I:g(t)e‘S‘dt,then

(3-83) F(s)(s)= [ f(2)5(ske*da
Since

(3-84) Gls)e™ = glt—Au(t—2)e"dt
we have

s)=| f(/l)(jogt Aut-2)e S‘dtjdﬂ,
(3-85) _ I:(I:f(ﬁ)gt Ault- zdz}f“dt
= 1 2)alt=2)aa ot = £(1 1)+ o(t)

14
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(3-86) LiF(t)*9(t)}=F(s)6(s)
For example, let f,(t)=e?u(t) and f,(t)=cos3t-u(t), then
t o, ol
f,(t)* f,(t)= L e % cos3(t—r)dr = —§j e dsin3(t-7)

1 ., . 2t 5, .
=3¢ sin3(t— 7)) 0—§Le Zsin3(t-7)dr

t
7=

:%sin&—éﬂe‘zrsin:%(t—r)dr
(3-87) N
:§S|n3t—§je dcos3(t—7)
1. .2 ., L Ap
=3sin3t-ce 2 cos3(t—r)|r:0—§foe  cos3(t-7z)dr
=%sin3t—§e2t +§c053t—g f,(t)= f,(t)
Hence,
_ _ 3 aina. 2 2
(3-88) f,(t)* fz(t)—133|n3t+13c053t 3¢

whose Laplace transform is

s -3(s%)- &) 15t

1 [25+9 2 j_ s
13\s?+9 s+2) (s2+9)s+2)
Based on (3-86), we can directly obtain the Laplace transform as

(3-90) £{f,(t)+ fz(t)}=F1(S)Fz(S)=[ 1 j( : j:(s )

s+2\s?+9) (s?+9)s+2)

(3-89)

Both (3-89) and (3-90) are the same.
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