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3. Laplace Transform 

Up to now, we have learned the method to solve 1
st
-order and 2

nd
-order 

CODEs. However, how to solve CODEs of higher order? Here, we will 

introduce a method usually used in engineering, which is called the Laplace 

transform named after its discoverer Pierre-Simon Laplace. 

Definition of Laplace Transform 

First, let’s present the definition of Laplace transform. Consider a 

piecewise continuous function f(t) for t≥0; in general, we assume f(t)=0 for t<0. 

Define the Laplace transform of f(t) as 

(3-1)     







0
dtetftf stL  

where t=0

 is a negative infinitesimal value and the term st in 

ste
 is 

dimensionless. For convenience, we also denote the Lapalce transform as 

(3-2)    







0
dtetfsF st

 

to emphasize that the Laplace transform L{f(t)}F(s) is a function of s. Note 

that t[0,∞] is a nonnegative real number and s is a complex number. 

In engineering, since f(t) often represents a function of time t in sec, the 

dimensionless of st implies that s is a frequency in 
1sec . Most importantly, f(t) 

and F(s) form a pair of the Laplace transform, where f(t) is in the time-domain 

and F(s) is in the frequency-domain. 

In mathematics, the complex variable s+j consists of the real part 

Re(s)= and imaginary part Im(s)=. Besides, s+j is also known as a point 

on the complex plane, or s-plane, with axes  and j.  

Convergence of Laplace Transform 

The Laplace transform of f(t) in (3-2) converges absolutely if the integral 

satisfies the following condition 

(3-3)   




0
dtetf st

 

which also implies 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

2 

(3-4)        







 00
dttfeedtetf tjttj 

 

Since 122  tsintcostsinjtcose tj  , we know that (3-3) is 

equivalent to 

(3-5)   




0
dttfe t

  

Hence, the Laplace transform is a kind of absolutely convergence. If the 

Laplace transform of f(t) exists, then there exists a region related to Re(s)= on 

the s-plane, in which the condition (3-5) is satisfied. Such region is known as 

the region of convergence, usually denoted as ROC for short. 

Due to the fact that   sF  in the ROC, the 

Laplace transform of f(t) is formally expressed as 

(3-6)         







0
dtetfsF st

,   Re(s)> 

where Re(s)>is the ROC as shown in the figure. 

In electrical engineering, fortunately, most of the practical signals satisfy 

the condition (3-5) and their Laplace transforms exist in some specified ROCs. 

For simplicity and without loss of generality, we often neglect the ROC, i.e., 

Re(s)>, in (3-6) and only write F(s) to represent the Laplace transform, just 

like the form in (3-2). 

Dirac Delta Function 

The lower bound t=0 in the integral is mainly used to include any 

discontinuity of f(t) occurring at t=0, such as the singularity function  t , 

named as Dirac delta function, or simply called delta function. 

The delta function is shown in the figure, which is an ideal function 

subject to the following conditions: 

(3-7)              t =0,  for 0t  

(3-8)                 1



dtt  

Clearly, the delta function has an infinite discontinuity at t=0 and the number 

‘1’ marked on the arrow denotes that the area ‘under’ the arrow standing at t=0 

is 1. In engineering, the delta function is usually called the unit impulse 

s 

j 

 

0 

ROC 

t) 

1 

t 

0 
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function since it is just like an impulse occurring at the moment t=0.  

When the impulse happens at t=t0, not t=0, the conditions (3-7) and (3-8) 

should be modified into the following expression: 

(3-9)  0tt  0,  for 0tt   

(3-10)   10 



dttt  

In addition, there is an important property shown as 

(3-11)      00 tfdttttf 



  

which is called the sifting property to sift  0tf  from  tf . 

The existence of ROC in the Laplace transform implies that f(t) can be 

uniquely determined from F(s) by the inverse Laplace transform, which is 

expressed as 

(3-12)       




 
j

j

stdsesF
j

sFtf


2

11L  

The inverse Laplace transform is a topic in the course “Complex Variable”, not 

in this course. Later, we will not determine f(t) from F(s) based on (3-12). 

Instead, we previously develop a mapping set of the pair     sFtf L  for 

some functions f(t) often used in engineering. When F(s) is given, we just 

determine f(t) by checking the mapping set. 

There is one important concept concerning the lower bound t=0

 in the 

integral of (3-1), which defines the Laplace transform. We have explained that 

the lower bound t=0

 is required if the delta function exists at t=0. On the other 

hand, if a function f(t) without any area “standing” at t=0, then its Laplace 

transform can be simply defined as 

(3-13)       



0

dtetfsFtf stL  

with lower bound t=0, not t=0

. Since the integral in (3-13) neglects f(t) for t<0, 

it can be expressed as 

(3-14)        tutftf LL   

where u(t) is depicted in the figure and defined as 

(3-15)  









0for 0

0for 1
 

t,

t,
tu  

ut) 

1 

t 

0 
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In mathematics, u(t) is also a singularity function and called the unit step 

function. 

Mapping Set of Laplace Transform 

Next, let’s show the mapping set of the pair     sFtf L  for some 

functions f(t) commonly used in engineering, such as  t ,  tu ,  tr , ate , 

tje 0
, tcos 0 , tsin 0 , and nt . The mapping set is listed as below:. 

(3-16)    1tL  

(3-17)   
s

tu
1

L  

(3-18)   
2

1

s
tr L  

(3-19)  
as

e at


 1

L , ( a ) 

(3-20)  
0

1
0





js
e tj


L , ( 0 ) 

(3-21)  
2

0

20






s

s
tcosL  

(3-22)  
2

0

2

0
0









s
tsinL  

(3-23)  
1


n

n

s

!n
tL  

Now, let’s calculate all these Laplace transforms one by one. First, for the delta 

function  t  in (3-16), we have 

(3-24)      10

0
 




 

sst edtett L  

and the ROC is the whole s-plane. As for the unit step function in (3-17), its 

Laplace transform is 

(3-25)   
s

e
s

lime
s

dtetu st

tt

stst 111
1

00



 












L  

where tjt

t

st

t
ee

j
lime

s
lim 








 




 11
. Since 1 tje  , if Re(s)>0, we 

have 0
1


 



st

t
e

s
lim . Hence, 
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(3-26)   
s

tu
1

L ,  for Re(s)>0 

where Re(s)is the ROC. For the ramp function in (3-18), which is depicted 

in the figure and defined as 

(3-27)  









0for 0

0for 
 

t,

t,t
tr  

we can calculate its Laplace transform as 

(3-28) 

  

2000

0

1111
           

1

s
dte

s
dte

s
et

s

tde
s

dttetr

stst

t

st

stst























L

 

If Re(s), then 0
1

0








t

stet
s

. Thus, 

(3-29)   
2

1

s
tr L ,  for Re(s)>0 

where Re(s)is the ROC. 

Consider the exponential function 
ate

 in (3-19) where a is real. Its 

Laplace transform is calculated as below: 

(3-30)       












  000

1
 

t

tastasstatat e
as

dtedteeeL  

If Re(s)athen 
 

as
e

as t

tas











 11
0

. Therefore, it can be obtained that 

(3-31)  
as

e at


 1

L ,  for Re(s)>a 

where Re(s)ais the ROC. Similarly, for the exponential function 
tje 0
 in 

(3-20) with 0 real, its Laplace transform is 

(3-32) 

   

  














 

0
0

00

0

000

1
              

t

tjs

tjssttjtj

e
js

dtedteee







L

 

If Re(s)then 
 

0
0

0

11
0





js
e

js t

tjs












. Hence, we have 

(3-33)  
0

1
0





js
e tj


L ,  for Re(s) > 

where the ROC is Re(s)

rt) 

1 

t 

0     1 
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The Laplace transforms of trigonometric functions in (3-21) and (3-22) 

can be derived from (3-33) as below 

(3-34)      
2

0

2

0

0

00

1
0
















s

js

js
tsinjtcose tj LLL  

Hence,  

(3-35)  
2

0

20






s

s
tcosL  

(3-36)  
2

0

2

0
0









s
tsinL  

where the ROC is Re(s) >same as that of  tje 0L 

Actually, (3-21) and (3-22) can be also derived by directly calculating 

their Laplace transforms as below: 

(3-37) 

 






 



















  
1

                

 
1

 

0
0

0

0
0

00

tsindeetsin
s

detsin
s

dtetsintsin

st

t

st

stst



L

 

Obviously, if Re(s)>0 then 

(3-38) 

 

 tcos
s

dtetcos
s

tsinde
s

tsin

st

st

0
0

0
0

0

00

                  

 
1









L

L
















 

Similarly, we have 

(3-39) 

 

   tcos
ss

tsin
ss

dtetsin
s

tcosdeetcos
s

detcos
s

dtetcostcos

st

st

t

st

stst

02

2

0
0

0

0
00

0
0

0

0
0

00

11
                 

  1
1

                 

  
1

                 

 
1

  













LL

L








 






 


























 

From (3-38) and (3-39), it can be obtained that  
2

0

20






s

s
tcosL and  

 
2

0

2

0
0









s
tsinL , as expected. 

Finally, let’s consider the function 
nt  in (3-23), whose Laplace 
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transform is 

(3-40) 

 

 1
0

1

00

1
          

11























 







nnstnst

nst

t

stnstnstnn

t
s

n
dtte

s

n
dte

s

dteet
s

det
s

dtett

L

L

 

where Re(s)>0. Hence, we have 

(3-41) 

            

      
 

 kn

k

kn

k

nnnn

t
!kns

!n
t

s

knnn

t
s

nnn
t

s

nn
t

s

n
t

















LL

LLLL

11
          

211 3

3

2

2

1




 

For k=n,  

(3-42)  
 

     
1

1


 



nnn

nn

n

n

s

!n
tu

s

!n

s

!n
t

!nns

!n
t LLLL  

where the ROC is Re(s)>0. 

Next, let’s discuss some important properties of the Laplace transform. 

By the use of these properties, we can determine the transform pair 

    sFtf L  of some functions f(t) not in the mapping set from (3-16) to 

(3-23). 

Linearity 

If  sF1  and  sF2  are the Laplace transforms of  tf1  and  tf2 , 

respectively, i.e., then 

(3-43) 

         

   

   sbFsaF

dtetfbdtetfa

dtetbftaftbftaf

stst

st

21

0
2

0
1

0
2121

                             

                             























L

 

Scaling property 

If  sF  is the Laplace transforms of  tf , then with a>0 the Laplace 

transform of  atf  is 

(3-44) 

      

  























 









 















a

s
F

a
def

a

a
defdteatfatf

a

s

a
s

st

11
                

0

00










L
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Shifting property in variable t 

If  sF  is the Laplace transforms of  tf , then with 0 the Laplace 

transform of      tutf  is 

(3-45) 

        

   

 




































dtetf

dtetutf

dtetutftutf

st

st

st

                               

                               

0
L

 

Choose  tv , then dtdv  ,  vt  and 

(3-46) 
     

   sFedvevfe

dvevfdtetf

ssvs

vsst































0

0

                           

 

Hence, 

(3-47)       sFetutf s L  

which is the shifting property of Laplace transform in variable t. 

 

 

 

Note that        tftutf  if f(t)≠0 for t<0, as shown in the 

above figure, which implies that 

(3-48)          tftutf LL  

For example, let’s consider the difference between the Laplace transforms  

    000 ttuttcos L  and   00 ttcos L . From (3-35) and (3-47), we 

have  

(3-49)     
2

0

2000
0





 

s

s
ettuttcos stL  

For the Laplace transform   00 ttcos L , it is expressed as 

(3-50)     







0
0000 dtettcosttcos stL  

Let 0ttv  , then  

f(t)u(t) 

t 

0     

f(t) 

t 

0 

f(t) 

t 

0 
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(3-51) 

 

     

   

 
2

0

2

0

0

0
0

0

0

00

0
00

0

0

0

0

0

0

0

0

0

0




































































s

s
edvevcose

dvevcosedvevcose

dvevcosedvevcos

dtettcos

st

t

svst

svst

t

svst

t

svst

t

tvs

st

 

Compared to (3-49), it is clear that 

(3-52)        00000 ttcosttuttcos   LL  

Laplace Transform of Periodic Functions 

Next, let’s introduce the case of 

periodic functions. Let  tf1  be a finite 

duration function as shown in the figure, 

which is zero for t<0 and Tt  . Consider a 

periodic function f(t) for t>0 with period T 

and    tftf 1  for Tt 0 . The 

periodic function is shown in the figure and 

expressed as 

(3-53)    





0

1

k

kTtftf  

Then, the Laplace transform is 

(3-54)        


















0

1

0

1

kk

kTtfkTtftf LLL  

where 

(3-55) 
       

  tfe

kTtukTtfkTtf

skT

1

11

                     L

LL



 

If     tfsF L  and     tfsF 11 L , then 

(3-56) 

   

   

 

 sF
e

e
lim

sFeeelim

sFesF

sT

Tns

n

snkTkTsskT

n

k

skT

1

1

1

2

0

1

1

1
        

1        


























  

t 

f1(t) 

1 

0        T 

 

t 

f(t) 

f1(t) 1 

0       T     2T    3T 

 

 
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Since 
 

sTsT

Tns

n ee

e
lim





 






1

1

1

1 1

 for Re(s)>0, we have 

(3-57)    sF
e

sF
sT 1

1

1


 ,  for Re(s)>0 

where Re(s)>0 is the ROC. 

Shifting property in variable s 

Similarly, there is a shifting property in variable s. Let’s check the 

Laplace transform of  tfe at . From the definition, we have 

(3-58) L{  tfe at }        asFdtetfdtetfe tasstat  







 00
 

which is the shifting property of Laplace transform in variable s. 

Derivative of variable t 

If  sF  is the Laplace transforms of a differentiable function  tf , then 

what is the Laplace transform of  tf  ? From the definition, we have 

(3-59) 

          

     

     ssFftfelim

dtetfsftfelim

detftfetdfedtetftf

st

t

stst

t

st

t

ststst


























 

0             

0             

00
L

 

Assume the ROC exists such that   0


tfelim st

t
, then 

(3-60)        0fssFtfL  

Following the same procedure, we can obtain the Laplace transform of the 

second derivative as 

(3-61)                000 2 fsfsFsftfstf LL  

Continuing the procedure, the Laplace transform of n
th

 derivative can be 

derived as 

(3-62) 

       
       







000                    

0

122

1

nnn

nnn

fsffs

fssFstf



L
 

which will be used to solve IVPs of n
th

 order CODEs. 

Let’s use tsintcos
dt

d
000   as an example. Then, taking Laplace 
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transform leads to  








 tcos
dt

d
tsin 0

0

0

1



 LL . Based on (3-60), we have 

(3-63) 

    

2

0

2

0

2

0

2

2

0

000

0

0

1
1

                

1



























 

ss

s

tcostcosstsin
t

LL

 

which is the same expression shown in (3-22). 

Integral of variable t 

If     tfsF L , then what is the Laplace transform of  
t

df
0

 ? 

Let’s define    
t

dftg
0

 , then    tftg   and   00 g . From (3-60), 

we have 

(3-64)           tgsgtgstg LLL  0  

i.e., 

(3-65)        }{LL 
t

dfssFtf
0

  

Hence, 

(3-66)    sF
s

df
t 1

0
 }{L   

It is clear that multiplying s1  to F(s) in s-domain is similar to taking the 

integral of f(t) in t-domain. Since the term s1  is just like an integration 

operator, Matlab/Simulink adopt the symbol s1  to represent an integrator. 

Derivative of variable s 

If  sF  is the Laplace transforms of  tf , i.e.,    







0
dtetfsF st

. 

Then, taking the derivative of F(s) yields 

(3-67) 
     

        ttfdtettfdttetf

dte
s

tfdtetf
ds

d
sF

ds

d

stst

stst

L



































00

00

             

 

Hence, 

(3-68)   
 

ds

sdF
ttf L  
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which, in a repeated manner, leads to 

(3-69)     
 
n

n
nn

ds

sFd
tft 1 L  

For example, since  
as

e at


 1

L , we have 

(3-70)    
 2

11
 

asasds

d
e

ds

d
te atat













  LL  

which is derived from (3-68). 

Initial Value Theorem and Final Value Theorem 

Consider  tf  without any singularity function at t=0, then from (3-60) 

we have 

(3-71)         



0

0 dtetftffssF stL  

Hence, 

(3-72)        00
0

 





dtetflimfssFlim st

ss
 

where the integral vanishes due to the attenuation of 
ste

 as s→∞. That means 

(3-73)    ssFlimf
s 

0  

which is the so-called initial value theorem. Similarly, from (3-71) we have 

(3-74)           00
00

ffdttffssFlim
s

 





 

Hence, 

(3-75)    ssFlimf
s 0

  

which is the so-called final value theorem.  

However, the final value theorem (3-75) is only suitable for a function 

whose value is finite or 0 when t→∞. That means its Laplace transform must 

satisfy the following conditions: 

 I. All the nonzero poles of F(s) must have negative real parts. 

 II. F(s) cannot have more than one pole at s=0. 

These conditions must be checked first when appying the final value theorem. 

Convolution 

In general, the convolution of f(t) with g(t) is denoted as    tgtf   and 
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defined by 

(3-76)        



  dtgftgtf  

An example is depicted in the following figures.  

 

 

 

 

 

 

 

 

 

 

For convenience, f() is chosen as a 

rectangular function where f()=1 for 

1<<2. In addition, the process to get 

g(t) is also shown there below g(). 

First, flip g() with respect to the axis =0 

to get g(). Then, shift g() by t to get 

g((t)) or g(t). 

Then, we start from t2, which results in f()g(t)=0, i.e., 

   tgtf  =0 for t2. Further evaluate    tgtf   at t1, 1, 3, 5. In each 

case, the value of    tgtf   is exactly equal to the area overlapped by f() 

and g(t) due to f()=1 for 1<<2. The overlapped areas are 0.5 at t1, 

1.83 at t1 and 0.67 at t3. These values are shown on the curve of    tgtf   

in the figure. 

From (3-76), we know that the convolution f(t)*g(t) is also a function of t, 



f() 
1 

0 



g() 

0 


0 



g() 

0 

g(t) 

t(<0) 

g(t) 

t(>0) 

  

 

1  

1  

1 

g(t) 
t2 



f() 
1 

0   

 

t1 



f() 
1 

0   

t 



f() 
1 

0   

t3 



f() 
1 

0   

t 



f() 
1 

0   

g(t) 

g(t) 

g(t) 

g(t) 

t 

f(t)*g(t) 








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so we can write it as 

(3-77)          



  dtgftgtftq  

If =t, we have  

(3-78) 
      

       tftgdtfg

dgtftq
















         


 

i.e., the convolution satisfies the commutative property: 

(3-79)          tftgtgtftq   

If the convolution is shifted by a in variable t, we have 

(3-80)          atgtfdatgfatq  



  

Hence, 

(3-81)          atgatfatgtfatq   

which means a shifting of f(t) or g(t), not both, in variable t will result in the 

same amount of shifting of their convolution in variable t. 

Now, let’s discuss the Laplace transform of    tgtf  . One thing to 

emphasize is that we will only focus on the causal functions f(t) and g(t), i.e., 

f(t)=0 for t<0 and g(t)=0 for t<0. Their convolution is then given as 

(3-82)         
t

dtgftgtf
0

  

Define    



0

 defsF s
 and    




0
dtetgsG st

, then 

(3-83)        



0

 desGfsGsF s
 

Since 

(3-84)      


 
0

dtetutgesG sts 
 

we have 

(3-85) 

         

     

        tgtfdtedtgf

dtedtutgf

ddtetutgfsGsF

st
t

st

st






 






 






 





 

 


 

 

 

L
0 0

0 0

0 0

                

                







 

i.e., 
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(3-86)         sGsFtgtf L  

For example, let    tuetf t2

1

  and    tutcostf  32 , then 

(3-87) 

       

   

 

 

   

   tftftcosetsin

dtcosetcosetsin

tcosdetsin

dtsinetsin

dtsinetsine

tsindedtcosetftf

t

tt

t

tt

t

21

2

0

2

0

2

2

0

2

0

2

0

2

2

0

2

21

9

4
3

9

2

9

2
3

3

1
                 

3
9

4
3

9

2
3

3

1
                 

3
9

2
3

3

1
                 

3
3

2
3

3

1
                 

3
3

2
3

3

1
                 

3
3

1
3







































































 

Hence, 

(3-88)     tetcostsintftf 2

21
13

2
3

13

2
3

13

3
   

whose Laplace transform is 

(3-89) 

    
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Based on (3-86), we can directly obtain the Laplace transform as 
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Both (3-89) and (3-90) are the same. 


