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2. Second-Order Linear Ordinary Differential Equations with 

Constant Coefficients 

In general, the second-order linear ordinary differential equations with constant 

coefficients, or 2
nd

-order linear CODE, is described as below: 

(2-1)           tqtyptyptytyL  01
  

where         typtyptytyL 01   , t is an independent variable within an interval I, 

q(t) is a given function, y(t) is the unknown function to be solved, and p1 and p0 are 

constant coefficients. 

The linear operator         typtyptytyL 01   , similar to the case of 

1
st
-order linear CODE, allows us to decompose the solution y(t) into two parts as 

below: 

(2-2)      tytyty ph   

where  tyh  is the homogeneous solution satisfying 

(2-3)       001  typtypty hhh
  

and  typ  is a particular solution obtained from 

(2-4)        tqtyptypty ppp  01
  

Next, let’s solve  tyh  for the homogeneous equation (2-3). 

Homogeneous Solutions 

Same as the 1
st
-order linear CODE, the homogeneous solution of (2-3) can be 

chosen as 

(2-5)   x

h Aexy   

where A is an arbitrary constant. Apply it to (2-3) and get 

(2-6)   001

2  tAepp   

which implies  

(2-7) 001

2  pp   

since 0te
 for all t. Note that (2-7) is called the characteristic equation and the 

characteristic roots are 
2

4 0

2

11

21

ppp
,


 . According to the numeric sign of 

0

2

1 4pp  , the homogeneous solution  tyh  can be classified into three cases, which 
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are 04 0

2

1  pp , 04 0

2

1  pp  and 04 0

2

1  pp . 

For Case-I: 04 0

2

1  pp , the roots 
2

4 0

2

11

21

ppp
,


  are distinct real 

numbers. Since 21   , we know that 
te 1  and 

te 2  are linearly independent and 

the homogeneous solution is formed by their linear combination and expressed as  

(2-8)       tt

hhh eAeAtytyty 21

2121

   

where   t

h eAty 1

11

 and   t

h eAty 2

22

 . Note that the coefficients 1A  and 2A  are 

arbitrary real constants. 

For Case-II: 04 0

2

1  pp  or 
4

2

1
0

p
p  , the roots 2121 p  , which are 

real and repeated. Hence, we can only obtain one homogeneous solution directly from 

the repeated roots 21p , which is expressed as 

(2-9)  
t

p

h eAty 2
11

1

  

However, for a 2
nd

-order homogeneous equation, we are supposed to find two 

homogeneous solutions. Here, we will introduce a method commonly used to 

determine the homogeneous solution different to (2-9). Let’s rewrite (2-3) into 

(2-10)               0
2224

111

2

1
1 

















 ty

p
ty

p
ty

p
ty

dt

d
ty

p
typty hhhhhhh

  

which can be further decomposed into two 1
st
-order CODEs as below: 

(2-11)      tzty
p

ty hh 
2

1  

(2-12)     0
2

1  tz
p

tz  

From (2-12), we obtain  
t

p

Aetz 2

1

 , and then (2-11) becomes 

(2-13)    
t

p

hh Aety
p

ty 21
1

2



  

Since (2-13) is a 1
st
-order linear CODE, its solution  tyh  should consist of a 

homogeneous solution  
t

p

h eAty 2
11

1

 , and a particular solution 
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(2-14) 

 
 

 
 

     

t
p

t
p

t
p

a
p

h

t
p

a
p

h

t

a

t
p

at
p

h

t

a

t
pp

h

eAteA

eeayatAeeaydAe

eaydeAety

2
3

2
2

22
2

22
2

2

2
2

22
2

11

11111

111

         

         



































 

where AA 2  and  
a

p

h eayAaA 2
23

1

 . Because only one particular solution is 

needed and the term 
t

p

eA 2
3

1

 has the same form of  tyh1 , we can neglect the term 

t
p

eA 2
3

1

 and choose 

(2-15)  
t

p

h teAty 2
22

1

  

Therefore, the homogeneous solution for the case of 04 0

2

1  pp  is  

(2-16)      
t

p
t

p

hhh teAeAtytyty 2
2

2
121

11 

  

where 1A  and 2A  are arbitrary real constants. 

For Case-III: 04 0

2

1  pp , the roots are  j, 21 , with 
2

1p
  and 

2

4 2

10 pp 
 . Since 21    and  j 

21 , we have 

(2-17)   tt

h eBeBty


 
21  

where 1B  and 2B  are complex numbers. Due to the fact that   Rtyh  , we can 

rewrite (2-17) as 

(2-18)   tt

h eAAety
 

 

where ABB  

21  and A is an arbitrary complex number. Actually, (2-18) can be 

also expressed as 

(2-19)    tsinAtcosAety t

h 
21   

where  AAA1  and   AAjA2  are real numbers. Hence, 

(2-20) 

     
































tppsinAtppcosAe

tsineAtcoseAtytyty

t
p

tt

hhh

2

102

2

101
2

2121

4
2

1
4

2

1
         

1

 

 

where   tcoseAty t

h 
11   and   tsineAty t

h 
22  . 
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Nonhomogeneous Solutions 

Assume  typ  is a particular solution of (2-1) with   0tq , which is called a 

nonhomogeneous equation, then its solution, or nonhomogeneous solution, for each of 

the three cases are shown as below: 

Case-I: 04 0

2

1  pp , 1  and 2  are real numbers and 21    

(2-21)    tyeAeAty p

tt  21

21


 

Case-II: 04 0

2

1  pp , 
2

1
21

p
   

(2-22)    tyteAeAty p

t
p

t
p




2
2

2
1

11

 

Case-III: 04 0

2

1  pp , 
2

10
1

21 4
2

1

2
ppj

p
j,    

(2-23)      tytsinAtcosAety p

t  
21  

Clearly, these nonhomogeneous solutions are not unique since each of them consists 

of two arbitrary real numbers 1A  and 2A . To achieve a unique solution, we have to 

include two extra conditions to determine 1A  and 2A . Next, let’s focus on the initial 

value problems, or IVPs for short. 

Initial Value Problems 

Let’s consider a 2
nd

-order linear CODE with two extra conditions   00 yy   

and   00 vy  , which is expressed as 

(2-24)        tqtyptypty  01
 ,    00 yy  ,   00 vy   

In mathematics, since the extra conditions   00 yy   and   00 vy   are given at the 

initial point t=0, the problem to solve y(t) for t≥0 is an IVP. 

Consider an example of Case-I. If a particular solution  typ  has been 

determined, then    tyeAeAty p

tt  21

21


 shown in (2-21) must satisfy the initial 

conditions: 

(2-25)     021 00 yyAAy p   

(2-26)     02211 00 vyAAy p     

Hence, the coefficients 1A  and 2A  can be determined from (2-25) and (2-26) and 
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expressed as 

(2-27)      0
1

0 0

21

0

21

2
1 pp yvyyA 












 

(2-28)      0
1

0 0

21

0

21

1
2 pp yvyyA 










 

where 21   . Clearly, the solution    tyeAeAty p

tt  21

21


 is unique. 

Boundary Value Problem (BVP) 

Instead of the initial conditions, we can also use boundary conditions to 

uniquely determine the solution of a 2
nd

-order linear CODE. 

For example, consider a 2
nd

-order linear CODE with boundary conditions, 

which is expressed as 

(2-29)        tqtyptypty  01
 ,    ayay  ,   byby   

In mathematics, (2-29) is a kind of boundary value problem, or BVP for short, since 

  ayay   and   byby   are conditions given at the boundary points t=a and t=b. 

Once again, let’s solve the BVP in (2-29) for Case-I. Assume a particular 

solution  typ  has been determined, then    tyeAeAty p

tt  21

21


 in (2-21) must 

satisfy 

(2-30)     ap

aa yayeAeAay  21

21


 

(2-31)     bp

bb ybyeAeAby  21

21


 

As a result, we have 

(2-32) 
     

   ba

b

pb

a

pa

ee

ebyyeayy
A

2121

22

1 










  

(2-33) 
     

   ba

b

pb

a

pa

ee

ebyyeayy
A

1212

11

2 










  

Thus, the nonhomogeneous solution    tyeAeAty p

tt  21

21


 in (2-21) is unique. 

Particular Solutions 

Now, let’s determine the particular solutions  typ  corresponding to the cases 

of         1 2 tcos,tsin,t,t,tq   for a 2
nd

-order linear CODE shown in (2-1). That 

means the particular solution satisfies 
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(2-34)        tqtyptypty ppp  01
  

For   1tq , we can assume  typ  is also a constant, which means   0typ
  and 

  0typ
 . Then, from (2-34) we have   10 typ p , i.e.,  

(2-35)  
0

1

p
typ   

which is chosen as the particular solution of   1tq . 

For   ttq  , we assume   battyp  , and thus   atyp   and   0typ
 . 

Substituting them into (2-34) yields 

(2-36)   tbatpap  01  

which results in 10 ap  and 001  bpap . Hence, 
0

1

p
a   and 

2

0

1

p

p
b  , i.e., 

(2-37)  
2

0

1

0

1

p

p
t

p
battyp   

which is a particular solution of   ttq  . 

For   2ttq  , let   cbtattyp  2 , then   battyp  2  and   atyp 2 . 

From (2-34), we have 

(2-38)     22

01 22 tcbtatpbatpa   

which implies 10 ap , 02 01  bpap  and 02 01  cpbpa . Therefore, 
0

1

p
a  , 

2

0

12
p

p
b   and 

3

0

2

1

2

0

2
1

2
p

p

p
c  . Hence, 

(2-39)  
3

0

2

1

2

0

2

0

12

0

2 2
1

22
1

p

p

p
t

p

p
t

p
cbtattyp   

which is chosen as the particular solution of   2ttq  . 

For   tsintq   and   tcostq  , we use   tjetq   as a substitution, and 

assume   tj

p Aety   where A is a complex number. The derivatives of  typ  are 

    tj

p Aejty   and     tj

p Aejty 
2

 . Then, apply them to (2-34) to obtain 

(2-40)     tjtjtjtj eAepAejpAej    01

2
 

which leads to 
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(2-41) 
      2

0

2

01

4

1

2

0

2

1

22

0

1

2

0

1

2

0 2

1

ppp

jpp

pp

jpp

jpp
A























 

Hence, the particular solution of   tjetq   is 

(2-42) 

 
 

 
 

 
 

 
  2

0

2

01

4

1

2

0

2

0

2

01

4

1

2

0

2

0

2

01

4

1

2

0

2

0

2

01

4

1

2

0

2
 

2
         

2
          

2

ppp

tcosptsinp
j

ppp

tsinptcosp

tsinjtcos
ppp

jpp

e
ppp

jpp
ty tj

p





































 

 

Clearly, if   tsintq  , which is the imaginary part of 
tje 
, then the particular 

solution is the imaginary part in (2-42), i.e., 

(2-43)  
 

  2

0

2

01

4

1

2

0

2 ppp

tcosptsinp
typ









 

For   tcostq  , which is the real part of 
tje 
, we have 

(2-44)  
 

  2

0

2

01

4

1

2

0

2 ppp

tsinptcosp
typ









 

which is the real part in (2-42).  

Motion of an MBK System 

Let’s consider the simplest mechanical system, called the MBK system, and 

adopt the Newton’s second law to derive its dynamic systems. 

 

In engineering, most of the systems are constructed by mechanical components 

such as dampers and springs. The simplest one is shown in the figure, called the 

mass-damper-spring system or MBK system in brief, where M is the mass of the 

moving object, B is the damping coefficient of the damper and K is the stiffness of the 

spring. Let F(t) be an extra force exerted on the object at time t and assume y(t) is the 

K 

M B 
F(t) 

y(t) y=0 
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resulted deviation of the spring referring to its unforced status y=0. Then, there are 

two forces reacted to restrain the motion of the object, expressed as 

(2-45)    tyBtFB
  

(2-46)    tKytFK   

where FB(t) is caused by the damper and FK(t) is the force from the spring. According 

to the Newton’s second law of motion, we have 

(2-47)        tyMtFtFtF KB
  

which can be written as 

(2-48)  tFKyyByM   

By monic process, (2-48) is changed into the normal form as 

(2-49)  tfyayay  01  

where 01 
M

B
a , 00 

M

K
a  and  

 
M

tF
tf  . Clearly, the dynamic model of an 

MBK system is represented by a 2
nd

-order linear OCDE. If the initial conditions 

  00 yy   and   00 vy   are further included, then  

(2-50)  tfyayay  01 ,    00 yy  ,   00 vy   

which is an IVP and possessed of two characteristic roots 1  and 2 . Next, let’s 

discuss the dynamic motion of the MBK system. 

Unforced Overdamped Motion 

First, let’s discuss the case of distinct real 1  and 2 , or call unforced and 

overdamped motion, under different initial conditions. Consider an MBK system with 

B=1.25, K=0.25, and M=1 and suppose that there is no driving force, i.e., f(t)=0. 

Hence, the MBK system performs an unforced motion and is described as 

(2-51) 001  yayay  

where 2511 .
M

B
a   and 2500 .

M

K
a  . Its characteristic equation is 

(2-52)    012502502512   ...  

and the characteristic roots are 2501 .  and 12  . Hence, the homogeneous 

solution is 

(2-53)   tt. eAeAty 1

2

250

1

   

where A1 and A2 depend on the initial conditions   00 yy   and   00 vy  .  
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To display the dynamic behavior under different initial conditions, the so-called 

phase plane method has been often used as the tool in mathematics. A phase plane 

uses y(t) and  ty  as the horizontal axis and vertical axis, and a curve with an arrow 

on the phase plane is called a trajectory, which is related to specific initial conditions 

  00 yy   and   00 vy  . That means a trajectory shows the dynamic behavior of y(t) 

along the direction of arrow as t is increasing. A set of trajectories is called a portrait 

of y(t). To display the dynamic behavior of (2-51), let’s choose 12 initial conditions as 

below: 

Curve 1 2 3 4 5 6 7 8 9 10 11 12 

y0            

v0            

 

and use the command ode45 of Matlab to simulate all these conditions.  

To run Matlab, we have to transform (2-51) into a set of state equations by 

defining state variables as    tyty 1  and    tyty 2 . Then, (2-51) can be 

represented as 

(2-54) 








21102

21

 

 

yayay

yy
 

which will be applied in the simulation program listed below. 

================================= 

Create m-file: MBKCase1.m  

function dy=MBKCase1(t,y) 

dy=zeros(2,1);  % a column vector 

dy(1)=y(2); 

dy(2)=-0.25*y(1)-1.25*y(2); 

================================= 

Create m-file: phaseplane1.m  

y0(1)=0; dy0(1)=8; y0(2)=-4; dy0(2)=8; 

y0(3)=-8; dy0(3)=8; y0(4)=-8; dy0(4)=6; 

y0(5)=-8; dy0(5)=4; y0(6)=-8; dy0(6)=2; 

y0(7)=-y0(6); dy0(7)=-dy0(6);  

y0(8)=-y0(5); dy0(8)=-dy0(5); 

y0(9)=-y0(4); dy0(9)=-dy0(4); 

y0(10)=-y0(3); dy0(10)=-dy0(3); 

y0(11)=-y0(2); dy0(11)=-dy0(2); 

y0(12)=-y0(1); dy0(12)=-dy0(1); 

figure(1) 

for i=1:12 

  [t,y]=ode45(@MBKCase1,[0:0.01:10], [y0(i) dy0(i)]) 

  plot(y(:,1),y(:,2)) 

  hold on 

end 

grid; xlabel(‘y’); ylabel(‘dy’); 

line([0 0],[8 -8]), line([-8 8],[0 0])  % two axes 

 

 

3          2          1 

4 

 5 

6 

7 

8 

9 
12         11        10 
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% Plot Curve 4,9 and Curve 2,11 

figure(2) 

[t,y4]=ode45(@MBKCase1,[0:0.01:10], [y0(4) dy0(4)]) 

[t,y9]=ode45(@MBKCase1,[0:0.01:10], [y0(9) dy0(9)]) 

plot(t,y4(:,1),t,y9(:,1))  

grid; xlabel(‘t’); ylabel(‘y(t)’); 

figure(3) 

[t,y2]=ode45(@MBKCase1,[0:0.01:10], [y0(2) dy0(2)]) 

[t,y11]=ode45(@MBKCase1,[0:0.01:10], [y0(11) dy0(11)]) 

plot(t,y2(:,1),t,y11(:,1)) 

grid; xlabel(‘t’); ylabel(‘y(t)’); 

================================= 

 

After the simulation of 12 initial conditions, the portrait of y(t) is obtained and 

shown in the phase plane. Note that Curve 3 and Curve 10 belong to the same straight 

line 02  yy   with slop 12   and Curve 6 and Curve 7 belong to the same 

straight line 01  yy   with slop 2501 . . Most importantly, the origin y(t)=0 

for all t is also a solution and called the equivalent point. From the portrait, it is clear 

that there is no intersection between any two of the trajectories, which implies that all 

the trajectories approach the equivalent point y(t)=0, but cannot reach it.  

 

 

 

 

 

 

Besides, any curve bounded by these two straight lines has the property y(t)>0 

or y(t)<0, such as the solution of Curve 4 and 9. On the other hand, any curve outside 

these two straight lines, such as Curve 2 and 11, has the property that y(t) first reaches 

its maximum or minimum at 0y  and then converges to 0.  

Critical Damping Motion 

Next, let’s discuss the case of 1 = 2 , or call critical damping motion, under 

different initial conditions. Consider the MBK system with B=4, K=4, and M=1 and 

without driving force, i.e., f(t)=0. Hence, the MBK system performs an unforced 

motion and is described as 

4 

9 
2 

11 
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(2-55) 001  yayay  

where 41 
M

B
a  and 40 

M

K
a . Its characteristic equation is 

(2-56)   0244
22    

which has a repeated root 2 . The homogeneous solution is 

(2-57)   tt teAeAty 2

2

2

1

   

where A1 and A2 are determined by the initial conditions   00 yy   and   00 vy  . 

Again, below uses 12 initial conditions to display the dynamic behavior of (2-55): 

Curve 1 2 3 4 5 6 7 8 9 10 11 12 

y0            

v0            

 

The Matlab simulation program is shown below: 

================================= 

Create m-file: MBKCase2.m  

function dy=MBKCase2(t,y) 

dy=zeros(2,1);  % a column vector 

dy(1)=y(2); 

dy(2)=-0.25*y(1)-1.25*y(2); 

================================= 

Create m-file: phaseplane2.m  

y0(1)=6; dy0(1)=8; y0(2)=4; dy0(2)=8; 

y0(3)=2; dy0(3)=8; y0(4)=0; dy0(4)=8; 

y0(5)=-2; dy0(5)=8; y0(6)=-4; dy0(6)=8; 

y0(7)=-y0(6); dy0(7)=-dy0(6);  

y0(8)=-y0(5); dy0(8)=-dy0(5); 

y0(9)=-y0(4); dy0(9)=-dy0(4); 

y0(10)=-y0(3); dy0(10)=-dy0(3); 

y0(11)=-y0(2); dy0(11)=-dy0(2); 

y0(12)=-y0(1); dy0(12)=-dy0(1); 

figure(1) 

for i=1:12 

  [t,y]=ode45(@MBKCase2,[0:0.01:10], [y0(i) dy0(i)]) 

  plot(y(:,1),y(:,2)) 

  hold on 

end 

grid; xlabel(‘y’); ylabel(‘dy’); 

line([0 0],[8 -8]), line([-8 8],[0 0])  % two axes 

% Plot Curve 4,9 and Curve 1,12 

figure(2) 

[t,y4]=ode45(@MBKCase2,[0:0.01:10], [y0(4) dy0(4)]) 

[t,y9]=ode45(@MBKCase2,[0:0.01:10], [y0(9) dy0(9)]) 

plot(t,y4(:,1),t,y9(:,1))  

grid; xlabel(‘t’); ylabel(‘y(t)’); 

figure(3) 

[t,y1]=ode45(@MBKCase2,[0:0.01:10], [y0(1) dy0(1)]) 

[t,y12]=ode45(@MBKCase2,[0:0.01:10], [y0(12) dy0(12)]) 

plot(t,y1(:,1),t,y12(:,1)) 

grid; xlabel(‘t’); ylabel(‘y(t)’); 

================================= 

1 2 3 4 5 6 

7 8 9 10 11 12 
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The resulted portrait of y(t) is shown in the phase plane, where Curve 6 and 

Curve 7 belong to the same straight line with slop 2 . All the other curves have 

the property that y(t) first reaches its maximum or minimum at 0y  and then 

converges to 0, such as y(t) of Curve 2 and 11 and y(t) of Curve 5 and 8. 

Unforced Underdamped Motion 

Next, let’s discuss the case of  j, 21 , or call underdamped motion, 

under different initial conditions. Consider the MBK system with B=0.2, K=0.5, and 

M=1 and suppose that there is no driving force, i.e., f(t)=0. Hence, the MBK system 

performs an unforced motion and is described as 

(2-58) 001  yayay  

where 201 .
M

B
a   and 500 .

M

K
a  . Its characteristic equation is 

(2-59)    07010701050202  .j..j...   

with roots 7010 .j.  . The homogeneous solution is 

(2-60)     tetsinAtcosAty  21  

where A1 and A2 are related to the initial conditions   00 yy   and   00 vy  . To 

display the dynamic behavior of (2-58), let’s choose 4 initial conditions as below: 

Curve 1 2 3 4 

y0    

v0    

 

The resulted portrait of y(t) is shown in the phase plane and all the curves are spirally 

converged to the origin. From y(t) of Curve 2 and 3, both are oscillating and damped in 

peak values. 

2 

11 

5 

8 
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Forced Motion 

Next, let’s discuss the case of forced motion, under specified initial conditions. 

Consider the MBK system with B=1.25, K=0.25, and M=1 and the extra force is 

  t.costf 40 . Hence, the system performs a forced motion and is described as 

(2-61)  tfyayay  01  

where 2511 .
M

B
a   and 2500 .

M

K
a  . Its characteristic equation is 

(2-62)    025012502512  ...   

whose roots are 1 and 0.25. If the initial conditions are   10 y  and   00 y , 

then the solution is 

(2-63)      1304048401311018150 250 t.cos.e.e.ty t.t   

and its simulation result is plotted in the figure. It can be seen that y(t) only depends 

on the extra force   t.costf 40  as t→∞, nothing to do with the initial conditions. 

 

 2 
 

2 

3 

2 1 

3 4 
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RLC Circuit 

Consider an RLC circuit which contains a voltage source  tvs . The initial 

conditions are   00 CC vv   and   00 LL ii  . It is known that the component equations 

of a capacitor and an inductor are 

(2-64)      
 

 tvC
dt

tdv
Cti C

C
C

  

(2-65)      
 

 tiL
dt

tdi
Ltv L

L
L

  

From the Kirchhoff’s voltage law, we have 

(2-66)              tvtiLtiRtvtvtiRtv CLLCLLs  11  

and from the Kirchhoff’s current law, we have 

(2-67)      tv
R

tvCti CCL

2

1
  

The above two equations can be rewritten as 

(2-68) 

     

       













tv
L

ti
L

R
tv

L
ti

ti
C

tv
CR

tv

sLCL

LCC

11

11

 
1

2  

or as the following matrix form 

(2-69) 
 
 

 
   





























































tv
L

ti

tv

L

R

L

CCR

ti

tv

sL

C

L

C

1

0

 
1

11

1

2
 

Further derive the characteristic polynomial of the circuit as below: 

(2-70) 

LCR

R

L

R

CR

L

R

L

CCR

L

R

L

CCR

1
1

1

1

11

1

11

0

0

2

11

2

2

1

2

1

2



































































 

If the output is    tvty C , then based on the Cayley-Hamilton theory and the 

characteristic polynomial (2-70), the dynamic equation of the RLC circuit can be 

obtained as below: 

〜 

vs(t) R1 
iL(t) C 

+ 

vC(t) 



R2 
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(2-71) 

     

       tv
LC

tv
LCR

R
tv

L

R

CR
tv

ty
LCR

R
ty

L

R

CR
ty

sCCC

11
1

1

1
1

1

2

11

2

2

11

2











































 

and the initial conditions are 

(2-72) 

   

       











00

22

0

11
0

1
0

1
00

00

 
LCLCC

CC

i
C

v
CR

i
C

v
CR

vy

vvy

  

Now, consider the following case: the component parameters are 91 R , 72 R , 

3C  and 20L , the input voltage source is   3tvs , and the initial conditions 

are   200 .vC   and   00 Li . Then, the dynamic equation shown in (2-68) is 

(2-73) 
     

       











tvtitvti

titvtv

sLCL

LCC

20

1

20

9

20

1
3

1

21

1

  

with initial conditions   200 .vC   and   00 Li . In addition, the dynamic equation 

can be also represented by (2-71) with initial conditions shown in (2-72), i.e.,  

(2-74)        tvtytyty s
60

1

105

4

420

209
   

with   200 .y   and  
105

1
0 y . The characteristic equation is 

(2-75) 0
105

4

420

209
 

20

9

20

1
3

1

21

1

 2 









 

with roots 094501 .  and 12 2656440310  ..  . 

There are two ways to simulate the RLC circuit, based on (2-73) or (2-74). If we 

use (2-73), then the Matlab simulation program can be written as below: 

================================= 

Create m-file: RLC1.m  

function dy=RLC1(t,y) 

R1=9; R2=7; C=3; L=20; Vs=3; 

dy=zeros(2,1);  % a column vector 

dy(1)=-1/R2/C*y(1)+1/C*y(2); 

dy(2)=-1/L*y(1)-R1/L*y(2)+1/L*Vs; 

================================= 

Create m-file: RLC1sol.m  

vC0=0.2; iL0=0; 



Course: Differential Equations/NCTU/ECE/Yon-Ping Chen 

16 

[t,y]=ode45(@RLC1,[0:0.01:80], [vC0 iL0]) 

plot(t,y(:,1)) 

grid; xlabel(‘t’); ylabel(‘vC(t)’); 

================================= 

On the other hand, if (2-74) is adopted, we can write the Matlab simulation program 

as below: 

================================= 

Create m-file: RLC2.m  

function dy=RLC2(t,y) 

R1=9; R2=7; C=3; L=20; Vs=3; 

dy=zeros(2,1);  % a column vector 

dy(1)=y(2); 

dy(2)=-1*(1+R1/R2)/L/C*y(1)-(1/R2/C+R1/L)*y(2)+1/L/C*Vs; 

================================================ 

Create m-file: RLC2sol.m  

y0=0.2; dy0=-1/105; 

[t,y]=ode45(@RLC1,[0:0.01:80], [y0 dy0]) 

plot(t,y(:,1)) 

grid; xlabel(‘t’); ylabel(‘y(t)’); 

================================= 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation results of  tvC  based on (2-73) and y(t) based on (2-74) are 

shown in the above figures, left and right respectively. It is easy to observe that both 

are the same as expected. 

Finally, let’s introduce an important property called the dominant characteristic 

root. It is known that the characteristic roots of (2-74) are 094501 .  and 

12 2656440310  ..  . Since 2  is more than four times of 1 , it implies that 

te 2  will be vanished much faster than 
te 1  as t increases. Hence, 1  is called the 

dominant characteristic root. Most importantly, without voltage source   0tvs , 

(2-74) can be approximately modeled as a 1
st
-order CODE whose characteristic root is 
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1 . To verify this property, let’s choose   0tvs  and rewrite (2-74) as 

(2-76)       010111  tyatyaty ,    101 y ,   001 y  

where 
420

209
1 a  and 

105

4
0 a . The approximate system is 

(2-77)     0212  tyty  ,    102 y  

where the initial conditions     100 12  yy  and    00 12 yy   . 

================================= 

Create m-file: y1.m  

function dy=y1(t,y) 

a1=209/420; a0=4/105; 

dy=zeros(2,1);  % a column vector 

dy(1)=y(2); 

dy(2)=-a0*y(1)-a1*y(2); 

============================= 

Create m-file: y2.m  

function dy=y2(t,y) 

lamda=-0.0945;  

dy=lamda*y 

============================= 

Create m-file: y1y2sol.m  

[t,yy1]=ode45(@y1,[0:0.01:80], [1 0]) 

[t,yy2]=ode45(@y2,[0:0.01:80], [1]) 

plot(t, yy1(:,1),t,yy2) 

grid; xlabel(‘t’); ylabel(‘y(t)’); 

=============================== 

 

From the figure,  ty1  is almost equal to  ty2  after 4, where the time 

constant is 582101 1 .   of (1-77). We know that 1  indeed can be treated as a 

dominant characteristic root of (1-76). 


