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1. First-Order Linear Ordinary Differential Equations with 

Constant Coefficients 

In this course, we will learn how to solve the differential equations and let’s 

start with the simplest case, which is the 1
st
-order linear ordinary differential equation 

with constant coefficients. In general, it is expressed as 

(1-1)         tQtyptyptyL  01
  

where       typtyptyL 01   , t is an independent variable within an interval I, Q(t) 

is a given function and y(t) is the unknown function to be solved. Due to the fact that 

differential equations are often used to analyze practical systems, we will focus on the 

case that p0, p1, t, Q(t) and y(t) are all real numbers. 

In mathematics, a differential equation with functions of one independent 

variable is called an ordinary differential equation (ODE), while a differential 

equation involving functions of more than one independent variable is called a partial 

differential equation (PDE). From now on, we shall pay attention to the ODEs. 

Because only one independent variable t appears in (1-1) and the highest-order 

derivative is the first derivative  ty , we say that (1-1) a 1
st
-order ODE. Moreover, 

since       typtyptyL 01    is a linear combination of y(t) and  ty  with constant 

coefficients p1 and p0, (1-1) is further called as a 1
st
-order linear ODE with constant 

coefficients. For the sake of brevity again, the term “ODE with constant coefficients” 

will be shortly denoted as “CODE”. In summary, (1-1) is said to be a 1
st
-order linear 

CODE. 

1
st
-order Linear CODEs 

Without loss of generality, the coefficient 01 p  in (2) is often normalized to 1. 

Such normalization process is called “monic”. Through the monic process, (1-1) can 

be changed into the following normal form 

(1-2)      tqtpyty   

where 
1

0

p

p
p   and  

 

1p

tQ
tq  . Next, let’s discuss two properties related to the 

solution y(t) in (1-2), called existence and uniqueness. 

For the existence of y(t), instead of mathematical proof, we will just find out a 
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solution to declare its existence. Commonly, a solution of (1-2) can be solved by 

setting 

(1-3)     ptetzty   

whose derivative is 

(1-4)      tpyetzty pt    

In comparison with (1-2), we know that 

(1-5)        tqetztpyty pt    

which results in 

(1-6)     ptetqtz   

Clearly, taking integration will obtain 

(1-7)      azdeqtz
t

a

p    
 

where a is an arbitrary constant. From (1-3), there indeed exists a solution, usually 

called a particular solution and denoted by  typ , which is shown as 

(1-8) 

       

       

       atp

p

t

a

tp

atppa
t

a

tp

pt
t

a

pptpt

p

eaydeq

eeazdeq

eazdeqeetzty































         

          

with     pa

p eazay  . Hence, the existence of the solution of (1-2) is guaranteed. 

Homogeneous Equation 

As for the uniqueness of y(t) in (1-2), it is easy to check that  typ  in (1-8) is 

not unique since a is an arbitrary constant. In other words, a should be fixed if  typ  

is unique. Now, one question is raised: On what condition  typ  is unique? Before 

answering the question, let’s discuss the case of q(t)=0 in (1-2), i.e., 

(1-9)     0 tpyty  

which is known as a homogeneous equation.  

There are several methods able to solve a 1
st
-order homogeneous equation. For 

example, the method by the use of (1-3), which has been introduced for the case of 

q(t)≠0, is also available for the homogeneous equation (1-9). However, these methods 

may not be usable for higher-order homogeneous equations.  
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Here, we will focus on a method, which is not only suitable for 1
st
-order 

homogeneous equations, but also extendable to homogeneous equations of higher 

order. First, let’s denote the solution of a homogeneous equation as  tyh  and call it 

the homogeneous solution. Then, we assume 

(1-10)   t

h ety   

where  is a constant. Further substitute it into (1-9) and achieve 0 tt pee  . 

Since 0te
, we obtain  

(1-11) 0 p  

which is called the characteristic equation of (1-9). Clearly, the root, or formally the 

characteristic root, is p . From (1-10), the homogeneous solution should be in 

the form of   pt

h ety   and thus we can choose a more general form as 

(1-12)   pt

hh eAty   

where hA  is an arbitrary constant. 

Based on the above analysis, the solutions  typ  and  tyh  satisfy the 

following equations 

(1-13)      tqtpyty pp   

(1-14)     0 tpyty hh
  

Combining them together, we have 

(1-15)            tqtytyptyty
dt

d
hphp   

Obviously,      tytyty hp   is also a solution of (1-2) and expressed as 

(1-16) 

     

       

     

       atp
t

a

tp

atp
t

a

tp

pt

h

atp

p

t

a

tp

hp

eaydeq

Aedeq

eAeaydeq

tytyty

































       

       

       

 

where     pa

hp eAayayA   is also an arbitrary constant. 

To sum up, the general solution      tytyty hp   of a 1
st
-order linear CODE 

is composed of a particular solution yp(t) and a homogeneous solution yh(t). However, 
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it is still not unique since A is an arbitrary constant. In order to get a unique solution, 

it is required to add an extra condition, such as an initial condition or a boundary 

condition. Next, let’s discuss the initial value problem, which includes an initial 

condition. 

Initial Value Problem 

To get a unique solution for (1-16), an extra condition is required to determine 

the value of A. For example, consider an interval I=[t0,) and tI, i.e., 0tt   and t0 is 

the initial point of the interval. Let   00 yty   be an extra condition, which is called 

the initial condition. Then, (1-2) can be rewritten as 

(1-17)      tqtpyty  ,    00 yty   

which is known as an initial value problem, or IVP in short. Now, we can assign a=t0 

for (1-16) and obtain 

(1-18)        0

0
0

ttp
t

t

tp eydeqty      ,  for 0tt   

Obviously, (1-18) is the unique solution of the IVP shown in (1-17). 

In engineering, IVPs are the most common 

problems to be dealt with. Figure 1-1 shows an 

example of IVPs, which is an RC circuit designed 

to reduce the higher-frequency signals generated 

by the input voltage source  tvs , such that only 

the signals in  tvs  of lower-frequency can pass 

through the circuit. That means the output capacitor voltage  tvC  will only contains 

the lower-frequency signals generated by  tvs . This circuit is a kind of 1
st
-order 

low-pass filter.  

In the RC circuit, the capacitor is initially possessed of a voltage   00 CC vv   at 

the initial time t=0. Based the Kirchhoff’s voltage law, the dynamic model of the 

circuit is obtained as 

(1-19)          tvtvRCtvtRitv CCCCs    

where the capacitor current is given as    tvCti CC
 . Rearrange (1-19) as 

(1-20)      tqtpvtv CC  ,    00 CC vv   

Figure 1-1 

〜 

vs(t) 
R 

iC(t) 

C 
+ 

vC(t) 


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where 
RC

p
1

  and  
 

RC

tv
tq s . Clearly, this is an IVP and according to (1-18) the 

solution is determined as 

(1-21)       RCt

C

t
RCt

sC evdev
RC

tv    0
0

1
  ,  for 0t  

which is the unique solution of the IVP given in (1-20). 

Particular Solutions 

Now, let’s consider the IVP of a 1
st
-order linear CODE shown in (1-17) with 

some given functions         1 2 tcos,tsin,t,t,tq  . Let the initial point be t=0, then 

the IVP is expressed as 

(1-22)      tqtpyty  ,     00 yy   

where   00 yy   is the initial condition, and the unique solution is 

(1-23)       pt
t

tp eydeqty    0
0

 
 

which is composed of a particular solution given in (1-8) as 

(1-24)         pt

p

t
tp

p eydeqty    0
0

 
 

and a homogeneous solution obtained by 

(1-25)          pt

pph eyytytyty  00  

Next, let’s focus on the particular solution corresponding to each of the given 

functions         1 2 tcos,tsin,t,t,tq  . 

The first function is   1tq . From (1-24), the particular solution is calculated 

as below: 

(1-26) 

     

      pt

p

pt

p

pt

p

t
ppt

p

t
ppt

p

e
p

y
p

eye
p

ye
p

eydeety































  

1
0

1
01

1
        

0
1

 0
00 

 

 

Because only one particular solution is required, we choose  
p

yp

1
0   and get the 

simplest one  
p

typ

1
 , which is constant for all t. In other words, if q(t) is constant, 

the particular solution  typ  can be also chosen as a constant. 
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For the case of   ttq  , the particular solution can be also calculated from 

(1-24) as below: 

(1-27) 

     

      pt

pp

ptptpt

p

t
p

t
ppt

p

t
ppt

p

ey
pp

t
p

ye
p

te
p

e

ydee
p

eydeety































 





  

0
111

01
11

         

0
1

 0

222

000
 





 

We choose the simplest one  
2

11

p
t

p
typ  . It is clear that the term pte  vanishes 

since  
2

1
0

p
yp  . Hence, if q(t) is a 1

st
-order polynomial, then the particular 

solution  typ  can be also chosen as a 1
st
-order polynomial. 

Similarly, if   2ttq   is a 2
nd

-order polynomial, then the particular solution can 

be chosen as 

(1-28)  
32

2 221

p
t

p
t

p
typ   

which is also a 2
nd

-order polynomial. 

To find the particular solutions for   tsintq   and   tcostq  , let’s use the 

case of   tsinjtcosetq tj    as a substitution. From (1-24), we obtain 

(1-29) 

       

  pt

p

tj

p

t
jppt

p

t
pjpt

p

e
jp

ye
jp

ye
jp

eydeeety







































  












1
0

1
        

0
1

0
00

 

The particular solution is chosen as   tj

p e
jp

ty 




1
, which makes the term 

pte
 

vanish since  
jp

yp



1

0 . Notice that the particular solution of   tjetq   can be 

further written into 

(1-30) 

   

   tcostsinp
p

jtsintcosp
p

tsinjtcos
p

jp
e

jp
ty tj

p
































2222

22

11
         

1

 

Correspondingly, if   tsintq  , which is the imaginary part of 
tje 
, then its 

particular solution is the imaginary part of (1-30), expressed as 
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(1-31)    tcostsinp
p

typ 






22

1
 

Similarly, if   tcostq  , which is the real part of tje  , then its particular solution is 

the real part of (1-30), expressed as 

(1-32)    tsintcosp
p

typ 






22

1
 

The solutions of the IVP given in (1-22) with    tcos,tsin,t,t,tq      1 2  are listed 

in Table 1-1. 

Table 1-1 

q(t) Solution of      tqtpyty  ,   00 yy   

1  
p

e
p

yty pt 11
0 








 

 

t  
220

111

p
t

p
e

p
yty pt 








 

 

2t   
32

2

30

2212

p
t

p
t

p
e

p
yty pt 








 

 

tsin     tcostsinp
p

e
p

yty pt 

















 

22220

1
 

tcos     tsintcosp
p

e
p

p
yty pt 
















 

22220

1
 

 

Time Constant 

Here, we will discuss an important concept called the time constant of a 

physical system, whose dynamic equation is described by the following 1
st
-order 

linear CODE: 

(1-33)      tqtpyty  ,    00 yty   

Note that t is the variable of time and 0t  is the initial time. Referring to (1-23), (1-24) 

and (1-25), the solution can be expressed as 

(1-34)         tyetyyty p

ttp

p   0

00  

where       0

00

ttp

ph etyyty   is the homogeneous solution and  typ  is a 

particular solution. It is clear that if p>0 then 
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(1-35) 
      

       







 

tytytyty

etyyty

pph

ttp

ph 0
 

0

00
     

as t . In general, a physical system satisfying (1-35) is said to be stable. That 

means the homogeneous solution       0

00

ttp

ph etyyty   of a stable system will 

decrease as t increases. The trend of decreasing in time is due to the term pte  with 

p>0. In what follows, the Matlab program figexp.m is used to plot the function 
pxe

 

for the cases of p=0.5, 1 and 2 during the interval  8 0,x . The numerical results are 

shown in the figure. From the three curves corresponding to p=0.5, 1 and 2, it is true 

that 0 pxe  as x . 

figexp.m 

clear   

% plot y(x) = exp(-px) for p=0.5,1,2 

x = 0:0.01:8;  

y1 = exp(-x);   % p=1 

y2 = exp(-0.5*x);  % p=0.5 

y3 = exp(-2*x);  % p=2 

plot(x,y1,'b',x,y2,'r',x,y3,'r') 

grid, xlabel('x'), ylabel('exp(-px)') 

text(1.1,0.65,'p=0.5') 

text(1.2,0.35,'p=1') 

text(1.1,0.14,'p=2') 

 

For the time constant, denoted as , it is defined as the time t at which the 

convergence rate is 3679.01   ee p
. That means the time constant is obtained by 

setting p =1 or 

(1-36) 
p

1
  

At t, we know that the effect caused by the homogeneous solution   pt

h Aety   

will be reduced by the ratio of 367901 .e 
, as shown below: 

(1-37)      tyeeAeAety h

pttp

h

11     

Now, one question is raised: What is the amount of time required to neglect the effect 

of       0

00

ttp

ph etyyty  , or the effect caused by the initial condition 0y ? The 

answer is 4. The reason to choose four time constants is because after 4 the term 

pte
 will be decreased to 018304 .e 

, which has been less than 2% and considered 

to be negligible in most of the engineering problems. 
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