CV8 Elementary Functions : Logarithmic Functions

In real functions, it is known that the logarithmic function is the inverse function of the exponential function, and vice versa. The exponential function e^{z} has been defined as the following form

$$e^{z} = e^{x+iy} = e^{x}e^{iy} = e^{x}(\cos y + i\sin y)$$

Similar to e^x of real variable *x*, the following properties are also suitable for e^z :

$$e^{z_1+z_2} = e^{z_1}e^{z_2}$$

$$e^{z_1-z_2} = e^{z_1}/e^{z_2}$$

$$e^{nz} = (e^z)^n \qquad n \in \mathbb{Z}$$

$$\frac{de^z}{dz} = e^z \quad \text{(It is entire.)}$$

 $e^z \neq 0$ for any z

However, some properties are only suitable for e^z , not for e^x . For examples, we know that e^z has a pure imaginary period $2\pi i$ since $e^{z+2\pi i} = e^z$ and e^z can be negative if e^z is a real number.

Now, if $e^w = z$, where z is any nonzero complex number, then what is w? To solve this problem, we let w = u + iv and $z = re^{i\Theta}$, where $-\pi < \Theta \le \pi$. Then,

$$e^{u+iv} = e^u e^{iv} = r e^{i\Theta}$$

i.e., $e^u = r$ and $v = \Theta + 2n\pi$. Obviously, $u = \ln r$ and we have $w = u + iv = \ln r + i(\Theta + 2n\pi)$ $n \in \mathbb{Z}$

According to this expression, define the logarithmic function as

$$log \ z = ln \ r + i \left(\Theta + 2n\pi \right) \qquad n \in Z$$
$$= ln|z| + i \ arg \ z$$

and then

 $e^{\log z} = z$ for $z \neq 0$

Similarly, The *principle value* of log z is denoted as

$$Log \ z = ln \ r + i \ \Theta = ln |z| + i \ Arg \ z$$

Hence, $\log z = Log z + 2n\pi i$ $n \in \mathbb{Z}$.

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

Example

If
$$z = -1 - \sqrt{3}i$$
, then $r=2$ and $\Theta = -2\pi/3$.

Hence,

$$\log z = \ln 2 + i \left(-\frac{2\pi}{3} + 2n\pi \right) = \ln 2 + 2 \left(n - \frac{1}{3} \right) \pi i$$

$$\log z = \ln 2 - \frac{2}{3} \pi i.$$

Since $\log z = \ln |z| + i \arg z$, we have

$$\log\left(e^{z}\right) = \ln\left|e^{z}\right| + i\arg\left(e^{z}\right)$$

When z=x+iy, it can be obtained that

$$|e^{z}| = |e^{x+iy}| = e^{x}|e^{iy}| = e^{x}$$

$$arg(e^{z}) = arg(e^{x}e^{iy}) = arg(e^{iy}) = y + 2n\pi, \quad n \in \mathbb{Z}$$

Hence,

$$log(e^z) = ln e^x + i(y + 2n\pi)$$
$$= x + iy + 2n\pi i = z + 2n\pi i$$

From the definition of *logz*, expressed as

$$log z = ln r + i \theta$$

we know that it is a multiple-valued function. If we let α denote any real number and restrict the value of θ as $\alpha < \theta < \alpha + 2\pi$, then the logarithmic function is expressed as

$$\log z = \ln r + i \theta = u + i v (r > 0, \alpha < \theta < \alpha + 2\pi)$$

which is a single-valued function.

It is easy to check that *logz* is analytic since both $u = \ln r$ and $v = \theta$ are continuous in the domain r > 0, $\alpha < \theta < \alpha + 2\pi$ and satisfy the Cauchy-Riemann conditions $ru_r = v_\theta$ and $u_\theta = -rv_r$. Furthermore, its derivative is

$$\frac{d}{dz}\log z = e^{-i\theta} \left(u_r + iv_r \right) = e^{-i\theta} \left(\frac{1}{r} + i0 \right) = \left(re^{i\theta} \right)^{-1} = \frac{1}{z}$$

for |z| > 0 and $\alpha < \arg z < \alpha + 2\pi$.

A **branch** of a multiple-valued function f(z) is any single-valued function F(z) that is analytic in some domain at each point z of which the value F(z) is one of the values f(z). For example, the single-valued function

$$\log z = \ln r + i \theta \quad (r > 0, \alpha < \theta < \alpha + 2\pi)$$

is a branch of the multiple-valued function $\log z = \ln r + i\theta$ and the function for $\alpha = 0$

$$Log \ z = \ln r + i \Theta \qquad (r > 0, -\pi < \Theta < \pi)$$

is called the *principle branch*.

A *branch cut* is a portion of a line or curve that is introduced to define a branch F(z) of a multiple-valued function f(z). Points on the branch cut for F(z) are singular points of F(z), and any point that is common to all branch cuts of f(z) is called a *branch point*.

Example

The origin z=0 and the ray $\theta=\alpha$ make up the branch cut for the branch

$$\log z = \ln r + i \theta \ (r > 0, \alpha < \theta < \alpha + 2\pi).$$

Clearly, the origin is a branch point since it is common to all the branch cuts of the multiple-valued function $\log z = \ln r + i \theta$.

Example

Show that

(a)
$$log(i^2) = 2log i$$
 when $log z = ln r + i\theta$ $\left(r > 0, \frac{\pi}{4} < \theta < \frac{9\pi}{4}\right)$
(b) $log(i^2) \neq 2log i$ when $log z = ln r + i\theta$ $\left(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4}\right)$

Solution:

Since $\log z = \ln r + i (\Theta + 2n\pi) (r > 0, -\pi < \Theta < \pi)$, we have

(a) For $r > 0, \frac{\pi}{4} < \theta < \frac{9\pi}{4}$, it can be obtained that

$$log(i^2) = ln 1 + i(\pi) = i\pi$$
 and $log(i) = ln 1 + i\left(\frac{\pi}{2}\right) = i\frac{\pi}{2}$

It is clear that $log(i^2) = 2log i$.

(b) For
$$r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4}$$
, it can be obtained that

$$log(i^2) = ln 1 + i(\pi) = i\pi$$
 and $log(i) = ln 1 + i\left(\frac{5\pi}{2}\right) = i\frac{5\pi}{2}$

It is clear that $log(i^2) \neq 2log i$.

Below introduce some identities involving logarithmic function. Let z_1 and z_2 denote any two nonzero complex numbers. Since

$$arg(z_1z_2) = arg z_1 + arg z_2$$
 and $ln |z_1z_2| = ln |z_1| + ln |z_2|$

we have

$$ln |z_1 z_2| + i \arg(z_1 z_2)$$

= $(ln |z_1| + ln |z_2|) + i (\arg z_1 + \arg z_2)$
= $[ln |z_1| + i (\arg z_1)] + [ln |z_2| + i (\arg z_2)]$

Hence, it is true that

$$\log(z_1 z_2) = \log z_1 + \log z_2$$

under the statement :

"If values of two of the three logarithms are specified, then there is a value of the third logarithm such that the equation is hold."

Example

Write $z_1 = z_2 = -1$ and thus $z_1z_2 = 1$. If $log \ z_1 = \pi i$ and $log \ z_2 = -\pi i$ are specified, the equation

$$log(z_1z_2) = log \ z_1 + log \ z_2$$

is satisfied when $log(z_1z_2)=0$ is chosen. However, it is not true for principle values, i.e.,

 $Log(z_1z_2) \neq Log z_1 + Log z_2$

because $Log(z_1z_2)=0$ and $Log z_1 + Log z_2 = 2\pi i$.

Next, let's find the expression of z^n where $n \in Z$. It is known that the following equations are true:

$$z^{n} = r^{n} e^{in\theta}$$
$$e^{n\log z} = e^{n[\ln r + i\theta]} = e^{n\ln r} e^{i\theta} = r^{n} e^{in\theta}$$

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

i.e., we have

$$z^n = e^{n \log z}$$
 for $z \neq 0$ and $n \in Z$.

Based on the above discussion, some identities are listed below:

$$log(z_1 z_2) = log \ z_1 + log \ z_2$$
$$log(z_1/z_2) = log \ z_1 - log \ z_2$$
$$z^n = e^{n \log z} \quad \text{for } z \neq 0 \text{ and } n \in \mathbb{Z}$$
$$z^{1/m} = exp\left(\frac{1}{m} \log z\right) \quad \text{for } z \neq 0 \text{ and } m \in \mathbb{N}$$

which are similar to the functions in real numbers.

With the complex logarithmic functions, we can define the following function with complex exponent

$$z^c = e^{c \log z}$$

where $z \neq 0$, the exponent $c \in C$ and log z denotes the multiple-valued logarithmic function. This provides a consistent definition of

$$z^n = e^{n\log z}$$
 and $z^{1/m} = exp\left(\frac{1}{m}\log z\right)$.

Example

$$i^{-2i} = exp\left(-2i\log i\right) = exp\left(-2i\left(i\left(\frac{\pi}{2} + 2n\pi\right)\right)\right)$$
$$= exp\left(2\left(\frac{\pi}{2} + 2n\pi\right)\right) = e^{(4n+1)\pi} \quad n \in \mathbb{Z}$$

In addition, similar to the truth of $1/e^z = e^{-z}$, it is easy to achieve the following relation:

$$z^{-c} = e^{-c \log z} = 1/e^{c \log z} = 1/z^{c}$$
.

Furthermore, from the truth that the branch

$$\log z = \ln r + i\theta \quad (r > 0, \alpha < \theta < \alpha + 2\pi)$$

is single-valued and analytic in the indicated domain, we have

$$z^c = e^{c \log z}$$

is also single-valued and analytic in the same domain. Besides, The derivative of such a branch is

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

$$\frac{d}{dz}z^{c} = \frac{d}{dz}e^{c\log z} = \frac{c}{z}e^{c\log z} = \frac{c}{z}z^{c} = c z^{c-1}$$

which includes the principle branch.

Example

The principle value of $(-i)^i$ is

$$P.V.(-i)^{i} = exp(i Log(-i))$$
$$= exp\left(i\left(i\left(-\frac{\pi}{2}\right)\right)\right) = exp\left(\frac{\pi}{2}\right)$$

On the other hand, the exponential function with base c, where c is a nonzero complex constant, is written as

$$c^z = e^{z \log c}$$

When a value of *logc* is specified, c^z is an entire function of z. Its derivative is derived as

$$\frac{d}{dz}c^{z} = \frac{d}{dz}e^{z\log c} = \log c \left(e^{z\log c}\right) = c^{z}\log c$$

which is similar to the expression of functions in real numbers.

P8-1

Show that

(a)
$$exp(2\pm 3\pi i) = -e^2$$
,
(b) $exp\left(\frac{2+\pi i}{4}\right) = \sqrt{\frac{e}{2}}(1+i)$,
(c) $exp(z+\pi i) = -exp z$.

P8-2

Show that the function $f(z) = exp \bar{z}$ is not analytic anywhere.

P8-3

Find all values of z such that

(a) $e^z = -2$; (b) $e^z = 1 + \sqrt{3}i$; (c) exp(2z-1) = 1.

;

P8-4

For $n=0, \pm 1, \pm 2, \ldots$, verify that

(a)
$$\log e = 1 + 2n\pi i$$
; (b) $\log i = \left(2n + \frac{1}{2}\right)\pi i$
(c) $\log \left(-1 + \sqrt{3}i\right) = \ln 2 + 2\left(n + \frac{1}{3}\right)\pi i$.

P8-5

Show that

- (a) $Log(1+i)^2 = 2Log(1+i)$,
- (b) $Log(-1+i)^2 \neq 2Log(-1+i).$

P8-6

Find all roots of the equation $\log z = i \pi/2$.

P8-7

Show that $Log(z_1z_2) = Log z_1 + Log z_2$ if $Re z_1 > 0$ and $Re z_2 > 0$.

P8-8

Verify that $log(z_1/z_2) = log z_1 - log z_2$.

P8-9

Find the principal value of (a) i^i ; (b) $\left[\frac{e}{2}\left(-1-\sqrt{3}i\right)\right]^{3\pi i}$; (c) $(1-i)^{4i}$

P8-10

Show that $(-1 + \sqrt{3}i)^{3/2} = \pm 2\sqrt{2}$.

P8-11

Assuming that f'(z) exists, state the formula for the derivative of $c^{f(z)}$.