CV7 Analytic Functions : Analytic Functions

A function f(z) is analytic in an open set if it has a derivative at each point in that set. Hence, it can be said that a function f(z) is analytic at a point z_0 if it is analytic throughout some neighborhood of z_0 . Besides, if a function f(z) is analytic in a set *S* which is not open, then we can find an open set containing *S* in which f(z) is analytic.

Example

f(z) = 1/z is analytic at each nonzero point in the finite plane. But, $f(z) = |z|^2$ is not analytic at any point since its derivative exists only at z=0 and not throughout any neighborhood of it.

An entire function is a function which is analytic at each point in *the entire finite plane*. For example, any polynomial is an entire function. If f(z) fails to be analytic at z_0 but is analytic at some points in every neighborhood of z_0 , then z_0 is called a singular point, or singularity, of f(z). For example, f(z)=1/z has a singular point at z=0, but $f(z)=|z|^2$ has no singular points since it is nowhere analytic.

If two functions are analytic in a domain D, then their sum and product are both analytic in D, and their quotient is analytic in D if the function in the denominator does not vanish at any point in D. In addition, a composite of two analytic functions is also analytic.

Any linear combination $c_1f_1(z) + c_2f_2(z)$ of two entire functions, where c_1 and c_2 are complex constants, is entire.

Theorem:

If f'(z)=0 in a domain *D*, then f(z) must be constant throughout the domain.

Example

The function $f(z) = \frac{z^3 + 4}{(z^2 - 3)(z^2 + 1)}$ is analytic throughout the z plane except for the singular points $z = \pm \sqrt{3}$ and $z = \pm i$.

Example

The function f(z) = coshx cosy + i sinhx siny is analytic everywhere since

$$u_x = \sinh x \cos y = v_y$$

 $u_y = -\cosh x \sin y = -v_x$.

It is clear that f(z) is entire.

Theorem:

The function f(z) = u(x, y) + i v(x, y) and its conjugate

 $\overline{f(z)} = u(x, y) - i v(x, y)$ are both analytic in a given domain D.

Then, f(z) must be constant throughout *D*.

Proof:

Since f(z) = u(x, y) + i v(x, y) and its conjugate are analytic, they must satisfy the Cauchy-Riemann equations as below:

For f(z), we have $u_x = v_y$ and $u_y = -v_x$

For
$$f(z)$$
, we have $u_x = -v_y$ and $u_y = v_x$

These equations result in $u_x = v_x = 0$, i.e., f'(z)=0 in *D*, then f(z) must be constant throughout *D*.

A real-valued function H of two real variables x and y is said to be *harmonic* in a given domain of xy plane if, throughout the domain, it has continuous derivatives of the first and second order and satisfies the partial differential equation

$$H_{xx}(x, y) + H_{yy}(x, y) = 0$$

known as Laplace's equation. For example, the electrostatic potential V(x,y) in a region free of charges is harmonic.

A real-valued function H of two real variables r and θ in the polar form is said to be harmonic in a given domain if, throughout the domain, it has continuous derivatives of the first and second order and satisfies the partial differential equation

$$r^{2}H_{rr}(r,\theta) + rH_{r}(r,\theta) + H_{\theta\theta}(x,y) = 0$$

known as the polar form of Laplace's equation.

Theorem:

If a function f(z)=u(x,y)+iv(x,y) is analytic in a domain D, then its component functions *u* and *v* are harmonic in *D*.

Proof:

f(z) = u(x, y) + i v(x, y) is analytic, the Cauchy-Riemann Since equations $u_x = v_y$ and $u_y = -v_x$ must be true. Further taking derivative with respect to x and y, we have

 $u_{xx} = v_{xy}$ and $u_{xy} = -v_{xx}$

$$u_{xy} = v_{yy}$$
 and $u_{yy} = -v_{xy}$

which result in $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$.

Clearly, both u and v are harmonic in D

Other proof for the above theorem could be obtained directly from the following:

$$\left(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y}\right)\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)f(z) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u + iv = 0$$

based on the truth that

$$\frac{\partial f(z)}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f(z) = 0.$$

That means

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u + iv = \left(u_{xx} + u_{yy}\right) + i\left(v_{xx} + v_{yy}\right) = 0$$

Clearly, $u_{xx} + u_{yy} = 0$ and $v_{xx} + v_{yy} = 0$.

If two given functions u and v are harmonic in a domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations

 $u_x = v_y$ and $u_y = -v_x$ throughout *D*, *v* is said to be a harmonic conjugate of *u*.

Theorem:

A function f(z) = u(x, y) + i v(x, y) is analytic in a domain *D* if and only if *v* is harmonic conjugate of *u*.

Example

Consider $u(x,y)=x^2-y^2$ and v(x,y)=2xy. Since these are the real and imaginary components of the entire function $f(z) = z^2$, we know that v is a harmonic conjugate of u throughout the plane. However, u is not a harmonic conjugate of v.

Consider
$$F(z) = v(x, y) + iu(x, y) = U(x, y) + iV(x, y)$$
, where $U(x,y)=2xy$
and $V(x,y)=x^2-y^2$. Then, it is easy to check that

 $U_x = -V_y \neq V_y$ and $U_y = V_x \neq -V_x$

i.e., F(z) does not satisfy the Cauchy-Riemann equations. Therefore, F(z) = v(x, y) + iu(x, y) is not analytic. In other words, u(x,y) is not a harmonic conjugate of v(x,y).

Example

Given $u(x,y)=y^3-3x^2y$, please determine its harmonic conjugate v(x,y) and their corresponding function

$$f(z) = u(x, y) + i v(x, y).$$

Solution:

The following Cauchy-Riemann equations are true:

$$v_y = u_x = -6x$$
 and $v_x = -u_y = 3x^2 - 3y^2$

The first equation results in

$$v(x, y) = -6xy + k(x)$$

and taking partial derivative with respect to x yields

$$v_x = -6 y + \frac{\partial k(x)}{\partial x} = 3 x^2 - 3 y^2$$
$$\Rightarrow \frac{\partial k(x)}{\partial x} = 3 x^2 - 3 y^2 + 6 y$$

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

We have

$$k(x) = x^3 - 3xy^2 + 6xy + C$$

Therefore,

$$v(x, y) = x^3 - 3xy^2 + C$$

The corresponding equation is

$$f(z) = u(x, y) + i v(x, y)$$

= $(y^3 - 3x^2y) + i (x^3 - 3xy^2 + C)$

which is, of course, analytic.

A function f(z) = u(x, y) + i v(x, y) is analytic in the domain *D*. There are two families of level curves

$$C_1: u(x, y) = \alpha_1$$
$$C_2: v(x, y) = \alpha_2$$

where α_1 and α_2 are arbitrary real constants. Let the point (x_0, y_0) , corresponding to $z_0 = x_0 + i y_0$ in the domain *D*, be an intersect of two particular level curves $u(x, y) = \alpha'_1 \in C_1$ and $v(x, y) = \alpha'_2 \in C_2$. If L_1 and L_2 are the lines respectively tangent to $u(x, y) = \alpha'_1$ and $v(x, y) = \alpha'_2$ at (x_0, y_0) , then L_1 and L_2 are perpendicular to each other. It can be also stated that the two families of level curves C_1 and C_2 are orthogonal.

 C_1

To explain the above statement, let's consider two level curves $u(x, y) = \alpha'_1$ and $v(x, y) = \alpha'_2$. Then, we have

$$du(x, y) = u_x dx + u_y dy = 0$$
$$dv(x, y) = v_x dx + v_y dy = 0$$

At the intersect (x_0, y_0) , the slope of L_1 and L_2 are

$$m_1 = \frac{dy}{dx} = -\frac{u_x}{u_y}$$
 and $m_2 = \frac{dy}{dx} = -\frac{v_x}{v_y}$.

from the Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$, we have

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

$$m_1 m_2 = \left(-\frac{u_x}{u_y}\right) \left(-\frac{v_x}{v_y}\right) = \frac{u_x}{u_y} \frac{v_x}{v_y} = -1$$

Evidently, L_1 and L_2 are perpendicular at their intersect (x_0, y_0) .

Lemma:

Suppose that

(i) f(z) is analytic throughout a domain D;

(ii) f(z)=0 at each point z of a domain or line segment in D. Then $f(z)\equiv 0$ in D; i.e., f(z) is identically equal to zero throughout the

whole *D*.

Suppose that two functions f and g are analytic in the same domain D and that f(z)=g(z) at each point z of some domain or line segment contained in D. The difference h(z)=f(z)-g(z) is also analytic in D, and h(z)=0 throughout the subdomain or along the line segment. According to the above theorem, then h(z)=0 thorughout D; i.e., f(z)=g(z) at each point z in D.

Theorem:

A function that is analytic in a domain D is uniquely determined over D by its values in a domain, or along a line segment, contained in D.

Theorem: (Reflection Principle)

Suppose that a function f is analytic in some domain D which contains a segment of the x axis and whose lower half is the reflection of the upper half with respect to that axis. Then

$$\overline{f(z)} = f(\overline{z})$$

for each point z in the domain if and only if f(x) is real for each point x on the segment.

Proof:

Let f(z) = u(x, y) + i v(x, y) be analytic, then the Cauchy-Riemann equations are satisfied, i.e., $u_x = v_y$ and $u_y = -v_x$. Define

 $F(z) = \overline{f(\overline{z})} = U(x, y) + iV(x, y)$. Then, from the truth that $\overline{f(\overline{z})} = u(x, -y) - iv(x, -y)$ we obtain U(x, y) = u(x, t) and V(x, y) = -v(x, t) with t = -y. Besides,

$$U_{x} = u_{x}, \quad U_{y} = \frac{\partial u(x,t)}{\partial t} \frac{\partial t}{\partial y} = -u_{t},$$
$$V_{x} = -v_{x}, \quad V_{y} = -\frac{\partial v(x,t)}{\partial t} \frac{\partial t}{\partial y} = v_{t}.$$

It is easy to check that $U_x = V_y$ and $U_y = -V_x$, i.e., U and V satisfy the Cauchy-Riemann equations. Thus, F(z) is an analytic function. Now, let's show that if f(x) is real for each point x on the segment contained in D, then $\overline{f(z)} = f(\overline{z})$ for each point z in the domain D. Since f(z) = u(x, y) + i v(x, y), if f(x) is real then f(x) = u(x, 0) and v(x, 0) = 0. Hence, F(x) = U(x, 0) + i V(x, 0) = u(x, 0) = f(x), which implies that F(z) = f(z) at each point x on the segment. It is known that an analytic function defined on a domain D is uniquely determined by its values along any line segment lying in D. Thus F(z) = f(z) holds throughout D. Therefore, $\overline{f(\overline{z})} = f(z)$ or $\overline{f(z)} = f(\overline{z})$. Next, let's show that if $\overline{f(z)} = f(\overline{z})$ for each point z in the domain D, then f(x) is real for each point x on the segment contained in D. Let z=x, then $\overline{f(z)} = f(\overline{z})$ implies $\overline{f(x)} = f(x)$. Clearly, f(x) is real.

This proves the theorem of reflection principle.

Example

Based on the reflection principle, it is truth that

$$\overline{z+1} = \overline{z}+1$$
, $\overline{z^2} = \overline{z}^2$, and $\overline{e^z} = e^{\overline{z}}$

since x+1, x^2 , and e^x are real. Similarly, $\overline{z+i} \neq \overline{z}+i$ and $\overline{i z^2} \neq i \overline{z}^2$ since x+i and $i x^2$ are not real.

If f(z) is analytic and not constant throughout a domain *D*, then it cannot be constant throughout any neighborhood lying in *D*. If $f(z)=\omega$ and ω is a constant throughout a neighborhood in *D*, then f(z) must be the constant ω throughout the domain D.

<u>P7-1</u> In each case, determine the singular points of the function and state why the function is analytic everywhere except at those points.

(a)
$$f(z) = \frac{2z+1}{z(z^2+1)}$$
, (b) $f(z) = \frac{z^3+i}{z^2-3z+2}$
(c) $f(z) = \frac{z^2+1}{(z+2)(z^2+2z+2)}$

P7-2 Verify that $g(z) = \ln r + i\theta$, r > 0 and $0 < \theta < 2\pi$, is analytic in the indicated domain of definition, with derivative $g'(z) = \frac{1}{z}$. Then show that the composite function $G(z) = g(z^2 + 1)$ is analytic for x > 0 and y > 0 with the derivative $G'(z) = \frac{2z}{z^2 + 1}$.

P7-3 In a domain *D*, a function *v* is a harmonic conjugate of *u* and also that *u* is a harmonic conjugate of *v*. Show how it follows that both u(x,y) and v(x,y) must be constant throughout *D*.

P7-4 Show that u(x,y) is harmonic in some domain and find a harmonic conjugate v(x,y) when

(a)
$$u(x, y) = 2x(1-y)$$
; (b) $u(x, y) = 2x - x^3 + 3xy^2$

(c)
$$u(x, y) = \sinh x \sin y$$
; (d) $u(x, y) = y/(x^2 + y^2)$

<u>P7-5</u> Show that $\overline{f(z)} = -f(\overline{z})$ if and only if f(x) is pure imaginary.