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CV6 Analytic Functions : 
Derivatives and Cauchy-Riemann Equations 

Let the domain of f(z) contain a neighborhood of z0, then the 

derivative of f at z0 is defined as 
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The function f is said to be differentiable at z0 when ( )0zf ′  exists. 

Example  Suppose that f(z)=z2, then 
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Example  Suppose that f(z)=|z|2, then 
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Clearly, it is not unique, unless zzzz −=+ . That means ( )zf ′  exists 

only at z=0. 

   

Based on the definition of derivative, we can determine the 

following derivatives: 

 0=c
dz

d
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,  n∈N 

 ( )1+−− ⋅−= nn znz
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d
,  for z≠0 and n∈N. 
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Moreover, let g(z), f(z) and F(z)=g(f(z)) be differentiable, then 
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which are similar to the derivatives of functions in the real number 

system. 

Example 

  ( ) ( ) ( ) ( )424252 2204252 izzziziz
dz

d +=+=+  

   

Suppose that g(z0)=f(z0)=0 and that g’(z0) and f ’ (z0) exist, where 

g’(z0)≠0, then 
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Clearly, the L’Hopital rule is still available for complex functions. 

   

Theorem:  

Consider ( ) ( ) ( )yx,viyx,uzf ⋅+= . If ( )0zf ′  exists where z0=x0+i y0, then 

the first-order partial derivatives of u and v must exist at (x0, y0) and 

satisfy the Cauchy-Riemann equations 

 ( ) ( )0000 y,xvy,xu yx =  
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 ( ) ( )0000 y,xvy,xu xy −= . 

Besides, ( )0zf ′  can be written as 

 ( ) ( ) ( )00000 y,xviy,xuzf xx ⋅+=′  

or 

 ( ) ( ) ( )00000 y,xuiy,xvzf yy ⋅−=′  

Proof:  

Since ( )0zf ′  exists, it can be evaluated as 
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for any ∆x→0 and ∆y→0. Assume ∆x>>∆y→0, i.e., xz ∆∆ = , then ∆y 

is negligible and we can have 
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Similarly, in case that ∆y>>∆x→0, i.e., yiz ∆∆ = , then the derivative 

( )0zf ′  can be obtained as 
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Clearly, the first partial derivatives ( )00 y,xux , ( )00 y,xuy , ( )00 y,xvx  

and ( )00 y,xvy  exist and satisfy the Cauchy-Riemann equations yx vu =  

and xy vu −=  at (x0,y0). 
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If f(z) doest not satisfy the Cauchy-Riemann equations at z0, then 

( )0zf ′  does not exist. However, when the Cauchy-Riemann equations 

for f(z) are hold at z0, there is no guarantee that ( )0zf ′  exists. 

Example  Consider the function 
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If xz ∆∆ =  or yiz ∆∆ = , then 
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If xixz ∆∆∆ += , i.e., xy ∆∆ = , then 
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Clearly, ( )0f ′  doesn’t exist. 

Now, let’s check Cauchy-Riemann equations at z=0. Rewrite f(z) 

for z≠0 as 
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−= . Hence, the first 

partial derivatives at z=0 are 

 ( ) 100 =,ux , ( ) 000 =,uy , ( ) 000 =,vx , ( ) 100 =,vy  

which satisfy the Cauchy-Riemann equations yx vu =  and xy vu −=  at 

(0,0), but ( )0f ′  doesn’t exist. 
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Example  For f(z)=|z|2, it is known that only ( )0f ′  exists. 

Since f(x+iy)= x2+y2, we have u(x,y)= x2+y2 and v(x,y)= 0. 

Clearly, ux(0,0)=2x=0, uy(0,0)=2y=0, vx(0,0)=0 and vy(0,0)=0, which 

satisfy the Cauchy-Riemann equations. 

   

Theorem:   

The function ( ) ( ) ( )yx,viyx,uzf ⋅+=  is defined throughout some ε 

neighborhood of z0=x0+i y0 and the first-order partial derivatives of u and 

v exist everywhere in that neighborhood. If those partial derivatives are 

continuous at (x0, y0) and satisfy the Cauchy-Riemann equations yx vu =  

and xy vu −=  at (x0, y0), then ( )0zf ′  exists. 

   

Example  Consider ( ) sinyiecosyeeeezf xxiyxz +=== .  

Then ( ) ( ) sinyeyx,vcosyeyx,u xx ==    and   . We have 
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Clearly, these derivatives are everywhere continuous and satisfy the 

Cauchy-Riemann equations yx vu =  and xy vu −=  everywhere. Thus, 

( ) zxx
xx esinyiecosyeivuzf =+=+=′ . Note that ( ) ( )zfzf =′ . 

   

In addition to the coordinate (x,y), let’s consider the Cauchy-Riemann 

equation in polar coordinate (r,θ). Since 
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From the Cauchy-Riemann equations yx vu =  and xy vu −= , we have 

 θθ sinvcosuu xxr −= , ( )θθθ cosvsinuru xx   +−=  

 θθ cosvsinuv xxr += , ( )θθθ sinvcosurv xx   −= . 

Clearly, the Cauchy-Riemann equations become 

 θvur r =    and   rvru  −=θ . 

Theorem:  The function ( ) ( ) ( )θθ r,vir,uzf ⋅+=  is defined throughout 

some ε neighborhood of a nonzero point z0=r0 eiθ0 and the first-order 

partial derivatives of u and v exist everywhere in that neighborhood. If 

those partial derivatives are continuous at (r0, θ0) and satisfy the 

Cauchy-Riemann equations θvur r =  and rvru  −=θ  at (r0, θ0), then 

( ) ( )rr
i viuezf  0 +=′ − θ  exists. 

Example  Consider ( ) ( ) ( )0    
1 1 ≠−== − zsinicosr
z

zf θθ . 

Then ( ) θθ cosrr,u 1−=  and ( ) θθ sinrr,v 1−−= . We have 
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Clearly, these derivatives are continuous at nonzero points and satisfy the 

Cauchy-Riemann equations θvur r =  and rvru  −=θ  at nonzero points. 

Thus, 

 ( ) ( )
2

22 1
 

z
sinricosrezf i −=+−=′ −−− θθθ . 

Example  Consider ( ) 3133 //i zerzf == θ . Then 

 ( ) ( )33 /cosrr,u θθ =  and ( ) ( )33 /sinrr,v θθ =  

We have 
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Clearly, these derivatives are continuous at nonzero points and satisfy the 

Cauchy-Riemann equations at nonzero points.  

Thus, 
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and thus, the partial operator with respect to z  can be defined as 










∂
∂+

∂
∂=

∂
∂

y
i

xz 2

1
. Let ( ) ( ) ( )yx,viyx,uzf ⋅+= , then  

 

( ) ( ) ( )( )

( ) ( )[ ]xyyx vuivu

yx,viyx,u
y

i
xz

zf

++−=

+








∂
∂+

∂
∂=

∂
∂

  
2

1
          

 
2

1

. 

Clearly, if ( ) ( ) ( )yx,viyx,uzf ⋅+=  satisfies Cauchy-Riemann equations 

yx vu =  and xy vu −= , then 
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Further taking derivative of θirez −=  with respect to z  results in  
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and thus, the partial operator with respect to z  can be defined as 
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Clearly, if ( ) ( ) ( )θθ r,vir,uzf ⋅+=  satisfies Cauchy-Riemann equations 

θvur r =  and rvru  −=θ , then 
( )

0=
∂

∂
z

zf
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P6-1 

Show that the derivative of ( )
z

zf
1=  when z≠0 is ( )

2

1

z
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P6-2 

Find ( )zf ′  when 
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P6-3 

Show that ( )zf ′  doesn’t exist at any point if 

(a) ( ) zzf = ;         (b) ( ) zzzf −= ;  

(c) ( ) 22 ixyxzf += ;    (d) ( ) iyxeezf −=  
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P6-4 

Determine where ( )zf ′  exist and find its value when 

(a) ( )
z

zf
1= ; (b) ( ) 22 iyxzf += ; (c) ( ) zImzzf ⋅=  

Ans: (a) ( ) ( )0  
1

2
≠−=′ z

z
zf ,  (b) ( ) xixxf 2=+′ ,  (c) ( ) 00 =′f  

P6-5 

Show that each of these functions is differentiable in the indicated 

domain of definition, and then find f ’ (z) 

(a) ( ) 2θierzf =  (r>0, α<θ<α+2π) 

(b) ( ) ( ) ( )rlnsinierlncosezf θθ −− +=  (r>0, 0<θ<2π) 


