CV5 Analytic Functions : Limits and Continuity

Let *f* be defined at all points *z* in $0 < |z - z_0| < \delta$. If *f*(*z*) has a limit w_0 as *z* approaches z_0 , then

$$\lim_{z\to z_0} f(z) = w_0$$

i.e., for all $\varepsilon > 0$, there is a number $\delta > 0$ such that $|f(z) - w_0| < \varepsilon$

whenever $0 < |z - z_0| < \delta$. Note that z_0 can be a boundary point.

It is true that if a limit of f(z) exists at a point z_0 then it is unique. To prove this, we suppose that it is not unique, i.e.,

 $\lim_{z \to z_0} f(z) = w_0 \text{ and } \lim_{z \to z_0} f(z) = w_1$

where $w_0 \neq w_1$, then for any $\varepsilon > 0$, there exist $\delta_0 > 0$ and $\delta_1 > 0$ such that

$$|f(z)-w_0| < \varepsilon$$
 whenever $0 < |z-z_0| < \delta_0$.
 $|f(z)-w_1| < \varepsilon$ whenever $0 < |z-z_0| < \delta_1$.

Therefore, if $0 < |z - z_0| < \delta = \min\{\delta_0, \delta_1\}$, then we have $|f(z) - w_0| < \varepsilon$ and $|f(z) - w_1| < \varepsilon$, which leads to

$$|w_1 - w_0| < |(f(z) - w_0) + (f(z) - w_1)|$$

$$\leq |f(z) - w_0| + |f(z) - w_1| < 2\varepsilon$$

Since ε can be arbitrarily small, it can be concluded that $|w_1 - w_0| = 0$ or $w_1 = w_0$. Clearly, this is contradictory to the assumption $w_0 \neq w_1$. Hence, the limit $\lim_{z \to z_0} f(z) = w_0$ is unique.

Example Show that if f(z) = iz/2 and |z| < 1, then $\lim_{z \to 1} f(z) = i/2$.

Clearly, the point z=1 is on the boundary of |z|<1. When z is in |z|<1, we have

$$|f(z) - i/2| = \left|\frac{i}{2}(z-1)\right| = \frac{|z-1|}{2}$$

Hence, for any $\varepsilon > 0$, there is a number $\delta = 2\varepsilon$ such that

$$|f(z)-i/2| < \varepsilon$$
 whenever $0 < |z-1| < \delta(= 2\varepsilon)$

According to the definition, we have $\lim_{z \to 1} f(z) = i/2$.

Example If $f(z) = z/\overline{z}$, then what is $\lim_{z \to 0} f(z)$?

Let's consider two cases of $z \rightarrow 0$: $z=x+i0\rightarrow 0$ and $z=0+iy\rightarrow 0$. For the case

 $z=x+i0\rightarrow 0$, it implies $x\rightarrow 0$ and then $\lim_{z\rightarrow 0} f(z)=\frac{x+i0}{x-i0}=1$. For the other

case $z=0+iy \rightarrow 0$, it implies $y \rightarrow 0$ and then $\lim_{z \rightarrow 0} f(z) = \frac{0+iy}{0-iy} = -1$. Clearly,

 $\lim_{z\to 0} f(z)$ does not exist since there are two results of $\lim_{z\to 0} f(z)$ while in different approaching ways.

Theorem: Suppose that

 $f(z) = u(x, y) + iv(x, y), \quad z_0 = x_0 + iy_0 \text{ and } w_0 = u_0 + iv_0,$ then $\lim_{z \to z_0} f(z) = w_0$ if and only if

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \text{ and } \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$$

Theorem: Suppose that $\lim_{z \to z_0} f(z) = w_0$ and $\lim_{z \to z_0} F(z) = W_0$, then $\lim_{z \to z_0} (f(z) + F(z)) = w_0 + W_0$ $\lim_{z \to z_0} (f(z)F(z)) = w_0 W_0$ $\lim_{z \to z_0} (f(z)/F(z)) = w_0/W_0$, for $W_0 \neq 0$. Since $\lim_{z \to z_0} c = c$ and $\lim_{z \to z_0} z = z_0$, according to the above theorem

we have

$$\lim_{z \to z_0} z^n = z_0^n$$
 for $n=1,2,...$

and

$$\lim_{z\to z_0} P(z) = P(z_0)$$

where $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$.

Sometimes, the limit of f(z) includes the point at infinite $z=\infty$. The *z* plane together with the point at infinity ∞ , is called the extended complex plane. Think of the *z* plane as passing through the equator of a unit sphere, the *Riemann sphere*, centered at *z*=0. To each point *z* corresponds just one point *P*, determined by the intersection of the line through the point *z* and the north pole *N*. It is a stereographic projection and the north pole *N* is projected to the point at infinity.

Theorem: If z_0 and w_0 are points in z and w planes, respectively, then

$$\lim_{z \to z_0} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0$$
$$\lim_{z \to \infty} f(z) = w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$$
$$\lim_{z \to \infty} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f(1/z)} = 0$$

Example

$$\lim_{z \to -1} \frac{iz+3}{z+1} = \infty \quad \text{if and only if} \quad \lim_{z \to -1} \frac{z+1}{iz+3} = 0,$$

$$\lim_{z \to \infty} \frac{2z+i}{z+1} = 2 \quad \text{if and only if} \quad \lim_{z \to 0} \frac{(2/z)+i}{(1/z)+1} = \lim_{z \to 0} \frac{2+iz}{1+z} = 2,$$

$$\lim_{z \to \infty} \frac{2z^3-1}{z^2+1} = \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{(1/z)^2+1}{2(1/z)^3-1} = \lim_{z \to 0} \frac{z+z^3}{2-z^3} = 0.$$

A function f(z) is *continuous* at $z=z_0$ if $\lim_{z\to z_0} f(z) = f(z_0)$. If $f_1(z)$ and $f_2(z)$ are continuous at z_0 , then $f_1(z)+f_2(z)$ and $f_1(z)f_2(z)$ are continuous at z_0 , and $f_1(z)/f_2(z)$ is continuous at z_0 when $f_2(z_0) \neq 0$. As for the polynomial $P(z) = a_0 + a_1 z + \dots + a_n z^n$, it is continuous in the entire z plane.

Theorem : A composition of continuous functions is itself continuous.

Theorem : If a function f(z) is continuous and nonzero at a point z_0 , then $f(z)\neq 0$ throughout some neighborhood of that point.

The continuity of f(z)=u(x,y)+iv(x,y) is closely related to the continuity of its components u(x,y) and v(x,y).

P5-1 Prove that

(a)
$$\lim_{z \to z_0} \operatorname{Re} z = \operatorname{Re} z_0$$
, (b) $\lim_{z \to z_0} \operatorname{Re} \overline{z} = \operatorname{Re} \overline{z}_0$, (c) $\lim_{z \to 0} \frac{\overline{z}^2}{z} = 0$.

2 Let *n* be a positive integer and let P(z) and Q(z) be polynomials, where $Q(z_0) \neq 0$. Find

(a)
$$\lim_{z \to z_0} \frac{1}{z^n} (z_0 \neq 0)$$
, (b) $\lim_{z \to i} \frac{iz^3 - 1}{z + i}$, (c) $\lim_{z \to z_0} \frac{P(z)}{Q(z)}$.
Ans: (a) $\frac{1}{z_0^n}$, (b) 0, (c) $\frac{P(z_0)}{Q(z_0)}$

3 Use the theorem in this section to show that

(a)
$$\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = 4$$
, (b) $\lim_{z \to 1} \frac{1}{(z-1)^3} = \infty$, (c) $\lim_{z \to \infty} \frac{z^2 + 1}{z-1} = \infty$.