CV19 Mapping: Elementary Transformations

First, let's consider the simpliest mapping, or transformation, which is given as

$$w = Az$$

where $A = ae^{i\alpha}$ and $z = re^{i\theta}$ ($ar \neq 0$). As a result, we have

$$w = (ar)e^{i(\alpha+\theta)}$$

where the module of z is expanded or contracted with the factor a=|A| and rotates an angle $\alpha=arg A$. Next, let's consider the mapping w=z+B, where $B=b_1+ib_2$ is any complex constant, then z=x+iy translates to w=u+iv by means of vector addition in w plane as below:

$$(u,v) = (x, y) + (b_1, b_2) = (x+b_1, y+b_2)$$

Based on these two transformations, the general linear transformation can be expressed as

 $w = Az + B \qquad (A \neq 0)$

which is a composition of the transformations

Z=Az and w=Z+B

i.e., an expansion or contraction and a rotation, followed by a translation.

Example

Let z be a rectangular in the z plane and then the mapping

$$w = (1+i)z + 2 = \sqrt{2}e^{i\pi/4}z + 2$$

transforms the rectangular as below:

Following the linear transformation, let's discuss a nonlinear transformation, called the inverse transformation and given as

$$w = \frac{1}{z}$$

What is the relation between z and w in the complex plane? It is easy to

check that $z\overline{z} = |z|^2$ and then we define

$$Z = \frac{1}{\overline{z}} = \frac{z}{\left|z\right|^2}$$

which implies Z and z are in the same direction. Besides, taking the module of Z yields

$$\left|Z\right| = \frac{\left|z\right|}{\left|z\right|^2} = \frac{1}{\left|z\right|}$$

Clearly, for Z and z, if one is on the unit circle, then

the other is on the unit circle, shown by Z_1 and z_1 in the Figure.

Similarly, if one is in the unit circle, then the other is outside the unit circle, shown by Z_2 and z_2 or by Z_3 and z_3 in the Figure.

Hence, from
$$Z = \frac{1}{\overline{z}}$$
 and $w = \frac{1}{z}$, it is obvious that $w = \overline{Z}$ as

shown in the Figure similarly. Now, let's discuss the mapping of $w = \frac{1}{7}$

more detailedly.

When a point w=u+iv is the image of a nonzero point z=x+iy under the transformation w=1/z, we have

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{-y}{x^2 + y^2}$$
$$x = \frac{u}{u^2 + v^2}, \quad y = \frac{-v}{u^2 + v^2}$$

or

Such mapping w=1/z transforms circles and lines in the z plane as

$$A\left(x^2+y^2\right)+Bx+Cy+D=0$$

where A=0 for a line and $A \neq 0$ with $B^2 + C^2 > 4AD$ for a circle into the w plane as

$$D(u^2+v^2)+Bu-Cv+A=0$$

where D=0 for a line and $D \neq 0$ with $B^2 + C^2 > 4AD$ for a circle.

A circle $(A \neq 0)$ which is not passing through the origin $(D \neq 0)$ in the z plane, described as

NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

$$A\left(x^2+y^2\right)+Bx+Cy+D=0$$

i.e.,

$$\left(x+\frac{B}{2A}\right)^2 + \left(y+\frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2+C^2-4AD}}{2A}\right)^2$$

is transformed into a circle not passing through the origin in the w plane

$$D(u^2+v^2)+Bu-Cv+A=0$$

i.e.,

$$\left(u+\frac{B}{2D}\right)^2 + \left(v-\frac{C}{2D}\right)^2 = \left(\frac{\sqrt{B^2+C^2-4AD}}{2D}\right)^2$$

A circle $(A \neq 0)$ through the origin (D=0) in the *z* plane, given as

$$A\left(x^2+y^2\right)+Bx+Cy=0$$

i.e.,

$$, \qquad \left(x + \frac{B}{2A}\right)^2 + \left(y + \frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2 + C^2}}{2A}\right)^2$$

is transformed into a line

$$Bu - Cv + A = 0.$$

that does not pass through the origin in the *w* plane. A line (A=0) not passing through the origin ($D\neq 0$) in the *z* plane

Bx + Cy + D = 0

is transformed into a circle

$$D\left(u^2+v^2\right)+Bu-Cv=0$$

through the origin in the *w* plane. A line (A=0) through the origin (D=0) in the *z* plane

Bx + Cy = 0

is transformed into a line

$$Bu-Cv=0$$
.

through the origin in the *w* plane.

The linear fractional transformation, or Möbius transformation, is described as the following form

$$w = \frac{az+b}{cz+d} \quad (ad-bc \neq 0)$$

where a, b, c, and d are complex constants. It can be further written into

$$Azw+Bz+Cw+D=0 \quad (AD-BC\neq 0)$$

which is linear in z and linear in w, or bilinear in z and w, and thus is also called bilinear transformation.

It is easy to check that when c=0 the fractional transformation becomes a linear transformation

$$w = \frac{a}{d}z + \frac{b}{d} \quad (ad \neq 0).$$

As for $c \neq 0$, we let

$$Z = cz + d$$
 and $W = \frac{1}{Z}$

then

$$w = \frac{a}{c} + \frac{bc - ad}{c} \frac{1}{cz + d} = \frac{a}{c} + \frac{bc - ad}{c} \frac{1}{Z} \qquad (ad - bc \neq 0)$$

i.e.,

$$w = \frac{a}{c} + \frac{bc - ad}{c}W \qquad (ad - bc \neq 0).$$

Clearly, a linear fractional transformation is a composition of linear transformation and a inverse transformation. Regardless of whether c is zero or nonzero, any linear fractional transformation transforms circles and lines into circles and lines.

It is known that the linear fractional transformation is a one to one mapping of the extended z plane onto the extended w plane. Let

$$w = T(z) = \frac{az+b}{cz+d} \quad (ad-bc \neq 0)$$

then $T(z_1) \neq T(z_2)$ for $z_1 \neq z_2$. Hence, there is an inverse transformation T^{-1} defined on the extended *w* plane. The inverse transformation of *T* is expressed as

$$T^{-1}(w) = z$$
 if and only if $T(z) = w$.

It can be also expressed as

$$T^{-1}(w) = \frac{-dw+b}{cw-a} \quad (ad-bc \neq 0)$$

There is always a linear fractional transformation that maps three given

distinct points z_1 , z_2 and z_3 onto three specified distinct points w_1 , w_2 and w_3 , respectively.

Example

Find $w = \frac{az+b}{cz+d}$ such that $z_1 = -1$, $z_2 = 0$ and $z_3 = 1$ are mapped onto three specified distinct points $w_1 = -i$, $w_2 = 1$ and $w_3 = i$.

The mapping of $z_2=0$ onto $w_2=1$ results in d=b and then $w = \frac{az+b}{cz+b}$. Moreover, The mapping of $z_1=-1$ and $z_3=1$ onto $w_1=-i$ and $w_3=i$ leads to ci-bi=-a+b and ci+bi=a+b. Hence, a=ib and c=-ib. Therefore, $w = \frac{iz+1}{-iz+1} = \frac{-z+i}{z+i}$.

Example

Find $w = \frac{az+b}{cz+d}$ such that $z_1=1$, $z_2=0$ and $z_3=-1$ are mapped onto three specified distinct points $w_1=i$, $w_2=\infty$ and $w_3=1$.

The mapping of $z_2=0$ onto $w_2=\infty$ results in d=0, $b\neq 0$ and then $w = \frac{az+b}{cz}$. Moreover, The mapping of $z_1=1$ and $z_3=-1$ onto $w_1=i$ and $w_3=1$ leads to ci = a+b and -c = -a+b. Hence, a = (1+i)c/2 and b = (-1+i)c/2. Therefore, $w = \frac{(1+i)z+(-1+i)}{2z}$.

To fulfill the linear fractional transformation, we can apply the following eqation

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

since it maps three distinct points z_1 , z_2 and z_3 onto three specified distinct points w_1 , w_2 and w_3 , respectively.

Example

Find
$$w = \frac{az+b}{cz+d}$$
 such that $z_1 = -1$, $z_2 = 0$ and $z_3 = 1$ are mapped onto three

specified distinct points $w_1 = -i$, $w_2 = 1$ and $w_3 = i$. From the formula, we

have

$$\frac{(w+i)(1-i)}{(w-i)(1+i)} = \frac{(z+1)(0-1)}{(z-1)(0+1)}$$

 $w = \frac{-z+i}{z+i}$

i.e.,

A fixed point of a transformation w=f(z) is a point z_0 such that $f(z_0)=z_0$. Every linear fractional transformation except w=z+k, where k is a constant complex number, has at most two fixed points in the extended plane.

The linear fractional transformation $w = \frac{az+b}{cz+d} (ad-bc \neq 0)$ at the

fixed point z_0 is

$$z_0 = \frac{az_0 + b}{cz_0 + d}$$

For c=0, we have

$$z_0 = \frac{az_0 + b}{d} \ \left(ad \neq 0\right)$$

Clearly, if a=d, i.e., w=z+k, where k=b/d, then z_0 can be any complex number for k=0 and z_0 does not exist for $k\neq 0$, which has been ignored in the statement. For $c\neq 0$, we have

$$cz_0^2 + (d-a)z_0 - b = 0$$

Clearly, we can find one or two values for z_0 for the second order equation of z_0 . This completes the statement.

P19-1

Find the region onto which the half plane y>0 is mapped by the transformation w=(1+i)z by using (a) polar coordinate and (b) rectangular coordinates. Sketch the region.

P19-2

Find the image of x>1, y>0 under the transformation w=1/z.

P19-3

Find the linear fractional transformation that maps the points $z_1=2$, $z_2=i$ and $z_3=-2$ onto the points $w_1=1$, $w_2=i$ and $w_3=-1$.

P19-4

Find the fixed points of the transformation

(a)
$$w = \frac{z-1}{z+1}$$
; (b) $w = \frac{6z-9}{z}$.

P19-5

Let
$$T(z) = \frac{az+b}{cz+d}$$
, where $ad-bc\neq 0$.

Show that $T^{-1} = T$ if and only if d = -a.