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CV18 Argument Principle 

A function f is said to be meromorphic in a domain D if it is 

analytic throughout D except for poles. The terminology comes from the 

ancient Greek “meros” meaning “part”, as opposed to “holos”, meaning 

“whole”.  

Suppose f is meromorphic in the domain interior to a positively 

oriented simple closed contour C and that is analytic and nonzero on C. 

The image Γ of C under the transformation w=f(z) is a closed contour, not 

necessary simple, in the w plane. Since f has no zeros on C, the contour 

does not pass through the origin in the w plane. 

 

Let w and w0 be points on Γ, where w0 is fixed and φ0 is a value of 

arg w0. Then let arg w vary continuously, starting with φ0, as the point w 

begins at the point w0 and traverses Γ once in the direction of the 

orientation assigned to it by the mapping w=f(z). When w returns to the 

point w0, where it started, arg w assumes a particular value of arg w0, 

denoted by φ1. Thus the change in arg w as w describes Γ once is φ1−φ0. 

We write 

 ( ) 01C   φφ∆ −=zfarg  

which is an integral multiple of 2π and the integer, called the winding 

number of Γ, 

 ( )
π
φφ∆

π 2
  

2

1 01
C

−=zfarg  

represents the number of times the point w winds around the origin in the 

w plane. 
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The winding number is positive if Γ winds around the origin in the 

counterclockwise direction and negative if it winds clockwise. The 

winding number is zero when Γ does not enclose the origin. 

Theorem: Argument principle  

Suppose that 

 (i) a function f is meromorphic in the domain interior to a positively  

  oriented simple closed contour C; 

 (ii) f(z) is analytic and nonzero on C;  

 (iii) counting multiplicities, Z is the number of zeros and P is the  

  number of poles of f(z) inside C. 

Then ( ) PZzfarg −=  
2

1
C∆

π
. 

Proof: 

First, let’s evaluate 
( )
( )∫
′

C
dz

zf

zf
, where z=z(t) (a≤t≤b) around C.  

Hence, 

  
( )
( )

( )( ) ( )
( )( )∫∫

′′
=

′ b

aC
dt

tzf

tztzf
dz

zf

zf
. 

Under the transformation  

  w=f(z)=ρ(t)eiφ(t), 

the image Γ of C never passes through the origin in the w plane.  

Thus, 

  ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )tetiettzf
dt

d
tztzf titi φρρ φφ ′+′==′′  

which leads to 
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Since ( ) ( ) ( ) ( ) ( )zfargabalnbln C∆φφρρ =−=  and , we have 
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( )( )
( )( ) ( )zfargidz
tzf

tzf
CC

∆=
′

∫  

Next let’s evaluate 
( )
( )∫
′

C
dz

zf

zf
 by Cauchy’s residue theorem. If f(z) has 

q zeros zk with multiplicities mk, k=1,2,…,q and p poles zl with 

multiplicities nl, l=1,2,…,p, that is, 
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where g(z) is analytic and nonzero in C. Clearly, the total number of 

zeros and poles are 

  Z=∑
=

q

k
km

1

  and   P=∑
=

p

l
ln

1
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we have 
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According to the residue theorem, 
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Hence, ( ) ( )PZizfargi C −= π∆ 2  

that is, 

 ( ) PZzfargC −= 
2

1 ∆
π

. 

This completes the proof. 

Example 

The only singularity of 1/z2 is a pole of order 2 at the origin, and there are 
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no zeros in the finite plane. Let C denote the positively oriented circle 

around the origin, then 

 ( ) 21
2

1 2 −=/zargC∆
π

. 

That is, the image Γ of C winds around the origin w=0 twice in the 

clockwise direction. It can be verified directly by w=e−i2θ (0≤θ≤2π). 

   

Theorem: (Rouche’s Theorem) 

Suppose that 

 (i) two functions f(z) and g(z) are analytic inside and on a simple 

  closed contour C; 

 (ii) |f(z)|>|g(z)| at each point on C. 

Then f(z) and f(z)+g(z) have the same number of zeros, counting 

multiplicities, inside C. 

Proof: 

The orientation of C is immaterial, so we assume the orientation is 

positive. Since |f(z)|>|g(z)|≥0 and |f(z)+g(z)| ≥||f(z)|−|g(z)||>0 when z is on 

C, neither f(z) nor f(z)+g(z) has a zero on C. Let Zf and Zf+g denote the 

number of zeros of f and f+g inside C, we know that 

 ( )zfargZ Cf  
2

1 ∆
π

=  

  ( ) ( )[ ]zgzfargZ Cgf +=+  
2

1 ∆
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Since 
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it is clear that 

 ( )zFargZZ Cfgf  
2
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where ( ) ( )
( )zf

zg
zF +=1 . But, ( ) ( )

( ) 11 <=−
zf

zg
zF , which means under 

the transformation w=F(z), the image of C lies in the open disk |w−1|<1. 

That image does not enclose the origin w=0 and then ( ) 0 =zFargC∆ .  

This completes the proof of fgf ZZ =+ . 

Example 

To determine the number of roots of the equation 

 014 37 =−+− zzz  

inside the circle |z|=1, we write 

 ( ) ( ) 1     and    4 73 −+=−= zzzgzzf  

Since ( ) ( ) 31 and 4
7 =++≤= zzzgzf  when |z|=1, the condition 

|f(z)|>|g(z)| of the Rouché’s Theorem is satisfied and then f(z) and f(z)+g(z) 

have the same number of zeros or roots. Consequently, there are three 

roots of ( ) ( ) 14 37 −+−=+ zzzzgzf  because ( ) 34zzf −=  has three 

roots. 

 

P18-1 

Let C denote the unit circle |z|=1 in the positive sense. Determine 

( )zfargC∆  when 

(a) ( ) 2zzf = ; (b) ( ) ( ) zzzf 23 += ; (c) ( ) ( ) 3712 zzzf −= . 

P18-2 

Let f be analytic inside and on a simple closed 

contour C, and f is nonzero on C. The image of C is 

shown in the figure. Determine the value of 

( )zfargC∆  and the number of zeros, counting 

multiplicities, of f interior to C. 

P18-3 

Let f be analytic inside and on a simple closed contour C, and f has no 

zeros on C. Show that if f has n zeros zk (k=1,2,…,n) inside C, each zk 

v 

u 
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with multiplicity mk, then 

 
( )

( ) ∑∫
=

=
′ n

k
kkC

zmidz
zf

zfz

1

 2π . 

P18-4 

Determine the number of zeros, counting multiplicity, of  

(a) 63 34 ++ zz , (b) 192 234 −++− zzzz , and (c) 13 235 +++ zzz   

inside the circle |z|=2. 

P18-5 

Determine the number of roots, counting multiplicity, of the equation 

0162 25 =++− zzz  in 1≤|z|<2. 


