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CV16 Residues: Special Integral methods

Here we will discuss some special integral methods which can solve
the integral of real function.

Fourier Integrals

The Fourier integrals are often required to solve the the following

forms
[ f(x)sinaxdx or [ f(x)cosaxdx

To obtain their results, we adopt the fact that

R iax
_[_R f (x)e™dx —I X )cosax dx+|j X)sinax dx
and the fact that [e'®?|=|e***¥)|=e~® s bounded for y>0.
y
.
Consider the integral j mdx !
X +1) X
and introduce the contour C. Then -R o R
i3x i3z i3z
IR e—zdx+ e—dz_27r|Res ¢ 5
*® (x2+1) % (22 +1) = | (22+1)

where z=i is a pole of order 2.
i3z i3z
Let —© = #2) where ¢(z)= -2, and then the residue at z=i is

(zz+1)2 (z=i) (z+iY

calculated as

e'®’ v (3i(z+i)-2)e™ 1
R = = -
)0
Besides,
e'¥ e 7R
dz|< TR —
8 ey A o e
i32
which implies I ——~—dz =0. Therefore,

z +1)

R ei3x 1 2
'[(x +1) dx = 27z|Ie e_

16-1



NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585
Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

Taking the real part leads to I " &?’dex = z—f . Since C%—SXZ
- (x2+1) e (x2+1)
even, the Cauchy principal value for the integral exists, i.e.,
[ 203X gy —2mi = 2%
() e e
Integration Based on Jordan’s Lemma y

Cr
Jordan’s Lemma:

1N

Suppose that Qj R
0
()  afunction f(z) is analytic at all points z in the

upper half plane y>0 that are exterior to the circle |z|=R,;
(i) Cr denotes a semicircle z=Re'? (0<6<7), where R>Ry;
(iii) for all points z on Cg, there is a positive constant Mg such that

If(z)|< Mg, where FIeimMR =0.

Then, for every positive constant a,

lim | f(z)e®*dz=0.

R—x0 JCy

Proof:

From the sine function, it is known that sin@>28/x for 0<6<2.
If R>0, then

g RS0 < o2ROIZ —\\hen 0<6</2.

This leads to

[emdgs |

0 0

"Eg-eroing 6’=l(1—e‘R)<i
2R 2R

Since sin@is symmetric with respect to é=7/2, we have

J”e—RsinGd 9 <£
0 R

which is known as Jordan’s inequality. According to the statements
()-(iii), it can be attained that

IC f(z)e™dz = Lﬂ f(Re'” )e™™ iRe'’d 0

Since
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£ (Re'”)| <M,

iaRe'? iaR(cosf+ising —aRsind
e e <e

we have

_[C f(z)e™dz

< m f (Re”)e‘aR‘*miRe‘e‘d 2

<MR[ "™ |do<M R [ e ™" d o
M
~M RZ =rT
aR a

From limM, =0, we have lim | f(z)e®dz=0.

R—a0 R—w JCr

o X Sin X dx

FindtheCauchyprincipaIvaIueI T o N
-0 X+ 2X+

Let’s consider

i) z z

T 242142 (2- 2, \z-2,)

where z, =—1+i isasimple pole of f(z)e"” and lies above the real axis.

The residue of f(z)e” at z, =—1+i is

2™ _ (cosl+sinl) v (cos1-sinl)

B, =
2,-7, 2e 2e

Hence, when R>+/2 and C denotes the upper half of the positively

oriented circle |z|=R,

ji%fff J. f(2)edz=2xiB,
which means
J‘RR%JF ImUCR f(z)e‘zdzj
_ Im(2ziB,)= (cos1+sinl)
e
Now,

<

‘ImUCR f(z)e‘zdz) ch f(z)e‘zdz‘
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where |f(z)<M;, MR=L,and limM, =0.

(R_\/E)Z R—
From Jordan’s Lemma,

we have lim | f(z)e"dz=0 and thus

R—x0 JCq

by ro xsinxdx _ z(cosl+sinl)
C x4 2x+2 e '

Integration of Indented Paths

Theorem
Suppose that
(i) f(z) has a simple pole at z=x, on the real axis, with a Laurent
series representation in a punctured disk 0<|z—x,|<R, and with
residue Bo;

(if) C,denotes the upper half of a circle y Semm -

|z—Xo|=p, Where p<R; and the . 3 X

the clockwise direction is taken. 1

Then Liﬂ%fcp f(z)dz=-B, zi.

Proof:

Assuming (i) and (ii) are satisfied, then the Laurent series is written as

f(2)=gl2)+—2

Z— X,
where g(z)= iam (z—x,)" for |z—xo|<Ry. Thus,
n=0
dz
.[Cp f(z)dz = J.c/, 9(z)dz + B, J.c/, =

If choose a number p, such that p<p<R,, g(z) must be bounded on the
closed disk |z—xo|<p, i.€., there is a nonnegative constant M such that

lg(z) <M whenever |z—x,|< p,.

It follows that UC g(z)dz

<M zp and consequently, L'LTE)J.C g(z)dz=0.
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Besides,

d d

Thus, lim | f(z)dz = —B, zi. This completes the proof.
P> P

T 1 - i .
=—_|' _pie’d0=—ir
Opele

y

smx
Determine I

We consider

f(2)=e7 ’ 3
and the contour including Cg-L>-C,- L; as shown. The semicircle C,, is
introduced to avoid integrating through the singularity z=0.

The Cauchy-Goursat theorem tells us that

ei eIZ
j—dz+ —dz+ = dz+[ —dz=0
L 7 Cr L 7 C, 7

eIZ 1 0 In n-1 ] . ]
Since —=—+Z | for 0<|z|<co, its residue at z=0 is 1. Hence,
z = nl

iz

e )
lim| —dz=—7xi.
p—09C, 7

Besides,

1 :% on Cg. According to Jordan’s lemma we have
z

im{ $dz=0

R—xo JCq 7

Now,

which can be further expressed as

ir

j:er j‘:er dr:j;err—LRer dr=zi
Thus,
J‘ Slnr LOOSI_)I:XdX:%
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Integration around Branch Point

In x

Determine J‘—4)dx.
x +

We consider the branch

log z
(zz+ 4)2

for |z|>0, —#/2<arg z<3/2 and the contour including Cg-L,-C-L; as

f(z)=

shown. The semicircle C, is introduced to avoid integrating through the
singularity z=0 and the pole z=2i of order 2 is within the contour.

According to Cauchy residue theorem,

J, f@)dz+ [ f(2)dz+] f(z)dz+ fc,, f(z)dz

=2riResf(z)

z=2i

where the residue is evaluated from the first derivative of

92)= (-2 1(2)= 55

at z=2i, that is,

) 1-In2
Resf(z)=¢'(2i)=2%
Res f(2)=¢'(2i) o

Moreover,

L dz+j dz—zj Inr)dr+i7r_[;(2d—rz

+4 re+ 4)
Taking the real parts yields

ZI Inr

; +4) dr+Rej dz+ReI %(InZ—l)

In R+7r2 <R

=

LR f(z)dz| <

and
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where Iimm R=0 and |ImL+ZT7Tp=O,We have
] <4—p2>
Re_[ z)dz=0 and Rej z=0.
Therefore,
< Inr V4
———~dr=—(In2-1
b e
that is, I In—xzdx=1(ln2—1). Note that from the imaginary part of
x +4) 32

the above example, we can obtain

ro dx T
0 (x2+ 4)2 32

Determine
Consider the branch f(z)= z
z+1
for |z|>0 and O<arg z<27,
—a log z

where 22 is defined as e

Consider the contour including Cgr-L»-C,-L1 as shown,
where L1(6=0) and L,(6=27) are the upper and lower edges of the branch
cut, respectively. The simple pole z=—1 is within the contour.

According to Cauchy residue theorem,

J.Ll f(Z)dZ-ﬁ-J.CR f(Z)dZ+J.L2 dZ+I 2)dz=27i R_esf( z)

where the residue at z=—1 is evaluated from
¢(Z)= (Z+1) f (Z)= 778 = e—alogz — e—a(lnr+i6’)
as Resf ()= p(-1)=e 27 — g7 . 0 Moreover,

an-—i2ar

f f@)dz+] f(z)dz= prrTldr—E%dr

—a

= (1—e“2a”)er—dr

rr+1
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Hence,
—i2ar _ iar
(1—e )jpr+ldr+j dz+J' dz 2rie”
Since
I f(z)dz‘s R opr=2ZR. L
Cr - R-1 R?
P T 1a
J.Cﬂ f(Z)dZ Sl_p Ep
where I|m27[—R i_o and I|m2—p =0, we have
Ro>x R— R p—>01_p
J'CR f(z)dz=0 and J.Cﬂ f(z)dz=0
Therefore,
= 2rie " 2ri T
_[ dr: —-i2ar = iar —iar —
0 r+l 1-e e’ —e sinar
that - 0<a<1).
atls, I x+1 sinarx ( <a<)

Definite Integration involving Sines and Cosines

The method of residues is also useful in evaluating J':”F

By letting z=¢"

(0<6<2x), we have

dz=ie'’d@=izd @
R -1
and siné?:Z Z , cosezz+Z , d0=% Thus,
21 2 iz
-1 -1
J-F z—z_ Z+2 %
C 21 2 iz

where C is the unit circle around the origin in the positive direction.

To evaluate the integral

J427r dH
0 1+asind

(-1<a<1)
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we have

2/a _[ 2/a iz

2= | ———
IC 2°+(2ila)z-1 ¢(z-2,)z-z,)
where C is the positively oriented circle |z|=1 and the two poles are

7 z(ﬂ} and z z[_l_— Vl_az}_

a

1++/1-a?

>1 and
g

Note that because |aj<1 and |z,z,|=1, we have |z,|=

|z,| <1. That means no singular point is on C and the pole z, is in it.

The corresponding residue is obtained by

2/a 2/a | 1

R — — —

ZeZ? (Z Zl)(z Z) (Zl) I-17,|,., ivJl-a?
Consequently,

2/a 1 27
2% dz=2ri -4

L 2°+(2ila)z-1 S ivl-a® +1-a?
that is,

rﬁ de _ 27

° 1+asingd 1-ga2
P16-1

Evaluate the improper integrals

% Cos X dx COS ax
b 0 b —d 0,b>0);
@ I—w(x2+aZXX2+b2) (a>0>0): () I (x2+b?) x (a>00>0)
© J» xsm2xOI (@ J- x3 sin x X (@) I x+1cosx
(x2+1)x2 +9 ) » X2 +4x+5
P16-2
Show that

J-oo cos(ax)—zcos(bx)

dx=2(b-a) (a>0,b=>0).
X 2

sin? de:ﬁ.
2

Point out how it follows that j
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P16-3
1/3 (1/3)logz
Use f(z)= : 2Iog z_¢ - 992 ¢ |z|>0, —l2<arg z<37/2, to
z°+1 z°+1
2 3
show that j xInde:n_ and - x dx ==
+1 6 0 x2+1 J3
16-4

2
Use f(z)= % for |z|>0, —af2<arg z<3 /2, to show that

2%+
2 3
[ X G- 7 and [*NX e,
0 x°+1 8 0 x°+1
P16-5
Z1/3 e(1/3)|ogz
Use f(z)= for |z|>0, O<arg z<27z and the

(z+ra)z+b) (z+a)fz+b)
contour in this section to show that
J‘w i/; X = 2% i/_ \/_
o (

P16-6

Evaluate the definite integrals

@ I”1+sm 49. ) I 1+ac (—1<a<1)

7 da . 7T o s.2n —
() Lm(an), (d) jo sin?9do (n=1.2,...).
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