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CV16 Residues: Special Integral methods 

Here we will discuss some special integral methods which can solve 

the integral of real function. 

Fourier Integrals 

The Fourier integrals are often required to solve the the following 

forms 

  



dxsinaxxf     or    




dxcosaxxf   

To obtain their results, we adopt the fact that 
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and the fact that 
  ayiyxiaiaz eee    is bounded for y0. 

Example 

Consider the integral 
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and introduce the contour C. Then 
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where z=i is a pole of order 2.  

Let 
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, and then the residue at z=i is 

calculated as 
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Taking the real part leads to 
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even, the Cauchy principal value for the integral exists, i.e., 
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Integration Based on Jordan’s Lemma 

Jordan’s Lemma: 

Suppose that  

 (i) a function f(z) is analytic at all points z in the  

  upper half plane y0 that are exterior to the circle |z|=R0; 

 (ii) CR denotes a semicircle z=Re
i

 (0≤≤), where R>R0; 

 (iii) for all points z on CR, there is a positive constant MR such that 

  |f(z)|< MR, where 0


R
R

Mlim . 

Then, for every positive constant a, 

    0 RC

iaz

R
dzezflim . 

Proof: 

From the sine function, it is known that sin>2/ for 0≤≤/2.  

If R>0, then 

 
 /RRsin ee 2  ,   when 0≤≤/2. 

This leads to 
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Since sin is symmetric with respect to =/2, we have 
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which is known as Jordan’s inequality. According to the statements 

(i)-(iii), it can be attained that 
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    R

i MRef   

    aRsinisincosiaRiaRe eee
i   ,  

we have 
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From 0


R
R

Mlim , we have   0 RC
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Example 

Find the Cauchy principal value 
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where iz  11  is a simple pole of f(z)e
iz
 and lies above the real axis.  

The residue of f(z)e
iz
 at iz  11  is 
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Hence, when 2R  and CR denotes the upper half of the positively 

oriented circle |z|=R, 
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Integration of Indented Paths 

Theorem 

Suppose that 

 (i) f(z) has a simple pole at z=x0 on the real axis, with a Laurent 

  series representation in a punctured disk 0<|zx0|<R2 and with 

  residue B0; 

 (ii) C denotes the upper half of a circle  

  |zx0|=, where <R2 and the 

  the clockwise direction is taken. 

Then   iBdzzflim
C




0
0


. 

Proof: 

Assuming (i) and (ii) are satisfied, then the Laurent series is written as 
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B
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where    
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If choose a number 0 such that <0<R2, g(z) must be bounded on the 

closed disk |zx0|<0, i.e., there is a nonnegative constant M such that 

   00er      whenev  xzMzg . 

It follows that   


Mdzzg
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Besides, 
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. This completes the proof. 

   

Example 

Determine 


0
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x

sinx
.  

We consider 

  
z

e
zf
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and the contour including CR-L2-C- L1 as shown. The semicircle C is 

introduced to avoid integrating through the singularity z=0. 

The Cauchy-Goursat theorem tells us that 
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Integration around Branch Point 

Example 

Determine 
 



0 22 4

 
dx

x

xln
. 

We consider the branch  

   
 22 4

 




z

zlog
zf   

for |z|>0, /2<arg z<3/2 and the contour including CR-L2-C-L1 as 

shown. The semicircle C is introduced to avoid integrating through the 

singularity z=0 and the pole z=2i of order 2 is within the contour. 

According to Cauchy residue theorem, 
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Taking the real parts yields 
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where 
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. Note that from the imaginary part of 

the above example, we can obtain 
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Example 

Determine 




0 1
dx

x

x a

 where 0<a<1. 

Consider the branch  
1




z

z
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for |z|>0 and <arg z<2

where z
a

 is defined as e
a log z

. 

Consider the contour including CR-L2-C-L1 as shown, 

where L1(=0) and L2(=2) are the upper and lower edges of the branch 

cut, respectively. The simple pole z= is within the contour. 

According to Cauchy residue theorem, 
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Hence, 
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Definite Integration involving Sines and Cosines 

The method of residues is also useful in evaluating  
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where C is the unit circle around the origin in the positive direction. 
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To evaluate the integral  
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we have 
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Note that because |a|<1 and 121 zz , we have 1
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11 z . That means no singular point is on C and the pole z1 is in it.  
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P16-1 

Evaluate the improper integrals 

(a) 
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P16-2 

Show that 
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P16-3 

Use  
 

1

 

1

 
2

31

2

31







z

zloge

z

zlogz
zf

zlog//

 for |z|>0, /2<arg z<3/2, to 

show that 
6

 
1

2

0 2

3 





dx
x

xlnx
 and 

3
 

10 2

3 





dx
x

x
 

P16-4 

Use  
 

1

 
2

2




z

zlog
zf  for |z|>0, /2<arg z<3/2, to show that 

 
8

 
1

3

0 2

2







dx
x

xln
 and 0 

10 2





dx
x

xln
. 

P16-5 

Use  
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 (a>b>0). 

P16-6 

Evaluate the definite integrals 

 (a)  
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d
; (b)  
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