## CV15 Residues: Evaluation of Improper Integrals

In calculus, the improper integral of a continuous function f(x) over the semi-infinite interval  $x \ge 0$  is defined by means of the equation

$$\int_0^\infty f(x)dx = \lim_{R \to \infty} \int_0^R f(x)dx$$

which converges if the limit on the right exists.

If f(x) is continuous for all x, its improper integral over  $-\infty < x < \infty$  is defined by writing

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{R_1 \to \infty} \int_{-R_1}^{0} f(x)dx + \lim_{R_2 \to \infty} \int_{0}^{R_2} f(x)dx$$

which converges if both of the limits exist.

Cauchy principal value (P.V.) is defined as

$$P.V. \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

which converges if the limit on the right exists.

If improper integral converges, then Cauchy principal value of the integral converges, i.e.,

$$\int_{-\infty}^{\infty} f(x)dx \text{ converges} \Rightarrow P.V. \int_{-\infty}^{\infty} f(x)dx \text{ converges}$$

However, it is not true that if Cauchy principal value of an integral converges, then its improper integral converges, i.e.,

$$P.V. \int_{-\infty}^{\infty} f(x)dx$$
 converges  $\Rightarrow \int_{-\infty}^{\infty} f(x)dx$  converges

Example

$$P.V. \int_{-\infty}^{\infty} x \, dx = \lim_{R \to \infty} \int_{-R}^{R} x \, dx = \lim_{R \to \infty} \left[ \frac{x^2}{2} \right]_{-R}^{R} = 0$$

$$\int_{-\infty}^{\infty} x \, dx = \lim_{R_1 \to \infty} \int_{-R_1}^{0} x \, dx + \lim_{R_2 \to \infty} \int_{0}^{R_2} x \, dx$$

$$= \lim_{R_1 \to \infty} \left[ \frac{x^2}{2} \right]_{R_1}^{0} + \lim_{R_2 \to \infty} \left[ \frac{x^2}{2} \right]_{0}^{R_2} = -\lim_{R_1 \to \infty} \frac{R_1^2}{2} + \lim_{R_2 \to \infty} \frac{R_2^2}{2}$$

Clearly,

$$P.V. \int_{-\infty}^{\infty} f(x)dx$$
 converges  $\Rightarrow \int_{-\infty}^{\infty} f(x)dx$  converges.

Suppose that f(x) is an even function for all x, that is,

$$f(-x) = f(x)$$
 for  $-\infty < x < \infty$ .

Then, it is true that

$$P.V. \int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} f(x)dx = 2\int_{0}^{\infty} f(x)dx.$$

Consider an even rational function

$$f(x)=f(-x)=p(x)/q(x)$$
,

where p(x) and q(x) are polynomials with real coefficients and no factors in common. Besides, q(z) has no real zeros but has zeros  $z_1, z_2, ..., z_n$ , above the real axis. That means f(z) has no real poles but has poles  $z_1$ ,  $z_2, ..., z_n$ , above the real axis. To evaluate  $\int_{-\infty}^{\infty} f(x)dx$ , choose a contour consisting of the segment form z=-R to z=R and the top half of the circle |z|=R, denoted as  $C_R$ , where R is large enough that all the zeros  $z_1, z_2, \ldots$  $z_n$ , lie inside the closed path. According to Cauchy Residue Theorem,

$$\int_{-R}^{R} f(x) dx + \int_{C_R} f(z) dz = 2\pi i \sum_{k=1}^{n} \underset{z=z_k}{Res} f(z).$$

If 
$$\lim_{R\to\infty}\int_{C_R}f(z)dz=0,$$

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = 0,$$

$$P.V. \int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \underset{z=z_k}{Res} f(z).$$

Since f(x) is even, we have

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{Res} f(z)$$

$$\int_0^\infty f(x)dx = \pi i \sum_{k=1}^n \underset{z=z_k}{Res} f(z).$$

#### Example

To evaluate  $\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx$ , where  $f(x) = \frac{x^2}{x^6 + 1}$  is even and  $f(z) = \frac{z^2}{z^6 + 1}$ has three poles  $z_1 = e^{i\pi/6}$ ,  $z_2 = e^{i\pi/2}$ ,  $z_3 = e^{i5\pi/6}$ , lying in the upper half plane. Hence,

$$\int_{-\infty}^{\infty} f(x)dx + \int_{C_R} f(z)dz = 2\pi i \sum_{k=1}^{3} \underset{z=z_k}{Res} f(z)$$
$$= 2\pi i (B_1 + B_2 + B_3)$$

Since the three poles are simple, we have

$$B_k = \mathop{Res}\limits_{z=z_k} \frac{z^2}{z^6+1} = \frac{z^2}{6z^5} \bigg|_{z=z_k} = \frac{1}{6}z_k^{-3},$$

i.e., 
$$B_1 = \frac{1}{6}e^{-i\pi/2} = -\frac{1}{6}i$$
,  $B_2 = \frac{1}{6}e^{-i3\pi/2} = \frac{1}{6}i$ ,  $B_3 = \frac{1}{6}e^{-i5\pi/2} = -\frac{1}{6}i$ .

Therefore,

$$\int_{-\infty}^{\infty} f(x)dx + \int_{C_R} f(z)dz = 2\pi i \left(-\frac{1}{6}i\right) = \frac{\pi}{3}.$$

Moreover,

$$\left|\int_{C_R} f(z)dz\right| \leq M_R L.$$

where 
$$|f(z)| = \left| \frac{z^2}{z^6 + 1} \right| \le \frac{|z|^2}{|z|^6 - 1} \le \frac{R^2}{R^6 - 1} = M_R$$
 and  $L = \pi R$ . Thus,

$$\left| \int_{C_R} f(z) dz \right| \le \frac{\pi R^3}{R^6 - 1} \quad \text{for } R \to \infty.$$

which implies  $\int_{C_R} f(z)dz = 0$ . This leads to

$$\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} dx = \frac{\pi}{3} \quad \text{or} \quad \int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx = \frac{\pi}{6}$$

# Example

To evaluate  $\int_0^\infty \frac{dx}{x^3+1}$ , we choose the contour below.

Since 
$$f(z) = \frac{1}{z^3 + 1}$$
 has one simple

pole  $z_1 = e^{i\pi/3}$  lying in the contour, we have

$$\int_{0}^{\infty} f(x)dx + \int_{C_{R}} f(z)dz + \int_{L_{R}} f(z)dz$$

$$= 2\pi i \operatorname{Res}_{z=z_{1}} \frac{1}{z^{3}+1} = 2\pi i \frac{1}{3z_{1}^{2}} = \frac{2\pi i}{3} e^{-i2\pi/3}.$$

 $Re^{i2\pi 3}$   $C_R$   $C_R$  R

where

$$\left| \int_{C_R} f(z) dz \right| \le \frac{1}{R^3 - 1} \cdot \frac{2\pi R}{3} = \frac{2\pi R}{3(R^3 - 1)}$$

$$\int_{L_R} f(z)dz = \int_R^0 \frac{e^{i2\pi/3}}{\left(re^{i2\pi/3}\right)^3 + 1} dr$$

$$= \int_R^0 \frac{dr}{r^3 e^{i4\pi/3} + e^{-i2\pi/3}}$$

$$= \int_R^0 \frac{dr}{r^3 e^{-i2\pi/3} + e^{-i2\pi/3}}$$

$$= \int_R^0 \frac{e^{i2\pi/3} dr}{r^3 + 1} = -e^{i2\pi/3} \int_0^R \frac{dx}{x^3 + 1}$$

Clearly, when  $R \rightarrow \infty$ , we have

$$\int_{C_R} f(z) dz = 0 \text{ and } \int_{L_R} f(z) dz = -e^{i2\pi/3} \int_0^R \frac{dx}{x^3 + 1}$$

which result in

$$\int_0^\infty \frac{1}{x^3 + 1} dx - e^{i2\pi/3} \int_0^\infty \frac{1}{x^3 + 1} dx = \frac{2\pi i}{3} e^{-i2\pi/3}$$

Consequently,

$$\int_0^\infty \frac{1}{x^3 + 1} dx = \frac{2\pi i}{3(1 - e^{i2\pi/3})} e^{-i2\pi/3} = \frac{2\pi}{3\sqrt{3}}.$$

## P15-1

Evaluate the improper integrals

(a) 
$$\int_0^\infty \frac{1}{(x^2+1)^2} dx$$
; (b)  $\int_0^\infty \frac{1}{x^4+1} dx$ ; (c)  $\int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx$ .

## P15-2

Evaluate the improper integrals

(a) 
$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 2} dx$$
; (b)  $\int_{-\infty}^{\infty} \frac{x}{(x^2 + 1)(x^2 + 2x + 2)} dx$ .

#### P15-3

Use residues and the contour with R>1 to show

$$\int_0^\infty \frac{dx}{x^3 + 1} = \frac{2\pi}{3\sqrt{3}} \, .$$

## P15-4

Show that 
$$\int_0^\infty \frac{x^{2m}}{x^{2n}+1} dx = \frac{\pi}{2n} \csc\left(\frac{2m+1}{2n}\pi\right).$$

