NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill

CV14 Residues: Poles and Zeros

If f(z) has an isolated singular point z_0 , then it can be represented by a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \dots + \frac{b_n}{(z - z_0)^n} + \dots$$

in a punctured disk $0 < |z-z_0| < R_2$. The portion

$$\frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \dots + \frac{b_n}{(z-z_0)^n} + \dots$$

is called the principal part of f at z_0 .

If f contains finite terms of the principal part which is given as the following form

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \dots + \frac{b_m}{(z - z_0)^m}$$

for $0 < |z-z_0| < R_2$, where $b_m \neq 0$, then the isolated singular point z_0 is called a pole of order *m* of *f*. A pole of order *m*=1 is referred to as a simple pole.

Example

The function $f(z) = \frac{z^2 - 2z + 3}{z - 2} = 2 + (z - 2) + \frac{3}{z - 2}$, $(0 < |z - 2| < \infty)$ has a

simple pole at z=2. Its residue $b_1=3$.

Example

Consider the following function

$$f(z) = \frac{\sinh z}{z^4} = \frac{1}{z^4} \left(z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \cdots \right)$$
$$= \frac{1}{z^3} + \frac{1}{3!z} + \frac{z}{5!} + \frac{z^3}{7!} + \cdots \quad (0 < |z| < \infty)$$

Clearly, there is a pole of order 3 at z=0 with residue $b_1=1/6$.

If f(z) has an isolated singular point z_0 and contains no principal part shown as $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ where $0 < |z - z_0| < R_2$, then z_0 is known as a removable singular point. The residue at a removable singular point is zero. If we define $f(z_0) = a_0$, then the expression of f(z) becomes valid throughout the entire disk $|z-z_0| < R_2$. It follows that *f* is analytic at z_0 when it is assigned the value a_0 there. The singular point z_0 is removed.

Example

Consider the following function

$$f(z) = \frac{1 - \cos z}{z^2} = \frac{1}{z^2} \left(1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots \right) \right)$$
$$= \frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \cdots \qquad \left(0 < |z| < \infty \right)$$

If f(0)=1/2 is assigned, then f becomes entire.

If f contains an infinite number of terms of the principal part as shown below:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \dots + \frac{b_n}{(z - z_0)^n} + \dots$$

then z_0 is called an essential singular point.

An important result concerning an essential singular point is due to Picard. It states that in each neighborhood of an essential singular point, a function assumes every finite value, with one possible exception, an infinite number of times.

Example

Consider the following function

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{1}{z^n}$$

= 1 + $\frac{1}{1!} \cdot \frac{1}{z} + \frac{1}{2!} \cdot \frac{1}{z^2} + \dots \quad (0 < |z| < \infty)$

has an essential singular point z=0 with residue $b_1=1$. To illustrate Picard's theorem, recall that $e^z=-1$ when $z=(2n+1)\pi i$ $(n\in Z)$.

That means $e^{1/z} = -1$ when

$$z = \frac{1}{(2n+1)\pi i} = -\frac{i}{(2n+1)\pi} \qquad (n = 0, \pm 1, \pm 2, \cdots)$$

and an infinite number of these points lie in any given neighborhood of

the origin. Since $e^{1/z} \neq 0$ for any value of *z*, zero is the exceptional value in Picard's theorem.

Theorem:

An isolated singular point z_0 of a function f is a pole of order m if and

only if f(z) can be written as $f(z) = \frac{\phi(z)}{(z - z_0)^m}$, where $\phi(z)$ is analytic and

 $\phi(z_0) \neq 0.$ Moreover, Res $f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ m = 1, 2,

Since $\phi(z)$ is analytic and $\phi(z_0)\neq 0$, its Taylor expansion is

$$\phi(z) = \phi(z_0) + \frac{\phi'(z_0)}{1!}(z - z_0) + \frac{\phi''(z_0)}{2!}(z - z_0)^2 + \cdots + \frac{\phi^{(m-1)}(z_0)}{(m-1)!}(z - z_0)^{m-1} + \sum_{n=m}^{\infty} \frac{\phi^{(n)}(z_0)}{n!}(z - z_0)^n$$

in some neighborhood $|z-z_0| < \varepsilon$ of z_0 . It follows that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m}$$

= $\frac{\phi(z_0)}{(z - z_0)^m} + \frac{\phi'(z_0)}{1!(z - z_0)^{m-1}} + \frac{\phi''(z_0)}{2!(z - z_0)^{m-2}} + \cdots$
+ $\frac{\phi^{(m-1)}(z_0)}{(m-1)!(z - z_0)} + \sum_{n=m}^{\infty} \frac{\phi^{(n)}(z_0)}{n!}(z - z_0)^{n-m}$

which reveals that z_0 is a pole of order m of f(z). The coefficient of $1/(z-z_0)$ tells us that the residue is $\underset{z=z_0}{\text{Res}} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ where m = 1, 2, ...

Example

The function $f(z) = \frac{z+1}{z^2+9}$ has an isolated singular point z=3i. Then, it can be rewritten as $f(z) = \frac{\phi(z)}{z-3i}$ where $\phi(z) = \frac{z+1}{z+3i}$. Since $\phi(z)$ is analytic at z=3i and $\phi(3i) = \frac{1}{6}(3-i) \neq 0$. Hence,

$$\operatorname{Res}_{z=3i} f(z) = \frac{\phi^{(m-1)}(3i)}{(m-1)!}\Big|_{m=1} = \phi(3i) = \frac{3-i}{6}.$$

Example

Since $f(z) = \frac{z^3 + 2z}{(z-i)^3}$ has a pole of order 3 at z=i, it can be written as

$$f(z) = \frac{\phi(z)}{(z-i)^3}$$
, where $\phi(z) = z^3 + 2z$ is entire and $\phi(i) = i \neq 0$. Hence,

the residue at z=i of f(z) is

$$\operatorname{Res}_{z=i} f(z) = \frac{\phi^{(m-1)}(i)}{(m-1)!}\Big|_{m=3} = \frac{\phi''(i)}{2} = 3i.$$

Example

Consider $f(z) = \frac{(\log z)^3}{z^2 + 1}$ with the branch $\log z = lnr + i\theta$ for $0 < \theta < 2\pi$ is

to be used. Since f(z) has a pole at z=i, it can be written as $f(z) = \frac{\phi(z)}{z-i}$,

where
$$\phi(z) = \frac{(\log z)^3}{z+i}$$
 is analytic at $z=i$ and $\phi(i) = \frac{(\log i)^3}{2i} = -\frac{\pi^3}{16} \neq 0$.

Hence, the residue at z=i of f(z) is

$$\operatorname{Res}_{z=i} f(z) = \frac{\phi^{(m-1)}(i)}{(m-1)!} \bigg|_{m=1} = \phi(i) = -\frac{\pi^3}{16}.$$

Example

 $f(z) = \frac{\sinh z}{z^4}$ has a pole of order 3 at z=0 since

$$f(z) = \frac{\sinh z}{z^4} = \frac{1}{z^4} \left(z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \cdots \right)$$
$$= \frac{1}{z^3} + \frac{1}{3!z} + \frac{z}{5!} + \frac{z^3}{7!} + \cdots$$

Therefore, f(z) has a pole of order 3 at z=0 and its residue $b_1=1/6$. You can not choose $\phi(z)=\sinh z$, which is wrong in this case.

Example

Consider
$$f(z) = \frac{1}{z(e^z - 1)} = \frac{1}{z\left(\sum_{n=1}^{\infty} \frac{z^n}{n!}\right)} = \frac{1}{z^2\left(1 + \frac{z}{2!} + \frac{z^2}{3!} + \cdots\right)}$$
 which has a

pole at z=0 of order 2. Let $f(z) = \frac{\phi(z)}{z^2}$, then $\phi(z) = \frac{z}{e^z - 1}$ is analytic

at z=0 and $\phi(0) = 1 \neq 0$. Hence, the residue at z=0 of f(z) is

$$\begin{aligned} \underset{z=0}{\operatorname{Res}} f(z) &= \frac{\phi^{(m-1)}(0)}{(m-1)!} \bigg|_{m=2} = \phi'(0) = \frac{(e^{z}-1)-z(e^{z})}{(e^{z}-1)^{2}} \bigg|_{z=0} \\ &= \frac{-z}{2(e^{z}-1)} \bigg|_{z=0} = \frac{-1}{2(e^{z})} \bigg|_{z=0} = -\frac{1}{2} \end{aligned}$$

If $f(z_0)=0$ and if there is a positive integer *m* such that $f^{(m)}(z_0)\neq 0$ and each derivative of lower order vanishes at z_0 , then *f* has a zero of order *m* at z_0 .

Theorem:

A function *f* that is analytic at a point z_0 has a zero of order *m* there if and only if there is a function *g*, which is analytic at z_0 and $g(z_0)\neq 0$,

such that $f(z) = (z - z_0)^m g(z)$.

Theorem:

Suppose that

(i) two functions p and q are analytic at z_0 ,

(ii) $p(z_0) \neq 0$ and q has a zero of order m at z_0 .

Then p(z)/q(z) has a pole of order *m* at z_0 .

Example

Let p(z)=1 and $q(z)=z(e^{z}-1)$, where q(z) has a zero of order 2 at z=0. Hence, the quotient p(z)/q(z) has a pole of order 2 at z=0.

Theorem:

Let *p* and *q* be analytic at *z*₀. If $p(z_0) \neq 0$, $q(z_0) = 0$, and $q'(z_0) \neq 0$, then *z*₀ is a simple pole of p(z)/q(z) and $\underset{z=z_0}{\operatorname{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$.

Proof:

From the conditions $q(z_0)=0$, and $q'(z_0)\neq 0$, the point z_0 is a simple zero. That means $q(z)=(z-z_0)g(z)$, where g(z) is analytic at z_0 and $g(0)\neq 0$. Therefore, z_0 is a simple pole of p(z)/q(z) and $\frac{p(z)}{q(z)} = \frac{p(z)/g(z)}{z-z_0} = \frac{\phi(z)}{z-z_0}$ where $\phi(z) = \frac{p(z)}{g(z)}$. Hence, $\underset{z=z_0}{\operatorname{Res}} \frac{p(z)}{q(z)} = \phi(z_0) = \frac{p(z_0)}{g(z_0)}$. Note that $q'(z)=g(z)+(z-z_0)g'(z)$ and $\underset{z=z_0}{\operatorname{Res}} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)} = \frac{p(z_0)}{g(z_0)}$.

Example

Consider $f(z)=\cot z=\cos z/\sin z$, which is a quotient p(z)/q(z) of $p(z)=\cos z$ and $q(z)=\sin z$. The singularities occur at the zeros $z=n\pi$ ($n=0, 1,\pm 2,...$). Since $p(n\pi)=(-1)^n\neq 0$ and $q(n\pi)=0$, and $q'(n\pi)=(-1)^n\neq 0$, each singular point $z=n\pi$ of f is a simple pole, with residue $\operatorname{Res}_{z=n\pi} \frac{p(z)}{q(z)} = \frac{p(n\pi)}{q'(n\pi)} = 1$.

Example

Find the residue of $f(z)=tanhz/(z^2)=sinhz/(z^2coshz)$ at the zero $z=\pi i/2$ of *coshz*. It is a quotient p(z)/q(z) with p(z)=sinhz and $q(z)=z^2coshz$. Since

$$p(\pi i/2) = \sinh(\pi i/2) = i \sin(\pi/2) = i \neq 0$$

$$q(\pi i/2) = 0$$

$$q'(\pi i/2) = (\pi i/2)^2 \sinh(\pi i/2) = -\pi^2 i/4 \neq 0,$$

we know that $z = \pi i/2$ is a simple pole of f and the residue can be determined as $\operatorname{Res}_{z=\pi i/2} \frac{p(z)}{q(z)} = \frac{p(\pi i/2)}{q'(\pi i/2)} = -\frac{4}{\pi^2}$.

Example

Find the residue of $f(z)=z/(z^4+4)$ at the isolated singular point z=1+i. It is a quotient p(z)/q(z) with p(z)=z and $q(z)=z^4+4$. Since $p(1+i)=1+i\neq 0$ and q(1+i)=0, and $q'(1+i)=4(1+i)^3\neq 0$, we know that z=1+i is a simple pole of f with residue $\operatorname{Res}_{z=1+i} \frac{p(z)}{q(z)} = \frac{p(1+i)}{q'(1+i)} = \frac{1}{4(1+i)^2} = \frac{1}{8i} = -\frac{i}{8}$.

Theorem:

If z_0 is a pole of a function f, then $\lim_{z \to z_0} f(z) = \infty$.

Theorem:

If z_0 is a removable singular point of a function f, then f is analytic and bounded in some deleted neighborhood $0 < |z-z_0| < \varepsilon$ of z_0 .

Lemma:

Suppose that a function f is analytic and bounded in some deleted neighborhood $0 < |z-z_0| < \varepsilon$ of z_0 . If f is not analytic at z_0 , then it has a removable singularity there.

Casorati-Weierstrass Theorem:

Suppose that z_0 is an essential singularity of a function f, and let a_0 be any complex number. Then, for any positive number ε , the inequality $|f(z)-a_0| < \varepsilon$ is satisfied at some point z in each deleted neighborhood $0 < |z-z_0| < \delta$ of z_0 .

It states that, in each deleted neighborhood of an essential singular point, f assumes values arbitrarily close to any given number.

P14-1

In each case, write the principal part at its isolated singular point and determine whether that point is a pole, a removable singular point, or an essential singular point:

(a)
$$z exp\left(\frac{1}{z}\right)$$
; (b) $\frac{z^2}{1+z}$; (c) $\frac{sin z}{z}$; (d) $\frac{cos z}{z}$ (e) $\frac{1}{(2-z)^3}$

P14-2

Show that the singular poiont of each of the following function is a pole. Determine the order m of that pole and the corresponding residue B.

(a)
$$\frac{1-\cosh z}{z^3}$$
; (b) $\frac{1-\exp(2z)}{z^4}$; (c) $\frac{\exp(2z)}{(z-1)^2}$.

P14-3

Find the value of $\int_C \frac{3z^3 + 2}{(z-1)(z^2+9)} dz$ taken counterclockwise around (a)

|z-2|=2; (b) |z|=4.

P14-4

Show that

(a)
$$\operatorname{Res}_{z=-1} \frac{z^{1/4}}{z+1} = \frac{1+i}{\sqrt{2}} \quad (|z| > 0, 0 < \arg z < 2\pi);$$

(b) $\operatorname{Res}_{z=i} \frac{Log \ z}{(z^2+1)^2} = \frac{\pi+2i}{8};$
(c) $\operatorname{Res}_{z=i} \frac{z^{1/2}}{(z^2+1)^2} = \frac{1-i}{8\sqrt{2}} \quad (|z| > 0, 0 < \arg z < 2\pi).$

P14-5

Show that

(a)
$$\operatorname{Res}_{z=\pi i} \frac{z - \sinh z}{z^{2} \sinh z} = \frac{i}{\pi};$$

(b)
$$\operatorname{Res}_{z=\pi i} \frac{\exp(zt)}{\sinh z} + \operatorname{Res}_{z=-\pi i} \frac{\exp(zt)}{\sinh z} = -2\cos \pi t.$$

P14-6

Let C denote the positively oriented ciecle |z|=2 and evaluate the integral

(a)
$$\int_C \tan z \, dz$$
; (b) $\int_C \frac{dz}{\sinh 2z}$.

P14-7

Consider $f(z) = \frac{1}{[q(z)]^2}$ where q is analytic at z_0 , $q(z_0)=0$, and $q'(z_0)\neq 0$.

Show that z_0 is a pole of order m=2, with residue

$$B_0 = -\frac{q''(z_0)}{[q'(z_0)]^3}$$

Use the above result to find the residue at z=0 of the function

(a)
$$f(z) = \csc^2 z$$
; (b) $f(z) = \frac{1}{(z+z^2)^2}$.