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CV14 Residues: Poles and Zeros 

If f(z) has an isolated singular point z0, then it can be represented by 

a Laurent series 
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in a punctured disk 0<|zz0|<R2. The portion  
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is called the principal part of f at z0. 

If f contains finite terms of the principal part which is given as the 

following form 
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for 0<|zz0|<R2, where bm0, then the isolated singular point z0 is called a 

pole of order m of f. A pole of order m=1 is referred to as a simple pole. 

Example 

The function    
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zf , (0<|z2|<) has a 

simple pole at z=2. Its residue b1=3. 

Example 

Consider the following function 

 

 

 











z
zz

zz

zzz
z

zz

zsinh
zf

0       
!7!5 !3

11
        

!7!5!3

1 

3

3

753

44





 

Clearly, there is a pole of order 3 at z=0 with residue b1=1/6. 

   

If f(z) has an isolated singular point z0 and contains no principal part 

shown as    
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n zzazf  where 0<|zz0|<R2, then z0 is known as a 

removable singular point. The residue at a removable singular point is 

zero. If we define f(z0)=a0, then the expression of f(z) becomes valid 
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throughout the entire disk |zz0|<R2. It follows that f is analytic at z0 when 

it is assigned the value a0 there. The singular point z0 is removed. 

Example 

Consider the following function 
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If f(0)=1/2 is assigned, then f becomes entire. 

   

If f contains an infinite number of terms of the principal part as 

shown below: 
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then z0 is called an essential singular point. 

An important result concerning an essential singular point is due to 

Picard. It states that in each neighborhood of an essential singular point, a 

function assumes every finite value, with one possible exception, an 

infinite number of times. 

Example 

Consider the following function 
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has an essential singular point z=0 with residue b1=1. To illustrate 

Picard’s theorem, recall that e
z
=1 when z=(2n+1)i (nZ).  

That means 
/ze1

=1 when  
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and an infinite number of these points lie in any given neighborhood of 
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the origin. Since 
/ze1
0 for any value of z, zero is the exceptional value 

in Picard’s theorem. 

Theorem: 

An isolated singular point z0 of a function f is a pole of order m if and 

only if f(z) can be written as  
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, where (z) is analytic and 

(z0)0. Moreover,  
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Since (z) is analytic and (z0)0, its Taylor expansion is 
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in some neighborhood |zz0|< of z0. It follows that 
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which reveals that z0 is a pole of order m of f(z). The coefficient of 1/(zz0) 

tells us that the residue is  
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Example 

The function  
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zf  has an isolated singular point z=3i. Then, it 

can be rewritten as  
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analytic at z=3i and     03
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Example 

Since  
 3

3 2

iz

zz
zf




  has a pole of order 3 at z=i, it can be written as 
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, where   zzz 2 3  is entire and   0 ii . Hence, 

the residue at z=i of f(z) is 
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Example 

Consider  
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zf  with the branch log z=lnr+i  for 0<<2is 

to be used. Since f(z) has a pole at z=i, it can be written as  
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Hence, the residue at z=i of f(z) is 
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Example 
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zf   has a pole of order 3 at z=0 since 
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Therefore, f(z) has a pole of order 3 at z=0 and its residue b1=1/6. You 

can not choose (z)=sinh z, which is wrong in this case. 

Example 

Consider  
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pole at z=0 of order 2. Let  
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at z=0 and   010  . Hence, the residue at z=0 of f(z) is 
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If f(z0)=0 and if there is a positive integer m such that f
(m)

(z0)0 and 

each derivative of lower order vanishes at z0, then f has a zero of order m 

at z0. 

Theorem: 

A function f that is analytic at a point z0 has a zero of order m there 

if and only if there is a function g, which is analytic at z0 and g(z0)0,  

such that      zgzzzf
m

0 . 

Theorem:  

Suppose that 

 (i) two functions p and q are analytic at z0, 

 (ii) p(z0)0 and q has a zero of order m at z0. 

Then p(z)/q(z) has a pole of order m at z0. 

Example 

Let p(z)=1 and q(z)=z(e
z
1), where q(z) has a zero of order 2 at z=0. 

Hence, the quotient p(z)/q(z) has a pole of order 2 at z=0. 

  

Theorem: 

Let p and q be analytic at z0. If p(z0)0, q(z0)=0, and q’(z0)0, then z0 is a 

simple pole of p(z)/q(z) and 
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Proof: 

From the conditions q(z0)=0, and q’(z0)0, the point z0 is a simple zero. 

That means q(z)=(zz0)g(z), where g(z) is analytic at z0 and g(0)0. 

Therefore, z0 is a simple pole of p(z)/q(z) and 
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Note that q’(z)=g(z)+(zz0)g’(z) and 
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Example 

Consider f(z)=cot z=cos z/sin z, which is a quotient p(z)/q(z) of p(z)=cos z 

and q(z)=sin z. The singularities occur at the zeros z=n (n=0, 1,2,…). 

Since p(n)=(1)
n
0 and q(n)=0, and q’(n)= (1)

n
0, each singular 

point z=n of f is a simple pole, with residue 
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Example 

Find the residue of f(z)=tanhz/(z
2
)=sinhz/(z

2
coshz) at the zero z=i/2 of 

coshz. It is a quotient p(z)/q(z) with p(z)=sinhz and q(z)= z
2
coshz. Since  

 p(i/2)=sinh(i/2)=i sin(/2)=i0 

 q(i/2)=0 

 q’(i/2)=(i/2)
2
 sinh(i/2)=2

i/40,  

we know that z=i/2 is a simple pole of f and the residue can be 

determined as 
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Example 

Find the residue of f(z)=z/(z
4
+4) at the isolated singular point z=1+i. It is 

a quotient p(z)/q(z) with p(z)=z and q(z)=z
4
+4. Since p(1+i)=1+i0 and 

q(1+i)=0, and q’(1+i)=4(1+i)
3
0, we know that z=1+i is a simple pole of 

f with residue 
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Theorem: 

If z0 is a pole of a function f, then   


zflim
zz 0

. 

Theorem: 

If z0 is a removable singular point of a function f, then f is analytic and 

bounded in some deleted neighborhood 0<|zz0|< of z0. 

Lemma: 

Suppose that a function f is analytic and bounded in some deleted 

neighborhood 0<|zz0|< of z0. If f is not analytic at z0, then it has a 

removable singularity there. 

Casorati-Weierstrass Theorem: 

Suppose that z0 is an essential singularity of a function f, and let 0 be 

any complex number. Then, for any positive number , the inequality 

|f(z)0|< is satisfied at some point z in each deleted neighborhood 

0<|zz0|< of z0. 

It states that, in each deleted neighborhood of an essential singular point, 

f assumes values arbitrarily close to any given number. 

  

P14-1 

In each case, write the principal part at its isolated singular point and 

determine whether that point is a pole, a removable singular point, or an 

essential singular point: 
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Show that the singular poiont of each of the following function is a pole. 

Determine the order m of that pole and the corresponding residue B. 
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P14-3 

Find the value of 
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|z2|=2; (b) |z|=4. 

P14-4 

Show that 
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Show that 
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P14-6 

Let C denote the positively oriented ciecle |z|=2 and evaluate the integral 

  (a) C dzztan    ;  (b) C zsinh
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P14-7 

Consider  
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Show that z0 is a pole of order m=2, with residue  
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Use the above result to find the residue at z=0 of the function 
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