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CV13 Residues: Cauchy’s Residue Theorem 

A point z0 is called a singular point of a function f if f fails to be 

analytic at z0 but is analytic at some point in every neighborhood of z0. A 

singular point is said to be isolated if there is a deleted neighborhood 

0<|zz0|< of z0 throughout which f is analytic. 

Example 

The function 
 1

1
23 



zz

z
 has three isolated singular points z=0, i. 

Example 

The origin is a singular point of the principle branch  

     0       ,rirlnzLog . 

It is not an isolated singular point since every deleted  neighborhood of 

it contains points on the negative real axis and the branch is not even 

defined there, i.e., not analytic throughout the deleted  neighborhood. 

Example 

The function 
 /zsin 

1
 has the singular points ,,,,z

3

1

2

1
10  , all 

lying on the segment of the real axis form z=1 to z=1. Each singular 

point except z=0 is isolated. The singular point z=0 is not isolated 

because every deleted neighborhood of the origin contains other singular 

points. 

   

If z0 is an isolated singular point and f(z) is analytic for 0<|zz0|<R2, 

then f is represented by a Laurent series as 
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with C being any positively oriented simple closed contour around z0 and 

lying in the disk 0<|zz0|<R2.  
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When n=1, the complex number  

  
C

dzzf
i

b
2

1
1  

is called the residue of f at the isolated singular point z0. We often use 

the notation 

    
 Czz

dzzf
i

zfRes
2

1

0

 

or simply B when the point z0 and the function f are clearly indicated. 

Example 

Consider the integral 
 
C zz

dz
4

2
 where C is the positively oriented 

circle |z2|=1. Since 

   
 42

1




zz
zf   

is analytic everywhere in the finite plane except at the points z=0 and z=2, 

it has a Laurent series representation valid in the punctured disk 

0<|z2|<2, i.e., 1
2

2


z
. Hence, the Laurent series is 
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The coefficient b1 of 1/(z2) is the desired residue. Therefore, when n=3, 

we have b1=1/16. Consequently, 
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Example 

Consider C
/z dze

21   , where C is the positively oriented circle around the 

origin. Since the integrand  
21 /zezf   is analytic everywhere except at 

the points z=0, it has a Laurent series representation valid in the 
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punctured disk 0<|z|<. Hence, the Laurent series is 
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The coefficient b1 of 1/z is the desired residue. Therefore, b1= and 

C
/z dze

21   =0. Although C
/z dze

21   =0, the function 
21 /ze  is not necessary 

to be analytic throughout the simple closed contour C. 

Cauchy’s Residue Theorem: 

Let C be a simple closed contour, described in the positive sense. If a 

function f is analytic inside and on C except for a finite number of 

singular points zk (k=1,2,…,n) inside C, then    





n

k
zzC

zfResidzzf
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Proof 

Let the point zk be centered of positively oriented circle Ck which are 

interior to C and so small that no two of them have points in common. 

According to Cauchy-Goursat theorem, we have 

     0
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Since    zfResidzzf
kk zzC 

  2 , we have 
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Example 

Consider the integral 
 

dz
zz

z

C 



1

25
, where C is the circle |z|=2, described 

counterclockwise. The integrand has two isolated singularities z=0 and 

z=1, both interior to C. Choose C1 and C2 to be |z|=1 and |z1|=1 for z=0 

and z=1, respectively. Since 
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we have B1=2 and  
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where 110  z , we have B2=3 and  
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Thus,  
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Note that in this example, it is easy to write 
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and obtain the result  
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Theorem: 

If a function f is analytic everywhere in the finite plane except for a finite 

number singular points interior to a positively oriented simple closed 

contour C, then 
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Proof: 

Construct a circle |z|=R1 which is large enough so that the contour C is 

interior to it. If C0 denotes a positively oriented circle |z|= R0, where R0> 

R1, then from Laurent’s theorem we have 
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By writing n=1, we find that 
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Note that c1 is not the residue of f at z=0 since it is valid for  zR1 , 

not the type of 20 Rz  , and z=0 may not even be a singular point of f. 

However, if we replace z by 1/z, we see that 
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Since f is analytic throughout the closed region bounded by C and C0, we 

have 
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This completes the proof. 

Example 

Consider the integral 
 

dz
zz

z

C 



1

25
, where C is the circle |z|=2, described 

counterclockwise. The integrand  
 1

25






zz

z
zf  has two isolated 

singularities z=0 and z=1, both interior to C.  

Hence, 
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P13-1 

Find the residue at z=0 of the function 

 (a) 
2

1

zz 
; (b) 









z
cosz

1
; (c) 

z

zsinz 
; (d) 

4z

zcot
; (e) 

 24 1 zz

zsinh


 

P13-2 

Evaluate the integral around |z|=3 in the positive sense: 

 (a) 
 
2z

zexp 
; (b) 
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P13-3 

Use the theorem involving a single residue to evaluate the integral around 

|z|=2 in the positive sense: 

 (a) 
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; (b) 
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P13-4 

Let  

    0     2

210  n

n

n azazazaazP   

    0     2

210  m

m

m bzbzbzbbzQ   

and mn+2. Use the theorem involving a single residue to show that if all 

the zeros of Q(z) are interior to a simple closed contour C, then 
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