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CV13 Residues: Cauchy’s Residue Theorem 

A point z0 is called a singular point of a function f if f fails to be 

analytic at z0 but is analytic at some point in every neighborhood of z0. A 

singular point is said to be isolated if there is a deleted neighborhood 

0<|zz0|< of z0 throughout which f is analytic. 

Example 

The function 
 1

1
23 



zz

z
 has three isolated singular points z=0, i. 

Example 

The origin is a singular point of the principle branch  

     0       ,rirlnzLog . 

It is not an isolated singular point since every deleted  neighborhood of 

it contains points on the negative real axis and the branch is not even 

defined there, i.e., not analytic throughout the deleted  neighborhood. 

Example 

The function 
 /zsin 

1
 has the singular points ,,,,z

3

1
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1
10  , all 

lying on the segment of the real axis form z=1 to z=1. Each singular 

point except z=0 is isolated. The singular point z=0 is not isolated 

because every deleted neighborhood of the origin contains other singular 

points. 

   

If z0 is an isolated singular point and f(z) is analytic for 0<|zz0|<R2, 

then f is represented by a Laurent series as 
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with C being any positively oriented simple closed contour around z0 and 

lying in the disk 0<|zz0|<R2.  
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When n=1, the complex number  

  
C

dzzf
i

b
2

1
1  

is called the residue of f at the isolated singular point z0. We often use 

the notation 

    
 Czz

dzzf
i
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or simply B when the point z0 and the function f are clearly indicated. 

Example 

Consider the integral 
 
C zz

dz
4

2
 where C is the positively oriented 

circle |z2|=1. Since 

   
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is analytic everywhere in the finite plane except at the points z=0 and z=2, 

it has a Laurent series representation valid in the punctured disk 

0<|z2|<2, i.e., 1
2

2
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. Hence, the Laurent series is 
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The coefficient b1 of 1/(z2) is the desired residue. Therefore, when n=3, 

we have b1=1/16. Consequently, 
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Example 

Consider C
/z dze

21   , where C is the positively oriented circle around the 

origin. Since the integrand  
21 /zezf   is analytic everywhere except at 

the points z=0, it has a Laurent series representation valid in the 
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punctured disk 0<|z|<. Hence, the Laurent series is 
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The coefficient b1 of 1/z is the desired residue. Therefore, b1= and 

C
/z dze

21   =0. Although C
/z dze

21   =0, the function 
21 /ze  is not necessary 

to be analytic throughout the simple closed contour C. 

Cauchy’s Residue Theorem: 

Let C be a simple closed contour, described in the positive sense. If a 

function f is analytic inside and on C except for a finite number of 

singular points zk (k=1,2,…,n) inside C, then    
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Proof 

Let the point zk be centered of positively oriented circle Ck which are 

interior to C and so small that no two of them have points in common. 

According to Cauchy-Goursat theorem, we have 
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Since    zfResidzzf
kk zzC 

  2 , we have 
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Example 

Consider the integral 
 
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25
, where C is the circle |z|=2, described 

counterclockwise. The integrand has two isolated singularities z=0 and 

z=1, both interior to C. Choose C1 and C2 to be |z|=1 and |z1|=1 for z=0 

and z=1, respectively. Since 
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we have B1=2 and  
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where 110  z , we have B2=3 and  
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Note that in this example, it is easy to write 
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and obtain the result  
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Theorem: 

If a function f is analytic everywhere in the finite plane except for a finite 

number singular points interior to a positively oriented simple closed 

contour C, then 
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Proof: 

Construct a circle |z|=R1 which is large enough so that the contour C is 

interior to it. If C0 denotes a positively oriented circle |z|= R0, where R0> 

R1, then from Laurent’s theorem we have 
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By writing n=1, we find that 
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Note that c1 is not the residue of f at z=0 since it is valid for  zR1 , 

not the type of 20 Rz  , and z=0 may not even be a singular point of f. 

However, if we replace z by 1/z, we see that 
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Since f is analytic throughout the closed region bounded by C and C0, we 

have 
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This completes the proof. 

Example 

Consider the integral 
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, where C is the circle |z|=2, described 

counterclockwise. The integrand  
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singularities z=0 and z=1, both interior to C.  
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P13-1 

Find the residue at z=0 of the function 
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P13-2 

Evaluate the integral around |z|=3 in the positive sense: 
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P13-3 

Use the theorem involving a single residue to evaluate the integral around 

|z|=2 in the positive sense: 
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1
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P13-4 

Let  
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and mn+2. Use the theorem involving a single residue to show that if all 

the zeros of Q(z) are interior to a simple closed contour C, then 
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