CV12 Series

An infinite sequence $z_1, z_2, ..., z_n, ...,$ of complex numbers has a limit z if, for each positive number ε , there exists a positive integer n_0 such that

 $|z_n - z| < \varepsilon$ whenever $n > n_0$

The value of n_0 will depend on the value of ε .

An infinite sequence can have at most one limit, i.e., a limit z is unique if it exists. When the limit exists, the sequence converges to z and expressed as

$$\lim_{n \to \infty} z_n = z$$

If the sequence has no limit, it diverges.

Theorem:

If $z_n = x_n + i y_n$ (n=1,2,...) and z=x+i y, then

$$\lim_{n\to\infty} z_n =$$

if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$.

Example

$$z_n = \frac{1}{n^3} + i$$
, $n=1,2,...$, converges to $\lim_{n \to \infty} z_n = 0 + i = i$.

$$z_n = -2 + i \frac{(-1)^n}{n^2}$$
, $n=1,2,...,$ converges to $\lim_{n \to \infty} z_n = -2 + 0i = -2$

Consider an infinite series formed by an infinite sequence $z_1, z_2, ..., z_n, ...,$ of complex numbers and denoted as

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots + z_n + \dots$$

The series is said to converge to the sum S if the sequence

$$S_N = \sum_{n=1}^N z_n = z_1 + z_2 + \dots + z_N \quad (n = 1, 2, \dots)$$

of partial sums converges to $\lim_{n \to \infty} S_n = S$. We write $\sum_{n=1}^{\infty} z_n = S$

and note that a series can have at most one sum. When a series does not converge, we say that it diverges.

Theorem:

Suppose that
$$z_n = x_n + i y_n$$
 (n=1,2,...) and $S = X + i Y$. Then $\sum_{n=1}^{\infty} z_n = S$

if and only if $\sum_{n=1}^{\infty} x_n = X$ and $\sum_{n=1}^{\infty} y_n = Y$.

A necessary condition for the convergence of $\sum_{n=1}^{\infty} z_n$ is that $\lim_{n\to\infty} z_n = 0$. A convergent series of complex numbers are bounded, i.e., there exists a positive constant *M* such that $|z_n| < M$ for each positive integer *n*.

If
$$\sum_{n=1}^{\infty} |z_n| = \sum_{n=1}^{\infty} \sqrt{x_n^2 + y_n^2}$$
 converges to a positive real number, then

 $\sum_{n=1}^{\infty} z_n \text{ is said to be absolutely convergent. Since } |x_n| \le \sqrt{x_n^2 + y_n^2} \text{ and}$

 $|y_n| \le \sqrt{x_n^2 + y_n^2}$, we know that $\sum_{n=1}^{\infty} |x_n|$ and $\sum_{n=1}^{\infty} |y_n|$ must converge.

Absolute convergence of a series of complex numbers implies the convergence of that series.

Example

If
$$|z| < 1$$
, then $\lim_{N \to \infty} z^N = \lim_{N \to \infty} r^N e^{iN\theta} = 0$, and then

$$\sum_{n=1}^{\infty} z^{n} = \lim_{N \to \infty} \sum_{n=1}^{N} z^{n} = \lim_{N \to \infty} \frac{1 - z^{N}}{1 - z} = \frac{1}{1 - z}$$

Theorem:

If f is analytic throughout a disk $|z-z_0| < R_0$, then $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$

where
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
 $(n = 0, 1, 2,)$. That means $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ will

converge to f(z) when $|z-z_0| < R_0$.

For $|z-z_0| < R_0$, a function f(z) can be written into the expansion of

Taylor series given as

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \cdots$$

Clearly, for $|z| < R_0$, i.e., $z_0=0$, it is called a Maclaurin series and given as

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = f(0) + \frac{f'(0)}{1!} z + \frac{f''(0)}{2!} z^2 + \cdots$$

Example

The function $f(z)=e^{z}$ is entire. Its Maclaurin series is valid for all z. Since $f^{(n)}(z)=e^{z}$, we have

$$e^{z} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \qquad (|z| < \infty)$$

Hence, the Maclaurin series for $z^2 e^{3z}$ is

$$z^{2}e^{3z} = z^{2}\sum_{n=0}^{\infty} \frac{(3z)^{n}}{n!} = \sum_{n=0}^{\infty} \frac{3^{n}z^{n+2}}{n!} = \sum_{n=2}^{\infty} \frac{3^{n-2}}{(n-2)!} z^{n}$$

Example

The function $f(z) = \sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$ is entire. Its Maclaurin series is

valid for all *z*, expressed as

$$\sin z = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right) \qquad (|z| < \infty).$$

It can be further expressed as

$$\sin z = \frac{1}{2i} \sum_{n=0}^{\infty} (1 - (-1)^n) \frac{i^n z^n}{n!} = \frac{1}{i} \sum_{n=0}^{\infty} \frac{i^{2n+1} z^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} \frac{i^{2n} z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \quad (|z| < \infty)$$

Since $\cos z = \frac{d}{dz} \sin z$, we have

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)z^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2n!} \quad (|z| < \infty).$$

Example

The function f(z)=sinh z=-i sin(iz) is entire. Its Maclaurin series is valid for all *z*, expressed as

$$sinh \ z = -i \sum_{n=0}^{\infty} (-1)^n \frac{(iz)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{i^{2n+2} z^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} (-1)^{n+1} \frac{(-1)^{n+1} z^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

Similarly, the function $f(z)=cosh \ z=cos(iz)$ is entire. Its Maclaurin series is valid for all *z*, expressed as

$$\cosh z = \sum_{n=0}^{\infty} (-1)^n \frac{(iz)^{2n}}{2n!} = \sum_{n=0}^{\infty} \frac{z^{2n}}{2n!} \quad (|z| < \infty).$$

Example

The function f(z)=1/(1-z) is analytic for |z|<1 and

$$f^{(n)}(z) = \frac{n!}{(1-z)^{n+1}}$$

Hence, its Maclaurin series is

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = \sum_{n=0}^{\infty} \frac{n!}{n!} z^n = \sum_{n=0}^{\infty} z^n \quad (|z| < 1).$$

Similarly, by replacing z by -z, we have

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-z)^n = \sum_{n=0}^{\infty} (-1)^n z^n \qquad (|z| < 1)$$

Further replacing z by z-1 leads to

$$\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n (z-1)^n \qquad (|z-1| < 1)$$

which is the Taylor series for 1/z about $z_0=1$ in the region |z-1|<1.

Example

Consider $f(z) = \frac{1+2z^2}{z^3+z^5}$, which is further expressed as the following

form

$$f(z) = \frac{1+2z^2}{z^3+z^5} = \frac{1}{z^3} \left(2 - \frac{1}{1+z^2}\right).$$

We cannot find the Maclaurin series for f(z) since it is not analytic at z=0. However,

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n} \quad (|z| < 1).$$

Hence, when 0 < |z| < 1, we have

$$f(z) = \frac{1}{z^3} \left(2 - \frac{1}{1+z^2} \right) = \frac{1}{z^3} \left(2 - \sum_{n=0}^{\infty} (-1)^n z^{2n} \right)$$
$$= \frac{2}{z^3} - \sum_{n=0}^{\infty} (-1)^n z^{2n-3} = \frac{2}{z^3} - \left(\frac{1}{z^3} - \frac{1}{z} + z - z^3 + z^5 - \cdots \right)$$
$$= \frac{1}{z^3} + \frac{1}{z} - z + z^3 - z^5 + \cdots$$

which contains terms of negative powers, 1/z and $1/z^3$.

Theorem:(Laurent series)

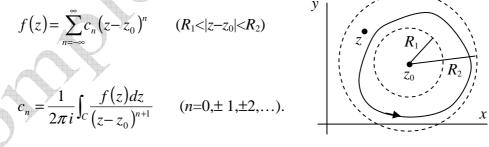
Suppose that a function *f* is analytic throughout an annular domain $R_1 < |z-z_0| < R_2$, centered at z_0 , and let *C* denote any positively oriented simple closed contour around z_0 and lying in that domain. Then, at each point in the domain, f(z) can be expressed as the following Laurent series representation

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \qquad (R_1 < |z - z_0| < R_2)$$

where

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}}$$
 and $b_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{-n+1}}$.

The Laurent series can be also represented as



where

Note that if *f* is analytic throughout the disk
$$|z-z_0| < R_2$$
, the term b_n can be written as

$$b_n = \frac{1}{2\pi i} \int_C f(z) (z - z_0)^{n-1} dz$$
, for $n = 1, 2, ...$

Since the integrand $f(z)(z-z_0)^{n-1}$ is also analytic throughout the disk

 $|z-z_0| < R_2$, we have

$$b_n = \frac{1}{2\pi i} \int_C f(z) (z - z_0)^{n-1} dz = 0, \text{ for } n = 1, 2, \dots$$

Thus, the Laurent series is reduced to the Taylor series as

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad (|z - z_0| < R_2)$$

where $a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}} = \frac{f^{(n)}(z_0)}{n!}.$

Example

It is known that
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$
 (|z|<\infty).

Hence, replacing z by 1/z, we have

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{(1/z)^n}{n!} = 1 + \frac{1}{1!z} + \frac{1}{2!z^2} + \dots \qquad (0 < |z| < \infty$$

From Laurent series,

$$e^{1/z} = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \frac{b_n}{z^n} \qquad (0 < |z| < \infty)$$

where, with *C* being any positively oriented simple closed contour around origin,

$$a_{n} = \frac{1}{2\pi i} \int_{C} \frac{e^{1/z} dz}{z^{n+1}}, \quad (n=0,1,2,...)$$
$$b_{n} = \frac{1}{2\pi i} \int_{C} e^{1/z} z^{n+1} dz, \quad (n=1,2,...).$$

Clearly,

$$a_{0} = \frac{1}{2\pi i} \int_{C} \frac{e^{1/z} dz}{z} = 1$$

$$a_{n} = \frac{1}{2\pi i} \int_{C} \frac{e^{1/z} dz}{z^{n+1}} = 0 \quad \text{for } n=1,2,\dots$$

$$b_{n} = \frac{1}{2\pi i} \int_{C} e^{1/z} z^{n-1} dz = \frac{1}{n!} \quad \text{for } n=1,2,\dots$$

This is a kind of method to evaluate certain integrals around simple closed contours.

Example

The function $f(z)=1/(z-i)^2$ is already in the form of a Laurent series,

where $z_0=i$. That is

$$f(z) = \frac{1}{(z-i)^2} = \sum_{n=-\infty}^{\infty} c_n (z-i)^n \qquad (0 < |z-i| < \infty)$$

where

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-i)^{n+1}} = \frac{1}{2\pi i} \int_C \frac{dz}{(z-i)^{n+3}} = \begin{cases} 0 & n \neq -2\\ 1 & n = -2 \end{cases}$$

Example

The function $f(z) = \frac{-1}{(z-1)(z-2)} = \frac{1}{z-1} - \frac{1}{z-2}$, which has two singular

points z=1 and z=2, is analytic in the domains |z|<1, 1<|z|<2, and $2<|z|<\infty$. In each of these domains, f(z) has series representations in powers of z.

For |z| < 1, we have |z/2| < 1 and then

$$f(z) = -\frac{1}{1-z} + \frac{1}{2} \cdot \frac{1}{1-(z/2)} = -\sum_{n=0}^{\infty} z^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$$
$$= \sum_{n=0}^{\infty} \left(2^{-n-1} - 1\right) z^n$$

For 1 < |z| < 2, we have |1/z| < 1 and |z/2| < 1, then

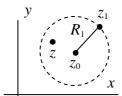
$$f(z) = \frac{1}{z} \cdot \frac{1}{1 - (1/z)} + \frac{1}{2} \cdot \frac{1}{1 - (z/2)} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n + \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} + \sum_{n=1}^{\infty} \frac{1}{z^n}$$

For $2 < |z| < \infty$, we have |1/z| < 1 and |2/z| < 1, then

$$f(z) = \frac{1}{z} \cdot \frac{1}{1 - (1/z)} - \frac{1}{z} \cdot \frac{1}{1 - (2/z)} = \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{2}{z}\right)^n$$
$$= \sum_{n=1}^{\infty} \left(1 - 2^{n-1}\right) \frac{1}{z^n}$$

<u>Theorem</u>

If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges when $z=z_1$ ($z_1 \neq z_0$),



then it is absolutely convergent at each point z in the open disk $|z-z_0| < R_1$, where $R_1 = |z_1-z_0|$.

Theorem

If z_1 is a point inside the circle of convergence $|z-z_0|=R$ of a power series

 $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, then that series must be uniformly convergent in the

closed disk $|z-z_0| \leq R_1$, where $R_1 = |z_1-z_0|$.

Theorem

A power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ represents a continuous function S(z) at

each point inside its circle of convergence $|z-z_0|=R$.

<u>Theorem</u>

Let *C* denote any contour interior to the circle of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, and let g(z) be any function that is continuous on *C*. The series formed by multiplying each term of the power series by g(z) can be integrated term by term over *C*; that is

$$\int_{C} g(z)S(z)dz = \sum_{n=0}^{\infty} a_n \int_{C} g(z)(z-z_0)^n dz$$

Corollary

The sum $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ is analytic at each point z interior to the circle of convergence of that series.

<u>Theorem</u>

The power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ can be differentiated term by term. That is, at each point *z* interior to the circle of convergence of that series, $S'(z) = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}$.

Theorem

If a series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges to f(z) at all points interior to some circle $|z-z_0|=R$, then it is the Taylor series expansion for f in powers of $z-z_0$.

Theorem

If a series
$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$
 converges to $f(z)$

at all points in some annular domain about z_0 , then it is the Laurent series expansion for *f* in powers of $z-z_0$ for that domain.

<u>Theorem</u>

Suppose $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ and $g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$ converge within some circle $|z - z_0| = R$. They are analytic functions in the disk $|z - z_0| < R$ and their product has a Taylor series expansion, called the Cauchy product and expressed as $f(z)g(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ with $c_n = \sum_{k=0}^{\infty} a_k b_{n-k}$ for $|z - z_0| < R$.

Suppose that $g(z)\neq 0$ when $|z-z_0| < R$. The quotient f(z)/g(z) is analytic throughout the disk $|z-z_0| < R$ and has a Taylor series representation

$$\frac{f(z)}{g(z)} = \sum_{n=0}^{\infty} d_n (z - z_0)^n \quad \text{for } |z - z_0| < R$$

where the coefficients d_n can be found by formally carrying out the division. It is usually only the first few terms that are needed in practice.

P12-1

Show that if 0 < r < 1 (also valid for r=0), then

$$\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r\cos\theta - r^2}{1 - 2r\cos\theta + r^2}$$
$$\sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r\sin\theta}{1 - 2r\cos\theta + r^2}.$$

P12-2

Obtain the Taylor series $e^z = e \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!} \quad (|z-1| < \infty)$ for the function $f(z) = e^z$ by (a) using $f^{(n)}(1)$ (n=0,1,2,...); (b) writing $e^z = e^{z-1}e$.

P12-3

Find the Maclaurin series expansion of the function

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \cdot \frac{1}{1 + (z^4/9)}.$$

P12-4

Derive the Taylor series representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \qquad (|z-i| < \sqrt{2}).$$

P12-5

Expand $\cos z$ into a Taylor series about $z_0 = \pi/2$.

Hint:
$$\cos z = -\sin\left(z - \frac{\pi}{2}\right)$$

P12-6

Show that when 0 < |z| < 4, $\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$.

P12-7

Find the Laurent series to represent the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ in

the domain $0 < |z| < \infty$.

P12-8

Give two Laurent series in powers of z for the function $f(z) = \frac{1}{z^2(1-z)}$

and specify the regions in which those expansions are valid.

P12-9

Show that when
$$0 < |z| < 2$$
, $\frac{z}{(z-1)(z-3)} = -3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z-1)}$.

P12-10

Let *a* denote a real number, where -1 < a < 1, and derive the Laurent series

$$\frac{a}{z-a} = \sum_{n=1}^{\infty} \frac{a^n}{z^n} \quad (|a| < |z| < \infty).$$

P12-11

The z-transform of x[n] is $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$ in the annulus domain $R_1 < |z| < R_2$. If |z|=1 is in the annulus domain, then the inverse z-transform is $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{i\theta}) e^{in\theta} d\theta$ $(n = 0, \pm 1, \pm 2, \cdots).$

Hint:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n \text{ converges in } R_1 < |z - z_0| < R_2$$

where $c_n = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{(z - z_0)^{n+1}} \quad (n = 0, \pm 1, \pm 2, ...)$

P12-12

about $z_0=2$. Find the Taylor series for $\frac{1}{z} = \frac{1}{2 + (z - 2)} = \frac{1}{2} \cdot \frac{1}{1 + z}$

Then, differentiate it and show that

$$\frac{1}{z^2} = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2}\right)^n \quad (|z-2|<2).$$

P12-13

Prove that if

$$f(z) = \begin{cases} \frac{\cos z}{z^2 - (\pi/2)^2} & \text{when } z \neq \pm \pi/2 \\ -\frac{1}{\pi} & \text{when } z = \pm \pi/2 \end{cases}$$

then f is an entire function.

P12-14

Use multiplication of series to show that

$$\frac{e^{z}}{z(z^{2}+1)} = \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z^{2} + \cdots (0 < |z| < 1).$$

P12-15

Use division to obtain the Laurent series

$$\frac{1}{e^{z}-1} = \frac{1}{z} - \frac{1}{2} + \frac{1}{12}z - \frac{1}{720}z^{3} + \dots (0 < |z| < 2\pi).$$

P12-16

The Euler numbers are E_n in the Maclaurin series

$$\frac{1}{\cosh z} = \sum_{n=0}^{\infty} \frac{E_n}{n!} z^n \quad (|\mathbf{z}| < \pi/2).$$

Point out why this representation is valid in the indicated disk and why

 $E_{2n+1}=0$ (*n*=0,1,2,...) Then show that $E_0=1, E_2=-1, E_4=5$, and

*E*₆=-61.

and and and a