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CV11 Integrals : Cauchy Integral Formula 

Based on the contour integrals, let’s introduce the concept of 

antiderivative of a continuous function f(z) on a domain D. First, consider 

the following three statements and show that if any one of the following 

statements is true, then so are the others: 

 (1) f(z) has an antiderivative F(z), i.e., F’(z)=f(z), in D; 

 (2) the integrals of f(z) along contours lying entirely in D and  

  extending from one fixed point to the other fixed point  

  all have the same value; 

 (3) the integrals of f(z) around closed contours lying entirely in D 

  all have value zero. 

Let’s assume (1) is true. If a contour C: zz(t), for a ≤ t ≤ b, lying in D, is 

a smooth arc, then 

               btatztzftztzFtzF
dt

d
    

and thus, 

              12   zFzFtzFdttztzfdzzf
b

a

b

aC
   

where z1=z(a) and z2=z(b). Evidently,  C dzzf    has the same value for 

all the contour extending from z1 to z2. If a contour C consists of finite 

number of smooth arcs Ck, k=1,2,…,n, then 
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Again,  C dzzf    has the same value for all the contour extending from 

z1 to zn+1. Clearly, statement (2) follows from statement (1). Besides, once 

the contour C is closed, i.e., z1 = zn+1, we have  

        0  11   zFzFdzzf n
C

.  

which leads to statement (3). 

Example 

The continuous function f(z)z2 has an antiderivative F(z)z3/3 on the 
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complex plane. Hence, 
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Example 

The function f(z)1/z2, continuous everywhere except at the origin, has an 

antiderivative F(z)1/z in the domain 0z , consisting of the entire 

plane with the origin deleted.  

Consequently, 

 0
2
C z

dz
 

when C is any contour around the origin. 

Example 

The integral of function f(z)1/z for C being any contour around the 

origin can not be evaluated in a similar way since its antiderivative 

F(z)=log z fails to exist at the branch cut. Hence, 

 0C z

dz
 

when C is any contour around the origin. To determine its value, Let the 

contour start from z1=re
i

 to z2=re
i

 in positively oriented direction. 

Actually, z1 and z2 represent the same point in z-plane. Let C’ be the same 

contour as C except that z1 (or z2) is deleted. Hence, 

  


CC z

dz

z

dz
 

Since F(z) is differential in the branch for   , we have 

      12 zFzF
z

dz

C'
 

where 
  irez1  and 



 irez2 . Therefore, 
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Clearly, it is true that 0C z

dz
. 
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Example 

The integral of   21 /zzf   for the closed contour C is C
/ dzz 21    

where the integrand is the branch 

   20 0    221  ,rerz /i/  

of the square root function. The contour C includes a point z=3 on 

ray=0, not in the above branch. Hence, C
/ dzz 21    is not necessary zero. 

To evaluate the integral of the closed contour, separate itinto two paths, 

C1 from z=3 to z=3 above the x-axis and C2 from z=3 to z=3 below the 

x-axis. The contour C1 is in the branch of 21 /z  for r>0 

and –/2<<3/2. Therefore, the integral of 
21 /z   

along C1, can be obtained from its antiderivative 23

3

2 /z  as 

      1323
3

2

3

2
   02323

3

3

2321

1







 ieezdzz i/i/

z

z

/

C

/   

Similarly, the contour C2 is in the branch of 
21 /z  for r>0 and 

/2<<5/2. The integral of 
21 /z  along C2, can be also obtainedas 
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Hence, 
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Example 

Calculate  
i
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When a continuous function f(z) has an antiderivative in a domain D, 

the integral of f(z) around any given closed contour C (not necessary to 

be simple closed contour) lying entirely in D has value zero. 

Green’s theorem: 

It is true for two real-valued functions P(x,y) and Q(x,y), together with 

their first-order partial derivatives Qx and Py, that 

    
R

yx
C

dAPQdyQdxP    

where P, Q, Qx and Py are all continuous throughout a closed region R 

consisting of all points interior to and on the simple closed contour C. 

Explanation: 

The equation is further partitioned into 

  

 

    

  











RR
x

C

RR
y

C

dxdy
x

Q
dAQdyQ

dxdy
y

P
dAPdxP

 

 

 

Let’s consider the first term 

   




RC
dxdy

y

P
dxP  

Decompose the contour into   icccC 21 , where all the 

closed contours ci are horizontal to the real axis and each has four paths  

 pi1: (xi, yi) → (xi, yi), a horizontal line, y=yi 

 pi2: (xi, yi) → (xi+1, yi+1), a sub-contour of C with y yi+1 yi→ 0. 

 pi3: (xi+1, yi+1) → (xi+1, yi+1), a horizontal line, y=yi+1 

  pi4: (xi+1, yi+1) → (xi, yi), a sub-contour of C with y yi+1 yi→ 0. 

Hence, 
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infinitesimal. Furthermore, based on the fact of y→0, we have 
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Therefore, 
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which is the area bounded between the curve P(x,yi) and P(x,yi+1) but 

takes the negative numeric sign. Consequently, we have 
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In a similar process, we can derive that 

    




RC
dxdy

x

Q
dyQ  

and then obtain the Green’s theorem. 

  

Let C denote a simple closed contour z=z(t) (a≤t≤b), described in 

the positive sense (counterclockwise), and assume that f is analytic at 

each point interior to and on C. If      yx,viyx,uzf   , then 
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According to Green’s theorem, we have 

      dAvuidAuvdzzf
R

yx
R

yx
C      

where R is the region enclosed by C. Since f is analytic, that is 

xyyx vuvu    and , we obtain   0C dzzf . 
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Example 

It is true that 0 
3

C
z dze  where C is any simple closed contour since 

 
3zezf   is analytic everywhere and its derivative  

323 zezzf   is 

continuous everywhere. 

  

Cauchy-Goursat Theorem: 

If a function f is analytic at all points interior to and on a simple closed 

contour, then   0C dzzf . 

  

A simply connected domain D is a domain such that every simple 

closed contour within it enclosed only points of D, such as 2z . A 

domain that is not simply connected is said to be multiply connected, 

such as 21  z . 

 

 

 

 

Theorem: 

If a function f is analytic throughout a simply connected domain D, then 

  0C dzzf  for every closed contour C lying in D. 

Corollary: 

A function f that is analytic throughout a simply connected domain D 

must have an antiderivative everywhere in D. 

Example  Entire functions always possess antiderivatives. 
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Theorem 

Suppose that  

(1) C is a simple closed contour in the counterclockwise direction; 

(2) Ck (k=1,2,…,n) are simple closed contours interior to C, all in the 

 clockwise direction, that are disjoint and whose interiors have no 

 points in common. 

If a function f is analytic on all of these contours and throughout the 

multiply connected domain consisting of all points inside C and exterior 

to each Ck, then 

      0
1




n

k
CC k

dzzfdzzf  

 

Corollary 

Let C1 and C2 denote positively oriented  

simple closed contours, where C2 is interior 

to C1. If a function is analytic in the  

closed region consisting of those contours 

and all points between them, then 

     
21 CC

dzzfdzzf  

Example 

When C is any positively oriented simple closed contour surrounding the 

origin, the integral C z

dz
 can be determined as 
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where C0 is a positively oriented circle with center at origin and lying 

entirely inside C. Note that 1/z is analytic everywhere except at z=0. 

  

Theorem (Cauchy Integral Formula) 

Let f be analytic everywhere inside and on a simple closed contour C, 

taken in the positive sense. If z0 is any point interior to C, then 
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 
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Proof: 

Let C denote a positively 

oriented circle  0zz ,  

where  is small enough that C is interior to C. Since f(z) is analytic 

everywhere, 
 

0zz

zf


 is then analytic between and on the contours C and 

C. It follows that 
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Due to the fact that f(z) is analytic, and therefore continuous, at z0 ensures 

that for each positive number , there is a positive number  such that  

       00 ever         when zzzfzf  

Hence, 
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where 
   











0

0
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zfzf
M  on the contour C and L=2 is the 

length of the contour C. This results in 
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Since  can be arbitrarily small, 
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completes the proof of  

 
 

  
C

zfi
zz

dzzf
0

0

 2  or   
 

 


C zz

dzzf

i
zf  

2

1

0

0


. 

  

Lemma 

Suppose that a function f is analytic everywhere inside and on a simple 

closed contour C, taken in the positive sense. If z is any point interior to 

C, then 
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Let d denote the smallest distance from z to C, then dzs   and 

dz  . It also leads to 
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Then, 
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where  zfM   and L is the length of C. Clearly, 
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zszzs

dssfz

i
lim

zs

dssf

i

z

zfzzf
limzf

2
0

2

0

 

2

1

2

1
        















 

Since 
 

  
0

 
2

0



 Cz zszzs

dssfz
lim






, we complete the proof of 

  
 

 



C zs

dssf

i
zf

22

1


 

The second derivative  zf   can be proved in the same way. 

  

Theorem 

If a function is analytic at a point, then its derivatives of all orders exist at 

that point. Those derivatives are, moreover, all analytic there. 

Corollary 

If a function f(z)=u(x,y)+i v(x,y) is defined and analytic at a point z=(x,y) 

then the component functions u and v have continuous partial derivatives 

of all orders at z. 

Example 

  f ’(z)=ux+i vx= vyi uy  and  f”(z)=uxx+i vxx= vyxi uyx. 

  

The general form of n
th

 derivative 

   
 

 
 ,......,,n

zs

dssf

i

n
zf

C n

n 210         
2

!
1




  
 



NCTU EE Course: Complex Variables, by Prof. Yon-Ping Chen, Office: EE764 / Ext: 31585 

Reference:Complex Variables and Applications, by J. W. Brown & R. V. Churchill 

11-11 

which can be used to evaluate the following integral 

 
 

 
    ,......,,nzf

n

i

zz

dzzf n

C n
210         

!

2
01

0




 


 

Example 

If C is the positively oriented unit circle |z|=1 and f(z)=e
2z

, then 

 
 

  
! 3

8
0

! 3

2

0

3

13

2

4

2 i
f

i

z

dze

z

dze

C

z

C

z 



  

 

Example 

Let z0 be any point interior to a positively oriented simple closed contour 

C. When f(z)=1, we have 

 i
zz

dz

C
2

0


  and 

 
 ,......,n

zz

dz

C n
21   0

1

0




 
 

  

Theorem 

Let f be continuous on a domain D. If   0C dzzf  for every closed 

contour C lying in D, then f is analytic throughout D. 

  

Lemma 

Suppose that a function f is analytic inside and on a positively oriented 

circle CR, centered at z0 and with radius R. If MR denotes the maximum 

value of |f(z)| on CR, then 

     ,......,n
R

Mn!
zf

n

Rn 21     0   

which is called the Cauchy’s inequality. 

Proof: 

The inequality can be directly derived as below 

   
 

  n

R

n

R

C n

n

R

Mn!
R

R

Mn

zz

dzzf

i

n
zf

R





 


2

2

!

2

!
11

0

0 . 

  

x 

y CR 

z0 

z 
R 
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Liouville’s Theorem 

If f is entire and bounded in the complex plane, then f(z) is constant 

throughout the plane. 

Proof: 

Since f is entire and bounded in the complex plane, the Cauchy’s 

inequality with n=1 is hold for any choice of z0 and R, i.e., 

  
R

M
zf 

0  

where   Mzf   for all z and M is independent to R. Hence, the 

inequality is true for arbitrarily large value of R only if f ’(z0)=0. Because 

z0 is arbitrarily selected, that means f ’(z)=0 everywhere in the complex 

plane. Clearly, f is a constant function. 

  

The Fundamental Theorem Of Algebra: 

Any polynomial 

    0   2

210  n

n

n azazazaazP   

of degree n (n1) has at least one zero. That is, there exists at least one 

point z0 such that P(z0)=0. 

Proof: 

By contradiction, suppose that P(z) is not zero for any value of z. Then 

f(z)=1/P(z) is clearly entire and bounded in the complex plane. Following 

from the Liouville’s theorem, f(z), and consequently P(z), must be 

constant. But P(z) is not constant, which reaches a contradiction. That 

means there exists at least one point z0 such that P(z0)=0. 

  

The fundament theorem tells us that any polynomial P(z) of degree n 

(n1) can be expressed as a product of linear factors: 

       nzzzzzzczP  21  

where c and zk (k=1,2,…,n) are complex constants. That also implies P(z) 

can have no more than n distinct zeros. 
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Lemma: 

Suppose that    0zfzf   at each point z in some neighborhood 

 0zz  in which f is analytic. Then f(z) has the constant value f(z0) 

throughout that neighborhood. 

Maximum Modulus Principle: 

If a function f is analytic and not constant in a given domain D, then |f(z)| 

has no maximum value in D. That is, there is no point z0 in the domain 

such that    0zfzf   for all points z in it. 

Explanation: 

Let      y,xivy,xuzf  , whose modulus is 

         y,xvy,xuzfy,xr 22   

Assume r(x,y) is a maximal value, then 

         0   ,0    ,0  y,xry,xry,xry,xr yyxxyx  

Therefore, 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

0

0

0

0

3

222

3

222



































y,xr

vvuu

y,xr

vvvuuu
y,xr

y,xr

vvuu

y,xr

vvvuuu
y,xr

y,xr

vvuu

y

y,xr
y,xr

y,xr

vvuu

x

y,xr
y,xr

yyyyyyy

yy

xxxxxxxx

xx

yy

y

xx

x

 

which results in     0  y,xry,xr yyxx , i.e., 

 

 
 

 
 

 
 

 
 

0     
3

222

3

222














y,xr

vvuu

y,xr

vvvuuu

y,xr

vvuu

y,xr

vvvuuu

yyyyyyyy

xxxxxxxx

 

It is rewritten as 

  

   
   

   
 

0     
3

22

2222











y,xr

vvuuvvuu

y,xr

vvuu

y,xr

vvvuuu

yyxx

yxyxyyxxyyxx
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Since f(z) is analytic, it is true that 

  0 yyxx uu  and 0 yyxx vv  

Substituting them into the above equation leads to 

 
 

   
 

0
3

222222







y,xr

vvuuvvuu

y,xr

vvuu yyxxyxyx
 

which is obviously contradictory. Therefore, there is no maximal value of 

   zfy,xr  . 

Corollary: 

Suppose that a function f is continuous on a closed bounded region R and 

that it is analytic and not constant in the interior of R. Then the maximum 

value of |f(z)| in R, which is always reached, occurs somewhere on the 

boundary of R and never in the interior. 

  

When f(z)=u(x,y)+i v(x,y), the component u(x,y) also has a maximum 

value in R which is assumed on the boundary of R and never in the 

interior, where it is harmonic. 

Explanation: 

It can be seen from the composite function g(z)=exp(f(z)) is continuous in 

R and analytic and not constant in the interior. Consequently, its modulus 

|g(z)|=exp[u(x,y)], which is continuous in R, must assume its maximum 

value in R on the boundary. Because of the increasing nature of the 

exponential function, it follows that the maximum value of u(x,y) also 

occurs on the boundary. 

Corollary (Minimum Modulus Principle): 

Suppose that a function f is continuous on a closed bounded region R and 

that it is analytic and not constant in the interior of R. Assuming that 

f(z)0 anywhere in R, then the minimum value of |f(z)| in R, which is 

always reached, occurs somewhere on the boundary of R and never in the 

interior. [This can be explained by g(z)=1/f(z)] 
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P11-1 

By finding an antiderivative, evaluate each of these integrals, where the 

path is any contour between the indicated limits of integration: 

(a) 
2

 
i

i

z dze ; (b) 









i

dz
z

cos
2

0 2



; (c)   
3

1

3
2 dzz . 

P11-2 

Show that  i
e

dzz i 





 1
2

11

1



 where zi denotes the principal branch 

 ziLogexpz i   , (|z|>0, <Arg z< ) and where the path of integration 

is any contour from z1 to z1 that, except for its end points, lies above 

the real axis. 

P11-3 

Given the circle contour C1 and square contour C2, 

point out why     
21 CC

dzzfdzzf  when 

 (a)  
13

1
2 


z

zf ;  (b)  
 2

2

zsin

z
zf


 ;  (c)  

ze

z
zf




1
 

P11-4 

Show that  

   











              0when 

 2 1when 
     

 2

0
2

1

n

,,n

i
dziz

C

n 


  

where the positively oriented contour C is the boundary of the rectangle 

0≤x≤3, 0≤y≤2. 

P11-5 

Consider the following rectangular contour C 

Show that the sum of the integrals of exp(z2)  

along the lower and upper horizontal legs of C  

can be written as 

  
 

a
xb

a
x xdbxcoseexde

00
 222

222

 

and the sum of the integrals along the vertical legs on the right and left 

can be written as 

x 

y 

C1 

C2 

1     4 

x 

y 
C 

a          0        a 

a+bi                   a+bi 
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  
 

b
ayiya

b
ayiya ydeeieydeeie

0

2

0

2  
2222

 

Thus, from Cauchy-Goursat theorem, show that 

 


 
b

yba
a

xb
a

x ydaysineexdeexdbxcose
000

 2 2
222222

 

and then for a→∞, show that 

  
2222

2
 2

00

bxbx exdeexdbxcose 





  


. 

P11-6 

Let C denote the positively oriented boundary of the half disk 0≤r≤1, 

0≤≤, and let f(z) be a continuous function defined on that half disk by 

writing f(0)=0 and using the branch 

    2ierzf   (r>0, /2<</2) 

of the multiple-valued function z1/2. Show that   0C dzzf  by 

evaluating the integrals of f(z) over the semmicircle and the two radii. 

Why does the Cauchy-Goursat theorem not apply? 

P11-7 

Let C denote the positively oriented boundary of the square whose sides 

lie along the lines x2 and y2. Evaluate each of these integrals: 

(a) 
  



C

z

iz

dze

2 
; (b) 

 
dz

zz

zcos

C  82
; (c)  C z

dzz

12

 
; 

(d) dz
z

zcosh

C 4
;  (e) 

 

 
 22  

2
02

0




 xdz
xz

ztan

C
 

P11-8 

Find the value of the integral of g(z) around the circle |zi|2 in the 

positive sense when 

 (a)  
4

1
2 


z

zg ; (b)  
 22 4

1




z
zg . 

P11-9 

Let C be any simple closed contour, described in the positive sense in the z 

plane, and write 
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  
 





C
dz

z

zz
g

3

3 2


  

Show that g()=6i when  is inside C and that g()=0 when  is 

outside C. 

P11-10 

Show that if f is analytic within and on a simple closed contour C and z0 

is not on C, then 

    
   

 







CC zz

dzzf

zz

dzzf
2

00

. 

P11-11 

Consider    2
1 zzf  and the closed triangular region R with vertices 

at the points at z=0, z=2 and z=i. Find points in R where |f(z)| has its 

maximum and minimum values. 

P11-12 

Let   zezf   and R the rectangular region 0≤x≤1, 0≤y≤. Find points 

in R where the component u(x,y)=Re[f(z)] reaches its maximum and 

minimum values. 

 


