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1 Introduction of Combinatorial Design

Let X be a finite non-empty set. A collection of subsets of X, B contains at most

2X. For distinct subsets, there are exactly (v
k
) k-subsets if ∣X∣ = v.

(⋅) ∑v
k=0 (

v
k
) = 2v

This is a direct consequence of (1 + x)v = ∑v
k=0 (

v
k
)xk.

For convenience, we shall use Zv = {0,1,2,⋯, v − 1} for X.

The reason comes from the fact that < Zv,+, ⋅ > is a commutative ring. So, we can

apply the operation if necessary. For example, {0,1,3} is a 3-subset of Z7. {0,1,3}+1 ∶=

{0+1,1+1,3+1} = {1,2,4} is also a 3-subset of Z7, then {0,1,3} ⋅2 ∶= {0 ⋅2,1 ⋅2,3 ⋅2} =

{0,2,6} is a 3-subset of Z7 as well.

(⋆) We are learning the construction of (X,B) which satisfies extra conditions! For

examples,

1. No subset of B is contained in the other subset of B.

2. No two subsets of B have an empty intersection.

3. Any two elements of X occur together in a subset of B exactly once.

4. The union of any d subsets of B are all distinct for d ≥ 2.

5. Each t-subset of X occurs exactly λ times in subsets of B.

(⋅) Extremal sets corresponding to above examples

1. If ∣X∣ = n, then we can choose all subsets of cardinality ⌊n
2
⌋ + 1. This implies

that ∣B∣ ≥ ( n

⌊n
2
⌋ + 1

).

2. Let x0 ∈ X. Then, all subsets of X containing x0 provides a collection. This

implies that ∣B∣ ≥ 2n−1.

3. For example. If ∣X∣ = 7, let X = Z7 and B = {{0,1,3} + i ∣ i ∈ Z7}. This is the

well-known Fano plane.
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1 5

2

3 4
1 Fano plane

Fact 1. A design (X,B) can be treated as a hypergraph defined on the vertex set X, and

B ∈ B is an edge (hyperedge).

Fact 2. We can define GX,B (a bipartite graph with partite sets (X,B)) such that xi ∼ Bj

if and only if xi ∈ Bj ⊆ X and Bj ∈ B. Then, its incidence matrix A(GX,B) is as

follows.

Ai,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, xi ∈ Bj

0, otherwise

A (GX,B) =

B1 ⋯ Bj ⋯ Bb

x1

⋮

xi

⋮

xv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⋮

⋮

⋯ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fact 3. Since GX,B can be represented by a v × b (0,1)-matrix, a design (X,B) can be

viewed as a (0,1)-matrix.

Fact 4. A design (X,B) can be represented by b (binary) codewords which are the columns

of A (GX,B). Let a be a binary (column) vector of length v. Hence, a design can

be considered as a set of codewords of length v where ∣X∣ = v.
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(⋅) An n-dimension (0,1)-vector is called a (binary) codeword of length n.

(⋅) A binary code of length n is a collection of codewords of length n.

(⋅) A ”codeword” can be utilized to represent a

(i) message

(ii) signal

(iii) transmitting scheme

(iv) data pattern

(v) many others

e.g. (1,1,0,1,0,0,0) is a ”codeword” of length 7.

Definition 1.1.

Let a = (a0, a1,⋯, an−1) be a (0,1)-vector. Then, the support of a, supp (a) = {i∣ai =

1, i = 0,1,2,⋯, n − 1}. Clearly, supp(a) ⊆ Zn.

(⋆) If there are exactly k one’s in a, than supp(a) is a k-subset of Zn.

Designs⇐⇒Codes

(∗∗) There are beautiful designs which are obtained from the construction of codes.

On the other hand, (good) codes can be obtained by using designs.
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Figure 1: Designs and codes

(⋅) We can extend the binary code to the q-ary code in which {0,} is replaced by

{0,1,2,⋯, q − 1}. But, binary code is still more ”important”!

(⋅) There are deterministic and probabilistic methods to construct designs (codes),

(0,1)-matrices as well.
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2 Latin Square

The notion (concept) of ”Latin Square” probably originated with problems con-

cerning the movement and disposition of pieces on a chess board. Its application on

agricultural design (a special type of experimental design) came out during mid-20 cen-

tury. So, it is assumed to be a fairly new subject compairing to the other fields of

combimational topics.

In fact, the eariliest reference to the use of such squares can be dated back to 18

Century. At that time, people are placing the sixteen court cards (A, K, Q, J) of

a pack of ordinary playing cards in the form of a square so that no row, column, or

diagonal should contain more than one card of each suit and one card of each rank.

The solution was obtained in 1723. Here is an example.

A1 K2 Q3 J4

A K Q J

Q J A K

J Q K A

K A J Q

1 2 3 4

4 3 2 1

2 1 4 3

3 4 1 2

S → 1, H → 2, D → 3, C → 4

But, the real impact comes from the famous 36 officers problem proposed by Euler

around 10 years later. So, 16 cards are extended to 36 cards. Unfortunately, this plan

turns out to be impossible. The proof by ”brute force” was obtained around 1900 by
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Tarry. A theoretical argument to show that it is not possible came out after around 80

years by D.R. Stinson (1984).

Nowadays, the applications of using Latin Squares have been everywhere. It is a

topic worth of study.

Definition 2.1. (Latin Square of order n)

A Latin square of order n is an n×n array based on an n-set S (Zn for convenience)

such that each element of S occurs in each row and each column exactly once.

∗ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Quasigroup

1st 2nd 3rd

↓ ↓ ↓

1st →

2nd →

3rd →

0 1 2

1 2 0

2 0 1

Latin Square of order 3

Remark. We can use any n-set for S, say S = {α,β, γ}.

α β γ

β γ α

γ α β

a Latin square of order 3

Notation. We use Li,j to denote the (i, j) - entry in L where i (resp. j) is the row

(resp. column) number. If L is of order n, then the row (column) numbers are 1, 2, ⋯, n.

(Even we use 0, 1, 2, ⋯, n − 1 for the number of side line or head line.)
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Fact 1 A Latin square of order n exists for each n ∈ N.

Fact 2 A Latin square of order n can be obtained from the fact χ′(Kn,n) = n. (Edge

coloring of Kn,n)

Fact 3 The existence of a Latin square of order n is equivalent to the existence of

K3∣Kn,n,n. (Graph decomposition)

Fact 4 Let `n denoted the number of distinct Latin squences of order n. Then `1 = 1, `2 =

2, `3 = 12, `4 = 576, `5 = 161,280, ⋯. (L ≠ L′ if and only if Li,j ≠ L′i,j for some

(i, j))

Fact 5 `9 = 9 ! 8 ! (377,597,964,258,816).

Check Wiki for more imformation.

Fact 6 A Latin square of order n can be obtained from the operation table of a ”quasigroup”

of order n.

∗ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

S = {0, 1, 2}, ⟨S, ∗⟩ is a quasigroup of order 3.

3!

↓

0 1 2 3

1

2

3

← 4!

By using permutations of 0, 1, 2, 3, we can obtain a Latin square of ”standard

form”. (above)
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0 1 2 3

1 0

2 0

3

0 1 2 3

1 0

2 1

3

0 1 2 3

1 2

2

3

0 1 2 3

1 3

2

3

Now, there are 4 ways to finish filling all the other entries
by choosing ”typical” entries first. (Similar to Sudoku)

`4 = 4 × 4 ! × 3 !

`5 = ? × 5 ! × 4 !

? = 56

Algebraic Structure (Basic ideas)

Single speration

Definition 2.2. (Binary operation)

A binary operation (defined on) A is a mapping ○ : A ×A→ A.

For convenience ○((a, b)) = c is denoted by a ○ b = c.

Remark. For t ≥ 2, we can define a t-ary operation defined on A as a mapping

f ∶ At → A.

Definition 2.3. (Algebraic Struture in one operation)

An ordered pair ⟨A, ○⟩ is a groupoid if ”○” is a binary operation defined on A.

Besides binary operation, an operation may satisfy more ”laws”.
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1 Associative law : ∀a, b, c ∈ A, a ○ (b ○ c) = (a ○ b) ○ c.

2 Commutative law : ∀a, b ∈ A,a ○ b = b ○ a.

3 Identity : e is an identity of ⟨A, ○⟩ if ∀α ∈ A, α ○ e = e ○ α = α.

4 Inverse: a is an inverse of b (in A) if a ○ b = b ○ a = e.

3
′

Right Identity : a ○ e = a

Left Identity : e ○ a = a

4
′

Right Inverse : a ○ b = e

Left Inverse : b ○ a = e

5 Row Latin property: ∀a, b ∈ A, a ○ x = b has a unique solution in A.

6 Column Latin property: ∀a, b ∈ A, y ○ a = b has a unique solution in A.

xa

a b

y b

If ” 5 ” is true, then the row ”a” has distinct entries, further more all elements in

A occur ! (If we have two common entries in a row, then ”X” is not unique.).

If ” 6 ” is true, then the column ”a” has distinct entries of A (Similar reason.).

Definition 2.4. (Quasigroup)

If ⟨A, ○⟩ satisfies row and column Latin-property, then < A, ○ > is a quasigroup. If

A is a finite set, then its operation table corresponds to a Latin square of order ∣A∣.

Some basic structures : ( 0 ⟨A, ○⟩ is a groupoid)

1. 0 + 1 Ð→ Semigroup
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2. 0 + 1 + 3 Ð→ Monoid

3. 0 + 1 + 3 + 4 Ð→ Group

4. 0 + 1 + 2 + 3 + 4 Ð→ Abelien Group

5. 0 + 5 + 6 Ð→ Quasigroup

6. 0 + 1 + 5 + 6 Ð→ Group

7. 0 + 2 + 5 + 6 Ð→ Commutative Quasigroup
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Fact 7 We shall adapt the property of a quasigroup of order n to ”claim” the property

of its corresponding Latin square.

e.g. If ⟨Q,∗⟩ is a commutative quasigroup of order n, then its corresponding Latin

square is a commutative Latin square or sometime a ”symmetric” Latin square.

Definition 2.5. (Idempotent and Unipotent)

A quasigroup ⟨Q,∗⟩ is idempotent if for each a ∈ Q, a ∗ a = ⟨Q,∗⟩ is unipotent is

for each a ∈ Q, a ∗ a = c (a constant in Q).

0 3 1 4 2

3 1 4 2 0

1 4 2 0 3

4 2 0 3 1

2 0 3 1 4

Idenpotent and Commutative L.S.
≈ χ′(Kn) = n. (n is odd)

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

Unipotent and Commutative L.S.
≈ χ′(Kn) = n − 1. (n is even)

The construction of idempotent commutative Latin Square

For each odd n, we define an abelian group ⟨Zn,+⟩. For example, n = 7.

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

⇑
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A diagonal commutative L.S.

⇓

use permutation

⎛
⎜
⎝

0 1 2 3 4 5 6

0 4 1 5 2 6 3

⎞
⎟
⎠

⇓

An idempotent commutative L.S.

0 4 1 5 2 6 3

4 1 5 2 6 3 0

1 5 2 6 3 0 4

5 2 6 3 0 4 1

2 6 3 0 4 1 5

6 3 0 4 1 5 2

3 0 4 1 5 2 6

⇓

A Unipotent commutative L.S. of order 8

Fact 8 Permuting rows, columns or entries of a Latin square provide another Latin

square.

Fact 9 (Latin square of standard form)

There exists a Latin square of order n (based on Zn), such that its first row is

(0, 1, 2, ⋯, n − 1) and its first column is (0, 1, 2, ⋯, n − 1).

(∗) There are exactly ”4 ” Latin squares of order 4 which are of standard form. `4 =

4! ⋅ 3! ⋅ 4 = 576. `5 = 5! ⋅ 4! ⋅ 56 = 161,280.

(∗) 56 for order 5 and 9408 for order 6.
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0 1 2 3

1 0 3 2

2 3 0
1

1
0

3 2 1
0

0
1

↑
Two choice

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

One choice

0 1 2 3

1 3 0 2

2 0 3 1

3 2 1 0

One choice

(∗∗) Basically, this is the idea of counting distinct Latin squares.

Fact 10 Let ⟨Q, ○⟩ be a quasigroup. Define ⟨Q, ○⟩ where a ∗ c = b provided a ∗ b = c for all

a, b, c ∈ Q.

Then, ⟨Q, ○⟩ is also a quasigroup. (Conjugate)

○ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

∗ 0 1 2

0 0 1 2

1 2 0 1

2 1 2 0

0 ○ 0 = 0

0 ○ 1 = 1

0 ○ 2 = 2

1 ○ 0 = 1

1 ○ 1 = 2

1 ○ 2 = 0

2 ○ 0 = 2

2 ○ 1 = 0

2 ○ 2 = 1

↑ ↑ ↑
a b c

0 ∗ 0 = 0

0 ∗ 1 = 1

0 ∗ 2 = 2

1 ∗ 1 = 0

1 ∗ 2 = 1

1 ∗ 0 = 2

2 ∗ 2 = 0

2 ∗ 0 = 1

2 ∗ 1 = 2

↑ ↑ ↑
a c b
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a ○ b = 0 (Six conjugate quasigroups!)

⇓

a ∗ c = b , b ∗′ c = a , c ∗′′ a = b
:::::::::::::

, c ∗′′′ b = a , b ∗′′′′ a = c .

↓ (check)

⎛
⎜
⎝

∀ α, β, α ∗′′ x = β has a unique solution γ since γ ○ β = α.

Similarly, y ∗′′ α = β has a solution γ′ if α ○ β = γ′.

⎞
⎟
⎠

They are called conjugate quasigroups and therefore we have conjugate Latin

squares of order 3.

Isotopic Classes

Definition 2.6. (Isotopism)

Two quasigroups ⟨Q1, ○⟩ and ⟨Q2,∗⟩ are isotopic if there exist three bijections

α, β and γ from Q1 onto Q2 such that γ(x ○ y) = α(x) ∗ β(y) for any two elements

x, y in Q1. If α = β = γ, then ⟨Q1, ○⟩ and ⟨Q2,∗⟩ are isomorphic.

Check ∶

If ⟨Q1, ○⟩ and ⟨Q2,∗⟩ are isotopic, then we say there exists are isotopism between

⟨Q1, ○⟩ and ⟨Q2,∗⟩. Prove that ”isotopism” is an equivalence relation.

Remark. Since isotopism is an equivalence relation, we can partition the set of

distinct Latin squaresof order n in to isotopic classes.

For example, there are two isotopic classes of order 5 and 22 isotopic classes for order

6. (Only one isotopic class for order 1, 2 and 3; two classes for order 4.)
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3 Partial Latin Squares

Over past 30 years, several important progress in solving open problems on Latin

squares has been done by applying graph technique.The main idea comes from the

following correspondence.

Let G = (V,E) be a graph. A k-edge-coloring π of G is a mapping π ∶ E →

{1,2,⋯, k} such that π(e) ≠ π(f) provided e and f are incident edges in G. The

minimum integer k such that G has a k-edge-coloring is called the chromatic index of

G, denoted by χ′(G). The following facts are well-known in Graph Theory.

Fact 1. If G is a simple graph, then ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Fact 2. If G is a bipartite graph, then χ′(G) = ∆(G).

Fact 3. The edge-coloring χ′(Kn,n) corresponds to a Latin square of order n.

(⋆) The number of distinct n-edges-colorings of Kn,n gives ln.

(⋆) A unipotent Latin square of order n can be constructed accordingly.

(⋆) We can use χ′(K2m+1) = 2m + 1 to construct an idempotent commutative Latin

square.

Example m = 2
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(⋆) There does not exist an idempotent commutative Latin square of even order.

Sub-squares

Just like algebraic structures, we have sub-quasigroup, and those subsquares.

Definition 3.1. (sub-Latin square)

If Q′ ⊆ Q, < Q′, ○ > and < Q, ○ > are quasigroups, then < Q′, ○ > is called a sub-

quasigroup of < Q, ○ >. Their corresponding Latin squares are Latin square and Latin

subsquare respectively.

Definition 3.2. (Embedding)

If A is a sub-Latin square (or Latin subsquare) of L, then A is said to be embedded

in L. The standard form is the one with A in the upper left hand corner.
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Theorem 3.3.

A latin sbsquare of order m can be embedded in a Latin square of order n if and

only if n ≥ 2m.

Fact. If L (of order n) has a Latin subsquare A (of order m), then n may not

be a multiple of m. (It is true m∣n if both L (and A) are corresponding to a group

respectively.

In what follows, we provide some more insight about having a subsquare.

Proposition 3.4. If A is embedded in L and L(i) denotes the number of element i

occurs in L (respectively A, B, C, D in next figure), then A(i) ≥ 2m − n where A is a

Latin square of order m and L is a Latin square of order n.

Proof. ∀i ∈ Zn. Since B(i) +D(i) = n−m, B(i) ≤ n−m, and A(i) +B(i) =m. Hence,

A(i) =m −B(i) ≥m − (n −m) = 2m − n.

Corollary 3.5. (The sufficient condition of Theorem 3.3 is true)

If a Latin subsquare of order m can be embedded in a Latin square of order n, then

n ≥ 2m.

Proof. If n < 2m, then every i ∈ Zn has to occur in A which is not possible since A is

a Latin square of order m.
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In fact, the subsquare A we consider here can be replaced by Latin rectangle or

partial Latin rectangle. Let R be a partial Latin rectangle of L.

Proposition 3.6.

If R is embedded in a Latin square L which is based on S, then ∀i ∈ S, R(i) ≥ r+s−n.

Proof. R(i) + B(i) = r, B(i) +D(i) = n − s and B(i) ≤ n − s ⇒ R(i) = r − B(i) ≥

r − (n − s).

Proposition 3.7.

Let R be an r × n Latin rectangle based on an n-set S. Then R can be embedded

in a Latin square of order n.

Proof. SDR (system of distinct representatives) or König′s Theorem.

0 1 2 3 4

3 2 4 1 0

A1 A2 A3 A4 A5

18



A1 = {1,2,4}, A2 = {0,3,4}, A3 = {0,1,3}, A4 = {0,2,4}, A5 = {1,2,3}

A1

A2

A3

A4

A5

0

1

2

3

4

Fact 3. Let R be an r × s partial Latin rectangle. Then R can be embedded in a

Latin square of order n based on S if and only if R(i) ≥ r + s − n, ∀i ∈ S (∣S∣ = n).

Proof. (Outline)

Step 1. Fill all the entries in R, such that the condition R(i) ≥ r + s − n holds.

Step 2. Fill in the entries in B. (Obtain an n × n Latin rectangle.)

Step 3. Complete the Latin square by extending the rectangle. The details are obtained

by using two theorem.

Theorem 3.8. (P. Hall, 1935)

{S1, S2,⋯, Sn} has an SDR if and only if the union of any k of them contains at

least k elements.

Proof. (⇒) Trivial.

(⇐) By induction on n and it’s clearly true for n = 1. Assume that the assertion is true

for all 1 ≤m < n and consider {S1, S2,⋯, Sn}.

Case 1. ∀k ≤ n − 1, ∣ ∪kj=1 Sij ∣ ≥ k + 1.

Let xn ∈ Sn and consider {S1 ∖ {xn}, S2 ∖ {xn},⋯, Sn−1 ∖ {xn}}. By induction, this

collection of sets does satisfy the Hall’s condition, it has an SDR x1, x2,⋯, xn−1. To-

gether with xn, we have the proof.

Case 2. ∃h ≤ n − 1, ∣ ∪hj=1 Sij ∣ = h.

19



Let ∪hj=1Sij = S̃. For convenience, let those h subsets be S1, S2,⋯, Sh. Now, consider

Sh+1 ∖ S̃, Sh+2 ∖ S̃,⋯, Sn ∖ S̃. The union of any k of these sets must contain at least

k elements. For otherwise, the union of S̃ with these sets will contain less than h +

k elements, a contradiction to the assumption. Hence, {Sh+1 ∖ S̃, Sh+2 ∖ S̃,⋯, Sn ∖

S̃} has an SDR. Also, {S1, S2,⋯, Sh} has an SDR. Together, we have an SDR for

{S1, S2,⋯, Sn}.

Theorem 3.9. (A. J. Hoffman and H. W. Kuhn, 1956)

Let M be a given set. A necessary and sufficient condition for the sets S1, S2,⋯, Sn
to have an SDR which includes all the element of M is that, for every M ′ ⊆ M , at

least ∣M ′∣ of the sets S1, S2,⋯, Sn have non-empty intersection with M ′. (Note that

{S1, S2,⋯, Sn} has an SDR itself.)

Since the proof of Theorem ?? needs more effort, we omit the proof here. But, we

shall apply this result to prove the embedding theorem mentioned above.

Definition 3.10. (Partial Latin Square of order n) PLS(n)

A PLS(n) is an n × n array such that each cell is either filled with an entry from

an n-set S or empty, moreover, each element in S occurs at most once in each row and

resp. once in each column.

Definition 3.11. (Complete the PLS(n))

Let L′ be a PLS(n). L′ is said to be completable if we can fill all the empty cells

such that the n × n array is a Latin square.

0 1

2

0 1

1

incompletable completable

Theorem 3.12. (H. J. Ryser, 1951)

Let R be an r×s Latin rectangle based on S = {1,2,⋯, n} (filled partial Latin square).

Then, R can be embedded in a Latin square of order n if and only if R(i) ≥ r + s − n

for all i ∈ S.
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Proof. The proof of necessity has been done earlier, we prove the sufficiency in what

follows. We claim that R can be enlarged to an r × (r + 1) rectangle R∗ such that

R∗(i) ≥ r + (s + 1) − n,∀i. Iteration then extends R to an r × n rectangle. Then, we

obtain a Latin square of order n by applying M. Hall’s extension theorem.

Let Sj denote the set of elements in S which do not occur in the jth row of R.

Now, let M be the set of elements in R occurred exactly r + s − n times. The proof

follows by showing {S1, S2,⋯, Sr} has an SDR such that the set of elements in S still

satisfy the necessary condition. Now, we claim that ∣M ∣ ≤ r.

If there are more elementss which occur exactly r + s − n times, say r + r′, r′ > 0,

then other n − (r + r′) elements will occur at most r times. Hence, in total we have

(r+ r′)(r+ s−n)+ (n− r− r′) = r2 + rs+ rr′ + r′s− rn− r′n+nr− r2 − rr′ = rs+ r′s−nr′ =

rs − r′(n − s) < rs entries for R, →←.

Now, since M = {i∣R(i) = r + s − n, i ∈ Zn}, ∀x ∈ M , x occurs in S1 ∪ S2 ∪ ⋯ ∪ Sr
exactly r − (r + s − n) = n − s times. Moreover, for the other y ∈ Zn ∖M , y occurs

in the union at most n − s times. As a consequence, elements from M are in total

∣M ∣ ⋅ (n − s) entries in S1 ∪S2 ∪⋯∪Sr. Since ∣Si∣ = n − s for i = 1,2,⋯, r, at least ∣M ∣ of

sets in {S1, S2,⋯, Sr} have non-empty intersection with M . This is also true for M ′ ⊆M .
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So, by Hoffman and Kuhn Theorem, there exists an SDR of S1, S2,⋯, Sr such that

all elements of M are included in the SDR. This implies that R can be extended to an

r × (s+ 1) partial Latin square (rectangle), R̃, such that ∀x ∈ Zn, R̃(x) ≥ r + (s+ 1) −n.

This can be done until s = n − 1. Therefore, we obtain an r × n Latin rectangle. By

using theorem 1 (Hall’s Theorem), we can embed R into a Latin square of order n.
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4 Critical Sets

(∗) It is interesting to know whether a PLS(n) can be completed to a Latin square.

Fact 1 A PLS(n) with at most n − 1 filled cells can be completed to a Latin square of

order n. (Evan’s Conjecture)

(In fact, the proof of this fact is not very difficult.) Proved by B. Smetaniuk

(1981). You may refer to ” A course in combinatorics ” by J.H van Lint and R.M.

Wilson, page 189-193.

Fact 2 It takes about 50 pages to characterize a PLS(n) with at most n + 1 filled cells

which is completable.

(L.D. Anderson and A.J.W. Hilton, 1983, LMS.)

(⋅) n filled cells may be too much!

0 1 2

3

0

0

0

1

Definition 4.1. (Critical Sets)

A partial Latin square C is called a crtical set of a Latin square L if (a) the empty

cells of C can be filled to obtain L and (b) any proper sub-partial square of C can be

completed to at least two distinct Latin squares (one of them is L).
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(∗) A critical set of order n contains at least n − 1 distinct elements and covers at

least n − 1 rows, resp. n − 1 columns.

(⋅) Sudoku is a special critical set of order 9.

Fact We can construct a (strong) critical set C of order n with ∣C ∣ = ⌊ n2

4 ⌋.

0 2 1

2 1 0

1 0 2

0 1 3 2

1 3 2 0

3 2 0 1

2 0 1 3

0 1 3 4 2

1 3 4 2 0

3 4 2 0 1

4 2 0 1 3

2 0 1 3 4
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Problem If C is a crtical set of order n, then find min ∣C ∣ and max ∣C ∣.

Conjecture ∣C ∣ ≥ ⌊ n2

4 ⌋.

Construction of Latin squares with many subsquares

First, we consider the operation of two Latin squares.

Definition 4.2. (Direct product)

Let A and B be two Latin squares based on Zm and Zn respectively. Then, the

direct product of A and B, denoted by A⊗B is a Latin square of order mn based on

Zm×Zn such that the entry Ai,j = x is replaced by (x,B) where (x,B) is a Latin square

of order n where the (i′, j′) entry is filed by (x,Bi′,j′).

e.g.
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Latin squares defined on thre disjoint sets.

B′⊗A is referred to as a Latin square with 2 × 2 holes.

∗ Let n = h1 + h2 + ⋯ + ht. If L is a Latin square of order n with t subsquares (as
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above) of order h1, h2,⋯, ht resp. Then, L is a Latin square with holes of type

h1 × h2 ×⋯ × ht.

Problem Construct a Latin square L of order 12, such that L is commutative and also

with holes of type 26.

Note If m is odd, then L can be constructed by using direct product. But, for even m,

it takes some effort!

An example, m = 4.
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5 Orthogonal Latin Squares.

Definition 5.1. (Orthogonal Latin square)

Two Latin squares of order n based on Zn (We use Zn throughout of this lecture),

L = [li,j] and M = [mi,j], are orthogonal if {(li,j,mi,j)∣1 ≤ i, j ≤ n} = Z2
n, denoted by

L ⊥M .

e.g.

0 1 2

1 2 0

2 0 1

⊥

0 1 2

2 0 1

1 2 0

L M

Let α(L) denote the Latin square which is obtained from L by permuting the

entries of L with α (permutation of Zn). Then we have

Proposition 5.2. If L ⊥M , then α(L) ⊥ β(M) for any two permutations α and β of

Zn.

e.g. Let α =
⎛
⎜
⎝

0 1 2

1 2 0

⎞
⎟
⎠

, β =
⎛
⎜
⎝

0 1 2

0 2 1

⎞
⎟
⎠

.

Then, we have

1 2 0

2 0 1

0 1 2

⊥

0 2 1

1 0 2

2 1 0

α(L) β(M)

Two Finger’s Rule

L ⊥M ⇐⇒ y ≠ z in M whenever their corresponding entries in L are the same entry,

i.e.,

li,j = li′,j′ ⇒mi,j ≠mi′,j′ .
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Proposition 5.3. If L1 ⊥ L2 (of order m) and M1 ⊥M2 (of order n), then L1⊗M1 ⊥ L2⊗

M2 (of order mn). (L1 ⊥ L2, M1 ⊥M2 and N1 ⊥ N2 ⇒ (L1⊗M1)⊗N1 ⊥ (L2⊗M2)⊗N2

and more.)

Proposition 5.4. If n is a prime power, the there exist n − 1 Latin squares of order n

which are mutually orthogonal.

Note. L1, L2,⋯, Lk are mutually orthogonal if for any two 1 ≤ i ≠ j ≤ k, Li ⊥ Lj.

Proof. Since n is a prime power, we have a finite field GF (n), < F,+, ⋅ >. Let

F ∗ = F ∖ {0}. For convenience, let F = {0 = α0, α1,⋯, αn−1}. Now, for 0 ≤ i, j ≤ n − 1,

we define L
(h)
i,j = αi +αh ⋅αj where h ∈ F ∗. Since i ≠ i′ implies that L

(h)
i,j ≠ L(h)

i′,j and j ≠ j′

implies that L
(h)
i,j ≠ L(h)

i,j′ where L(h) is a Latin square. As to the orthogonality of two

Latin squares, we can also use two fingers rule.

Assume that for (i, j) ≠ (i′, j′), L(h)
i,j = L(h)

i′,j′ . Consider 1 ≤ k ≠ h ≤ n − 1. Suppose

that L
(k)
i,j = L(k)

i′,j′ . Then we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αi + αh ⋅ αj = αi′ + αh ⋅ αj′ , and

αi + αk ⋅ αj = αi′ + αk ⋅ αj′ .

⇒ (αh − αk)αj = (αh − αk)αj′ ⇒ αj = αj′ ⇒ αi = αi′ .→←

Hence, L(h) ⊥ L(k).
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Some facts on Finite fields

1. A finite field of order n exists if and only if n is a prime power.

2. < Zn,+, ⋅ > is a finite field if and only if n is a prime.

3. Let n = pm where p is a prime and m ≥ 1. Then a finite field of order n can be

constructed by using an irreducible polynomial (over Zp) g(x) of degree m, that

is GF (n) ≅ Zp[x]/ < g(x) >.

4. All finite fields of the same order are isomorphic.

5. If < F,+, ⋅ > is a finite field, then < F ∗, ○ > is a cyclic group, that is ⟨F ∗, ○⟩ ≅ ⟨α⟩,

generated by an element of F ∗, α.(F ∗ = F ∖ {0}.)

6. x3 + x + 1 is irreducible over Z2. Z2[x]/ < x3 + x + 1 > is a finite field of order 8.

Definition 5.5. (A complete family of MOLS(n))

For order n, n−1 mutually orthogonal Latin squares (MOLS) form a complete family

of MOLS(n).

Fact 1.

If n is a prime power, then we have a complete family of MOLS(n).

Note. So far, only for prime power n that we can find a complete family of MOLS(n).

Note. It is known that there does not exist a complete family of MOLS(n) for n = 6

and 10.

Observation (Three MOLS(4))

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

⊥

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

? ⊥

0 1 2 3

3 2 1 0

1 0 3 2

2 3 0 1

(Two mutually orthogonal Latin squares of order 4 solve the 16 cards problem!)
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Can we find the 3rd one by using the two MOLS(4)?

Fact 2.

For each n, there are at most n − 1 mutually orthogonal Latin squares.

Proof. By Proposition 1, we can assume all mutually orthogonal Latin squares do

have the same first row (0,1,2,⋯, n − 1). Then, consider the (2,1) cell, no two of the

squares have the same entry (?). Hence, we have at most n − 1 distinct Latin squares

which are mutually orthogonal.

Proposition 5.6. If there exist n − 2 MOLS(n), then we can find n − 1 MOLS(n).

Idea:

Why ”Euler” made the following conjecture?

Euler’s Conjecture on MOLS.

For each n ≡ 2 (mod 4), there do not exist two mutually orthogonal Latin squares

of order n. (If n > 1 and n /≡ 2 (mod 4), then either n is a prime or n has a prime factor

larger than 2.)

Fact 3. It is not true for n = 2 and 6 (only!). Also, n = 1 is trivial.

Fact 4. If n /≡ 2 (mod 4), then we can find at least two MOLS(n)
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Proof. Case 1. n ≡ 0 (mod 4): In this case, n = xt ⋅m where t ≥ 2 and m is an odd in-

teger. If m = 1, then n is a prime power, the proof follows. On the other hand, if m > 1,

then m = pe11 p
e2
2 ⋯p

ek
k where pi’s are distinct odd primes. Now, by using Proposition 2,

we can construct two MOLS(n) by using direct product of two mutually orthogonal

Latin squares of order 2t, pe11 , p
e2
2 ,⋯, p

ek
k respectively. Case 2. n ≡ 1 or 3 (mod 4): The

proof of this case has been include in Case 1.

Problem Prove that there do not exist two mutually orthogonal Latin squares of order

6. (Reference: D. R. Stinson, A short proof of the non-existence of a pair of orthogonal

Latin squares of order six, J. Combin. Th. A36, 373-376.)

0 1 2 3 4 5

1 2 3 5 0 4

2 5 0 4 1 3

3 4 1 2 5 0

4 0 5 1 3 2

5 3 4 0 2 1

0 1 2 3 4 5

5 0 4 2 3 1

3 4 1 5 2 0

4 3 5 1 0 2

2 5 3 0 1 4

1 2 0 4 5 3

(3,4) and (1,5) are the only two repeated ordered pairs.

Definition 5.7. Two Latin squares of order n defined on the same set S are r-

orthogonal if when they are superimposed, exactly r different ordered pairs of S2 occur

among the n2 ordered pairs of entries. So, the above example is a pair of 34-orthogonal

Latin squares of order 6.

Euler’s Conjecture was disproved by Parker, Bose and Shrikhande in the year 1959.

The following two MOLS(10) was proposed by E. T. Parker.

32



4 0 9 8 3 2 7 5 6 1

2 3 7 5 4 0 9 8 1 6

8 1 6 9 0 4 5 3 2 7

9 8 1 4 5 6 3 2 7 0

0 9 8 6 1 3 2 7 4 5

7 2 3 1 6 5 4 0 9 8

5 4 0 3 2 7 6 1 8 9

6 5 4 2 7 1 8 9 0 3

1 6 5 7 8 9 0 4 3 2

3 7 2 0 9 8 1 6 5 4

5 4 0 1 2 7 8 9 3 6

3 1 6 4 8 5 9 2 0 7

0 9 8 7 3 6 1 4 5 2

2 5 4 3 6 1 7 8 9 0

9 8 7 6 1 0 4 5 2 3

1 6 3 5 9 2 0 7 4 8

8 7 2 9 0 4 5 3 6 1

4 0 9 2 7 8 3 6 1 5

7 2 5 0 4 3 6 1 8 9

6 3 1 8 5 9 2 0 7 4

For n ≡ 2 (mod 4) and n ≥ 10, we need to apply ideas from pairwise balanced design to

prove that two MOLS(n) do exist. (So, we will provide a proof later.)

In application, we can use another term to describe orthogonal Latin squares.

Definition 5.8. (Orthogonal Array)

An orthogonal array of order n with depth k, OA(k,n), is a k × n2 array A = [ai,j]

such that for any two rows, the ordered pairs obtained from there two rows are exactly

all ordered pairs of Z2
n. (ai,j = Zn)

For example, OA(4,3)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 2 2 2

0 1 2 0 1 2 0 1 2

0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
↑

0 0 0

1 1O 1

2 2 2

0 1 2

0 1O 2

0 1 2

0 1 2

2 0O 1

1 2 0

0 2 1

2 1O 0

1 0 2
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Fact 5.

The existence of an OA(k,n) is equivalent to the existence of k − 2 MOLS(n).

Fact 6.

An OA(k,n) has at most n2 columns and n + 1 rows.

Proof. The first fact comes from the number of ordered pairs is at most n2 and the

second fact is a consequence of the result that there are at most n − 1 MOLS(n).

In application, regularly a partial orthogonal array uses orthogonal array of or-

der m defined of Zn with depth k. In such an array, the ordered pairs are required to

be distinct, not necessarily be all pairs in Z2
n. Here, m ≤ n2 (as the case in an OA(k,n)),

but k may be larger than n + 1. e.g. n = 3,m = 3, k = 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 2

0 1 2

0 2 1

1 2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈ Three columns represent three orthogonal partial Latin squares.

(∗) If m = n2, then k ≤ n + 1.
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6 Transversal and Partial Transversal

Definition 6.1. (Transversal)

A transversal of a Latin square of order n is a set of n entries, one from each row

and each column, such that all the entries are distinct.

0 2 3 1

3 1 0 2

1 3 2 0

2 0 1 3

Definition 6.2. (Partial Transversal)

A partial transversal of a Latin square (of order n) is a set of m ≤ n distinct entries,

no two of them are in the same row or the same column.

0 1 2 3 4 5

1 2 0 4 5 3

2 0 1 5 3 4

3 4 5 0 1 2

4 5 3 1 2 0

5 3 4 2 0 1

Fact 1 If L � M , then both L and M contain transversals. In fact, if L (resp. M) is a

Latin square of order n, then L (resp. M) contains n disjoint transversals.

Fact 2 If L is a Latin square of order n where n is odd then 0 1
1 0

⊗ L contains no

transversals.

Proof. By a direct checking.

⋅ Determining whether a Latin square contains a transversal or not is a very difficult

problem.
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⋅ This problem is equivalent to finding a rainbow perfect matching in an n-edge-

colored Kn,n.

(Problem) Given examples L′ that 0 1
1 0

⊗ L′ contains a transversal when L′ is

a Latin square of even order n = 2m, m ∈ N.

Ryser’s Conjecture

For each Latin square of odd order, L, there exists a transversal.

Revised version of Ryser’s Conjecture (Brauldi’s Conjecture)

For each Latin square of order n, there exists a partial transversal which contains

at least n − 1 distinct entries (partial transversal of size ≥ n − 1).

Theorem 6.3. (P. Shor)

Let Tn be a partial transversal of maximum size in a Latin square of order n. Then

∣Tn∣ ≥ n −O((lnn)2) or n − c ⋅ (lnn)2 where c is positive constant.

Theorem 6.4. (D. Woolbright and A.E. Brouwer)

∣Tn∣ ≥ n −
√
n.

Proof.

Convert an LS(n) into an n-edge-colored
Kn,n.

Assume that ∣Tn∣ = t and they are arranged
as ”left”.

Consider the color 1,2, ⋯,n − t in turn.

Sketch of the proof ∣Tn∣ ≥ n −
√

n. (D.Woolbright)

36



(⋅) 1,2,⋯, n − t (colors) are missing in ⟨A1,B1⟩.

(⋅) The edges which labeled ”1” and incident on the vertices in A1 are also incident

on the vertices in B2/B1.

(⋅) The vertices which colored ”2” to ”n− t” in A2 are not incident with the vertices

in B1.

(⋅) Since 2(n − t) edges colored ”2” in A2 can not incident on B1, there are at least

(n− t) edges are incident outside B2 (i.e. B3/B2), let A3/A2 be correspond vertex

set .

(⋅) The vertices which colored ”3” to ”n− t” in A3 are not incident on the vertices in

B1.

If the vertices in A3/A2 incident on ⟨A3/A2,B1⟩ colored ”3” and above, e.g. ”3”,

then we have 2 conditions:
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Observe that the edges colored ”3” in A3 are correspond with B4/B3, similarly, the

edges colored ”n − t” in An−t are corresponding with Bn+1/Bn, hence

n ≥ (n − t + 1)(n − t) = (n − t)2 + (n − t) ≥ (n − t)2

⇒ n − t ≤
√
n, t ≥ n −

√
n.
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Progress of finding the size of a partial transversal

(1) ∣T ∣ ≥ n
2 (trivial case)

(2) K.K. Koksma (1969, J.C.T 7, 94-95)

∣Tn∣ ≥ 2n−1
3 for n ≥ 7.

(3) D.A. Drake (1977, J.S.P.I 1, 143-149)

∣Tn∣ ≥ 3n
4 . (Simpler method)

(4) S.M.P. Wang (1978, Ph.D. Thesis OSU)

∣Tn∣ ≥ 9n−15
11 .

(5) A.E. Brouwer et. al. (1978, Nieuw Archief voor Wiskunde (3) 26, 330-332

D.E. Woolbright (1978, JCTA 24, 235-237)

∣Tn∣ ≥ n −
√
n.

(6) P.W. Shor (1982, JCTA 33, 1-8)

∣Tn∣ ≥ n − 5.53(loge n)2 = n − 5.53(lnn)2.

(7) H.L. Fu and Shyh-Chung Lin, (2002, JCMCC 43, 57-64)

∣Tn∣ ≥ n − 5.518(lnn)2. (Using Calculus.)

(8) Erratr of (6), Pooya Hatami and P.W. Shor, (2008, JCTA 115, 1103-1113)

∣Tn∣ ≥ n −O(lnn)2. (Pooya Hatami fixed a bug in (6).)
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7 An Introduction of Extremal Set Theory

Under a constraint or a collection of constraints find the maximum number of sets

satisfying the given constraints.

(∗) Clearly, the collection on of sets, B, from X, is a also design (X,B).

Notations

1. [n] = {1,2,⋯, n}.

2. ([n]
k

) =def the collection of k-subsets (all) of [n].

3. (n
k
) = ∣([n]

k
)∣.

4. X = {x1, x2,⋯, xn} is a set of n elements and ”≤” is a partial order defined on

X. < X, ≤> is called a partial ordered set, Poset in short.

(∗) ”≤” is a partial order of X if (i) Reflexivity: a ≤ a ∀a ∈ X, (ii) Anti-symmetry:

a ≤ b and b ≤ a implies that a = b ∀a, b ∈ X, and (iii) Transitivity: a ≤ b, b ≤ c implies

that a ≤ c ∀a, b, c ∈ X.

(∗∗) ”≤” is a total order of Y provided any two distinct elements in Y , yi and yj, either

yi ≤ yj or yj ≤ yi. (yi and yj are comparable.)

We may use a graph to depict a partial ordered set (Poset), < S,≤>. It is known as

the Hasse-diagram. Mainly if a, b ∈ S and a ≤ b, than the vertex representing b is higher

than a as shown in the following:

b

a

So, for example, < 2[4],⊆> can be represented as follows.
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1234

123 124 134 234

12 13 14 23 24 34

1 2 3 4

φ

For convenience, this diagram can be considered as a graph:

(*) Only structure will be studied.

(∗) A subset of a poset in which no two distinct are comparable is called an anti-chain.

On the other hand, a totally ordered set is called a chain.
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Example (Poset with set-containment)

1234

123 124 134 234

12 13 14 23 24 34

1 2 3 4

φ

(The gray vertices are an anti-chain and the darker path is a chain.)

Forbidden poset problem

Given a configuration of posets, say P2 = I ∶
x

y
(y ≤ x), find the maximum

number of sets in 2[n] such that the induced partial ordered set contains no sub-poset

which is given. For example, contains no P2.

(∗∗) We can change I = P2 to any kinds of sub-poset. For example, P3 ∶ or

(Y or S3, star of order 3).

The result solving P2 case is known as the Sperner’s Theorem.

Theorem 7.1. (Sperner’s Theorem)

Consider the collection of all subsets of [n]. The maximum number of subsets which

do not contain each other is equal to ( n

⌊n2 ⌋
). (The maximum anti-chain problem.)
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Proof. Let B be a collection of subsets which does not contain each other and attains

the maximum. Furthermore, let ak be the number of sets in B whose size is k. Hence,

∣B∣ = Σn
k=0ak. Note that ai’s may be zero. Since ([n]

⌊n2 ⌋
) is clearly an anti-chain, ∣B∣ ≥

( n

⌊n2 ⌋
). So, it suffices to prove ∣B∣ ≤ ( n

⌊n2 ⌋
).

Claim (Lubell-Yamamoto-Meshalkin, LYM inequality): Σn
k=0ak/(

n

k
) ≤ 1.

Consider the set of permutations of [n]. Clearly, there are n! permutations. Now,

for each set S = {s1, s2,⋯, sk} in B, we associate this set with ∣S∣!(n−∣S∣)! permutations

by taking the maximum chain passing s1s2⋯sk. (φ − s′1 − s′1s′2 − s′1s′2s′3 −⋯ − s1s2⋯sk −

s1s2⋯sks′k+1 −⋯ − [n] where s′i ∈ {s1, s2,⋯, sk} for 1 ≤ i ≤ k.)

Note that each permutation can only be associated with a single set in B. Two

sets in B do not contain each other. Now, we have

ΣS∈A∣S∣!(n − ∣S∣)! = Σn
k=0ak ⋅ k!(n − k)! ≤ n!.

This implies that Σn
k=0ak ⋅

k!(n−k)!
n! ≤ 1 and the proof follows.

Since 1 ≥ Σn
k=0ak/(

n

k
) ≥ Σn

k=0ak/(
n

⌊n2 ⌋
), ( n

⌊n2 ⌋
) ≥ Σn

k=0ak = ∣B∣.

e.g. n = 5

12345

123412351254 1534 2345

134

13 14 34

1 3 4

φ

(5 − 3)! ⋅ 3! maximum chains.

Problem Find the maximum number of subsets in 2[n] such that their induced

poset does not contain P3.
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A good guess: ( n

⌊n2 ⌋
) + ( n

⌊n2 ⌋ + 1
). (But is it true? Try it!)

Another beautiful result is the maximum collection of sets Bn,r of size r which are

mutually intersection, that is ∀S1, S2 ∈ Bn,r, S1⋂S2 ≠ φ. Bn,r is called an r-uniform

intersection family defined on [n].

Theorem 7.2.

∣Bn,r∣ = (n − 1

r − 1
) ∀n ∈ N. (Erdős–Ko–Rado, EKR theorem)

Proof. Let B = {S⋃{n}∣S ∈ ([n − 1]
r − 1

)}. Then, B is an intersection family of [n]

since each set contains the element n. Hence, ∣Bn,r∣ ≥ (n − 1

r − 1
). Next, we prove that

∣Bn,r∣ ≤ (n − 1

r − 1
).

Observe that if we let (a1, a2,⋯, an) be a cyclic permutation of [n], then this cycle

contains at most r sets of Bn,r. For example, n = 8 and r = 3, let (3,1,8,2,7,5,6,4, )

be an arbitrary cyclic permutation. Now, if {8,2,7} ∈ B8,3, then we have two more

possible sets {1,8,2} and {2,7,5}. So, for general n, we have at most r ⋅ (n − 1)! sets

for intersecting family. By the same idea in Sperner’s Theorem, each set in Bn,r can

be associated with r!(n − r)! permutations. So, ∣Bn,r∣ ⋅ r!(n − r)! ≤ r(n − 1)!. Therefore

∣Bn,r∣ ≤ (n−1)!
(r−1)!(n−r)! = (n − 1

r − 1
).

Example ∣B7,3∣ = (6

2
) = 15.

Another good problem to study related to sets

Let n = 2t + 1. We may define a graph G as follows: V (G) = ([n]
t

) and two vertices

are adjacent if and only if their intersection is an empty set. For example, n = 5, t = 2
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12

13 14

15

23

24

25 34

35

45

Above graph is in fact the Petersen graph.

(∗) The graph G is known as an odd graph of order n, denoted by On.

(∗∗) Study the structure of On is an important problem in both Graph Theory and

Design Theory.

If we further require that any two r-set in 2[n] can have at most one element in

common, thus exactly one element in common, then the collection of such r-sets de-

noted by B
(1)
n,r has at most n(n−1)

r(r−1) sets.

To see this, we notice that any pair of elements in [n] can occur in at most one

r-set of B
(1)
n,r . Hence, the pairs we have in total is n(n−1)

2 = (n
2
) and each r-set can use

(r
2
) = r(r−1)

2 pairs, this implies that ∣B(1)
n,r ∣ ≤

(n
2
)

(r
2
)

.

In fact, for some n and r, the equality does hold.

For example, B
(1)
7,3 = {124,235,346,457,561,672,713} (Fano plane) and ∣B(1)

13,4∣ =
13×12
4×3 = 13.
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0

121

112

103

94

85

76 B
(1)
13,4 = {{0,1,3,9} + i ∣ i ∈ Z13}
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8 Block Designs

The study of the incidence structures between finite sets is one of the most important

topics in Combinatorial Theory. There are there basic directions : (1) Finite Geom-

etry, (2) Block Design, and (3) Hypergraph. It is not easy to describe the difference

between them. In general, ”Finite Geometry”, cares more about the property related

to the geometry on a plane, ”Block Design” emphsizes on numerical relationship and

”Hypergraph” focuses on arbitraily given edges (finite subsets).

Therefore, to study Block Design, we start with the construction of designs of small

order. We also find the necessary conditions for the existence of the kind of designs

we would like to obtain. Following that, we then put forth to prove the necessary

conditions are also sufficient by constructing all such designs. In general, the part on

necessary conditions is comparatively easier. As to construction part, some of the design

does not exist even we know the necessary conditions. We shall see that in next section.

1. Notations and preliminaries

⋅ (X,B) is a design if X is a non-empty set and B is a collection of subsets of X.

If all the subsets are of the same cardinality, then (X,B) is called a block design.

For convenience, all the sets in B are referred as blocks in X.

⋅ If all the subsets of a design (X,B) are all distinct, then it is a simple design.

Note that B can be a multi-set in a design, the blocks with repeated occurrence

is known as repeated blocks.

⋅ Let X = {x1, x2⋯, xv} be the set of ”varieties” and B = {B1, B2⋯, Bb} be the

set of blocks. Then, we can define a variety-block incidence matrix to represent

the design, say A and also a bipartite graph to represent (X,B), say GX,B.

⋅ A = [ai,j]v×b where ai,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if xi ∈ Bj, and

0, otherwise.

Therefore, A is a (0,1)-matrix.
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⋅ GX,B = (X,B) is a bipartite graph such that xi ∼ Bj if xi ∈ Bj.

Example. X = {1,2,3,4}, B = {{1,2,3},{2,4},{1,3,4}}.

A ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 B3

1 1 0 1

2 1 1 0

3 1 0 1

4 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦4×3

GX,B ∶

1

2

3

4

B1

B2

B3

Note: The relation of A and GX,B is easy to see. In coding theory the elements in

B can be referred as the set of codewords. In graph theory, they are ”hyperedges”.

⋅ From the sense of Geometry, the incidence relation xi ∈ Bj can be ”reversed”. We

can say ”a point xi is on a line Bj” or ”a line Bj is passing xi”. Hence, we have

the following.

⋅ (X,B) is a dual design of (B,X). The incidence matrix of (X,B) is AT where A is

the incidence matrix of (X,B).

⋅ In an (X,B), we let r(x) or rx denote the replication number of a variety x, i.e.,

the number of blocks containing x. We use K to denote { ∣B∣ ∣ B ∈ B}. If K = {k},

then we simply use k to denote K.

⋅ (Definitions)

A t − (v, k, λ) design is an (X,B) such that ∣X ∣ = v, K = {k} and any t-subset of

(X
t
) occurs together in exactly λ blocks of B. In case that λ = 1, then (X,B) is

also known as a Steiner t-design, denoted by S(t, v, k).

⋅ If k < v, a 2-(v, k, λ) design is called a balanced incomplete block design, BIBD in

short. Notice that the term ”balanced” comes from the fact that in a 2-(v, k, λ)

design, for each x ∈ X, r = rx = λ(v−1)
k−1 which is a constant. Another important

fact is bk = vr.

⋅ (Only two varieties are concerned!)
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⋅ An (X,B) is called a pairwise balanced design (PBD in short), if any pair of

elements in (X
2
), they occur together in exactly λ blocks of B. Notice that in

PBD, the blocks are not necessarily be of the same size. So, it is denoted by

2-(v,K,λ) design where ∣X∣ = v.

Example a 2-(6,{2,5},1) design.

X = Z6 and B = {{0,1},{0,2},{0,3},{0,4},{0,5},{1,2,3,4,5}}.

Example X = Zv, B = (Zv

k
), k ≥ 2.

(X,B) is a 2-(v, k, λ) design where λ = r(k−1)
v−1 .

Notice that r = (v−1
k−1

) = (v−1)!
(k−1)!(v−k)! =

(v−1)(v−2)⋯(v−k+1)
(k−1)! .

Hence, λ = (v−2)(v−3)⋯(v−k+1)
(k−1)! = (v−2

k−2
).

⋅ (X,B) is also a t − (v, k, λ) design for all 2 ≤ t ≤ k < v.

⋅ The following notions are not related to vector spaces. An (X,B) is called a

partial linear space, if any two blocks of B contain at most one common el-

ement. If, indeed, any two elements (varieties) of a partial linear space occur

together in a block of B, then (X,B) is a linear space with index 1.

⋅ We can use ”Geometry” to refer the above definitions ∶
Partial linear space ∶ Any two lines intersect at most one point.

linear space ∶ Any two points lie on a line (some line) of a partial linear space.

Basic properties of a design

1. If (X,B) is a 2-(v, k, λ) design, then we have

(a) for each x ∈ X, rx = r = λ(v−1)
k−1 or r(k − 1) = λ(v − 1).

(b) b = ∣B∣ = λv(v−1)
k(k−1) or bk = rv.
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Proof. Since x occurs with (each of) all the other v − 1 elements exactly in

λ blocks, rx is equal to λ(v−1) pos-

sible such pairs divided by the k−1

pairs which can be obtained from a

block.

x

(The second equality is a consequence of the above idea by using two-way counting.)

This concludes the proof of (a).

As to (b), it is a direct counting of the number of pairs occur in B via the number

of pairs occur in a block. Therefore ∣B∣ = λ(v
2
)

(
k
2
)

. The second identity comes from the

occurrence of elements (total). ◻

2. If (X,B) is a 2-(v, k, λ) design, then ∣X∣ ≤ ∣B∣. (Fisher’s inequality.)

Proof. Let A be the incident matrix of (X,B). Then AAT = (r−λ)I +λJ , i.e. , AAT is

a v×v matrix such that each entry in the diagonal is r and each entry outside diagonal

is λ.

AAT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 ⋯ Bb

x1

⋮

xv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦v×b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦b×v
Note: AAT (i, j) is the inner product of the i th row and the j th row. So, if i = j, it is

the occurrence of xi (rxi = r) in the blocks of B and if i ≠ j, it is the number of blocks

in which xi and xj occur together in the blocks, λ.

Now, we can find det(AAT ) = k ⋅ r ⋅ (r −λ)v−1. (Gaussian elimination).

Since v > k, λ < r. This concludes that AAT is non-singular, i.e. , rank(AAT ) = v.

Furthermore, rank(AAT ) ≤ rank(A) ≤ min{v, b}, hence b ≥ v. In what follows, we

find det(AAT ) by using its eigenvalues. Since AAT = (r − λ)I + λJ, an eigenvalue µ
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satisfies (AAT )x⃗ = µx⃗ = (r − λ)x⃗ + λJx⃗ = (r − λ)x⃗ + λµ′x⃗ where µ′ is an eigenvalue of

J . By the fact that J is of rank 1, the set of eigenvalues of J are {v,0,0,⋯,0}. Hence

µx⃗ = ((r − λ) + λu′)x⃗. This implies that µ = r − λ (v − 1 of them) and µ = r − λ + λv =

r + λ(v − 1) = r + (k − 1)r = kr. Thus, det(AAT ) = kr(r − λ)v−1.

v − 1

Note here that using the spectrum of an adjacency matrix of a graph is one of the

main subjects of Algebraic Graph Theory.

Theorem 8.1. If (X,B) is a linear space, then ∣X∣ ≤ ∣B∣.

Proof. Again, let X = {x1, x2,⋯, xv} and {B1,B2,⋯,Bb}. Since (X,B) is a linear

space, any two elements in X occur together in a block of B. Assume that b ≤ v.

Here is an important observation : If x ∉ Bi, then rx ≥ ∣Bi∣ since each element of Bi

is going to occur together with x in some other blocks in B. Now, we are ready for the

following statements.

1 = ∑
B∈B

1

b
= ∑
B∈B

(∑
x∉B

1

b(v − ∣B∣)
) (a)

1 = ∑
x∈X

1

v
= ∑
x∈X

(∑
B/∋x

1

v(b − rx)
) (b)

vrx ≥ b∣B∣ for each x ∉ B. (v ≥ b) (c)

x

. . .

. . .

By (a), (b) and (c),

∑
B∈B

(∑
x∉B

1

b(v − ∣B∣)
) = 1

b
≤ (∑

B/∋x

1

v(b − rx)
) = 1

v
⇒ b ≥ v.

Hence, b = v. ◻
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(∗) The equality v = b also shows that rx = ∣B∣ for each x ∈ X and B ∈ B. The

implication of this fact is that any two blocks intersect at exactly one element,

i.e. , ∣Bi ∩Bj ∣ = 1, 1 ≤ i ≠ j ≤ b.

(∗∗) (X,B) is a projective plane if ∣X∣ = ∣B∣ and (X,B) is a linear space.

⋅ A BIBD is a square BIBD, denoted by SBIBD if v = b.

The following Theorem is well-known, we state it and omit the proof here. (It is a

”necessary condition” for the existence of an SBIBD.)

Theorem 8.2. (Bruck-Ryser-Chowla, 1949 - 1950)

If a 2-(v, k, λ) design is a square BIBD, then

(1) k − λ is a square of an integer when v is even; and

(2) z2 = (k − λ)x2 + (−1) v−1
2 ⋅ λy2 has a nonzero integral solution when v is odd.

Note that (1) is easy to see (det(AAT ) = (detA)2 = kr(r − λ)v−1 = k2(k − λ)v−1 (v =

b⇒ r = k)), but the proof of (2) is quite complicate, we omit it.

Special designs related to Geometry

Definition 8.3. (Projective plane and Affine plane)

A Steiner 2-design S(2, n + 1, n2 + n + 1) ∶= PG(2,n) is called a projective plane of

order n. A Steiner 2-design S(2, n, n2) is an affine plane of order n, denoted by AG(2,n).

(∗) The existence of a PG(2,n) is ”equivalent” to the existence of an AG(2,n).

⋅ A PG(2,n) does exist for each n when n is a prime power.

⋅ No other kind of PG(2,n) has been founded.

⋅ A PG(2,n) does not exist for n = 1,2,6,10 and possibly others.
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⋅ We can extend AG(2,n) and PG(2,n) to AG(d,n) and PG(d,n) for d ≥ 3 respec-

tively. But, the constructions are getting harder.

The proof of (∗). More details will be given later.

PG(2, n)
Deleting a block.

Ô⇒ AG(2, n)

AG(2, n)
Adding a line at infinity.

Ô⇒ PG(2, n)

Examples

n = 2, AG(2,2) ∶ X = Z4, B = {{0,1},{2,3},{1,2},{0,3},{1,3},{0,2}} .

parallel classes

0 1

2 3

0 1

2 3

4

5
6

n = 2, PG(2,2) ∶ X = Z7, B = {{0,1,4},{2,3,4},{0,2,5},{1,3,5},{0,3,6},

{1,2,6},{4,5,6}}.

⋅ A PG(2,n) is a symmetric design, i.e. , ∣X∣ = ∣B∣.

⋅ An AG(2,n) contains parallel classes each has n blocks. In fact, there are n +

1 parallel classes.

⋅ A parallel class of a design is a collection of blocks B1,B2,⋯,Bt such that
t

⋃
i=1
Bi =

X.
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9 BIBD with k = 3

(⋅) A 2-(v,2,λ) design exists for all v ≥ 2.

This is a direct consequence of using λ ⋅Kv.

(⋅) A 2-(v,3,1) design exists if and only if v ≡ 1 or 3 (mod 6).

This theorem was first proved by T.P. Kirkman in 1847. Later, there are many

different proofs for this seeming easy but quite complicate ”fact”.

Theorem 9.1.

A 2-(v,3,1) design, known as a Steiner triple system of order v, exists if and only if

v ≡ 1 or 3 (mod 6).

Proof. (⇒) As mentioned earlier, if a 2-(v,3,1) design exists then r = v−1
3−1 = v−1

2 and

b = v(v−1)
6 are both integers. This implies that v ≡ 1 or 3 (mod 6).

(⇐)We prove this sufficient condition by constructing a 2-(v,3,1) design for each v ≡ 1

or 3 (mod 6).

Kirkman’s 15 School Girls Problem

Problem: Arrange 15 girls to line up in five rows with each row has three girls to

walk to school. If we can complete that any two of girls stay in a row for some day in

seven days?

Answer: We need at least 7 days since each day we use up 15 pairs and in total

there are (15

2
) = 105 pairs. So, the extra requirement is that every day, the arrangement

is in fact a parallel class. Such designs are also known as Kirkman triple systems. Such

systems of order v exist if and only if v ≡ 3 (mod 6) except v = 9.
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Note AG(2,3) is a Kirkman triple system of order 9. Here is an answer of 15 girls

problem.

0 1 2 0 3 4 0 5 6 0 7 8 0 9 10 0 11 12 0 13 14

3 7 11 1 7 9 1 8 10 1 11 16 1 12 13 1 3 5 1 4 6

4 9 13 2 12 14 2 11 13 2 4 5 2 3 6 2 8 9 2 7 10

5 10 12 5 8 13 3 9 14 3 10 13 4 8 11 4 10 14 3 8 12

6 8 14 6 10 11 4 7 12 6 9 12 5 7 14 6 7 13 5 9 11

First, we need to construct Steiner triple systems of small orders, v = 7,9,13 and

15. (Defined on Zv)
v = 7 013, 124, 235, 346, 450, 561, 602 (PG(2))

v = 9 012, 345, 678, 036, 147, 258, 048, 156, 237, 057, 138, 246 (AG(3))

v = 13 B = {(0,3,4) + i, (0,2,7) + i (mod 13) ∣ i ∈ Z13} (PG(3))

v = 15 B = {(0,3,4) + i, (0,2,8) + i, (0,5,10) + i (mod 15) ∣ i ∈ Z15}

Now, we shall use the following two constructions to construct all the other Steiner

triple systems of order v, STS(v) in short.

Case 1. v ≡ 1 (mod 6), v ≥ 19.

Let v = 6k + 1, k ≥ 3. Let L(i) be a commutative Latin square of order 2k defined

on {(i, j)∣i ∈ Z3 and j ∈ Z2k} with holes of size 2. Let (X,B) be a design with X =

{∞} ∪ (Z3 ×Z2k), and B be defined as follows:

(a) B ∈ B if B is a block in an STS(7) defined on {∞, (i,2h), (i,2h + 1) ∣ i ∈ Z3}

for each 0 ≤ h ≤ k − 1; and

(b) {(i, x), (i, y), (i+1, L(i)(x, y))} ∈ B for all i ∈ Z3 and x, y ∈ Z2k such that (i, x)

and (i, y) are met in a 2 × 2 hole. (The first component is taking modulo 3 and the

second component is taking modulo 2k.)
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It’s left to check that (X,B) is an STS(v). First, we count ∣B∣. Since each entry out-

side the hole and in the upper part of L(i) gives a triple(block), we have 3 ⋅ (2k)
2−(2k)⋅2

2 +7k

which is equal to 12k2−12k+14k
2 = 6k2 + k = 1

6(6k + 1)6k = v(v−1)
6 . Hence, if each pair of two

elements in X occurs, then the pair occurs at most once. So, we have to verify each

pair of elements of X does occur in a block of B defined above in (a) and (b). Clearly, if

one of the elements is ∞, then {∞, x} occurs in the blocks defined in (a). On the other

hand, consider (i1, x) and (i2, x) where i1, i2 ∈ Z3 and x, y ∈ Z2k. First, if they are in the

holes of either L(i1) or L(i2) (=L(i)), then they occur together in the block of (a). On

the other hand, if they are not in the holes of L(i), then we have two cases to consider:

(1) i1 = i2 = i

Clearly, they occur together in {(i, x), (i, y), (i + 1, L(i)(x, y)} in (b).

(2) i1 ≠ i2
Without loss of generality, let i2 ≡ i1 + 1 (mod 3) and i1 = i. Since there exists a

z ∈ Z2k such that L(i)(x, y) = y,(i1, x) and (i2, y) will occur in {(i1, x), (i1, z), (i2, y)} of

(b).

This concludes of proof. All STS(v)’s of order v ≡ 1 (mod 6) have been con-

structed. Next, let v ≡ 3 (mod 6) and X = {∞1,∞2,∞3} ∪ (Z3 ×Z2k).

The construction can be obtained similarly. The blocks in B can be defined as

follows: (a) Use STS(9) instead of STS(7) when {∞} is replace by {∞1,∞2,∞3}.

Moreover, fix {∞1,∞2,∞3} as a block for each STS(9). (b) Use the same construc-
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tion.

Hence ∣B∣ = 1+11k+ 3[(2k)2−4k]
2 = 6k2+5k+1 = (2k+1)(3k+1) = (6k+3)(6k+2)

6 = v(v−1)
6 .

And the existence of every pair of distinct elements in X is similar.

Note that the above construction was obtained not long time ago. There are

quite a few methods in construction Steiner triple systems. One of the most ”popular”

one is called ”cyclic construction” method or in general, difference method.

Definition 9.2. (Difference)

Let X = Zn. Then the difference of two distinct elements x and y in X is ±(x− y) ∶=

±∣x − y∣ such that 1 ≤ ∣x − y∣ ≤ ⌊n2 ⌋.

The differences obtained in a set S is the set of all difference of two distinct elements

in S.

Example

S = {0,1,3} ⊆ Z7. diff(S) = {±1,±2,±3} (mod 7) = {1,2,3,4,5,6}.

Difference Sets

Given a subset S of Zn. The set of differences is S, denoted by D2(S), is {a − b

(mod n)∣a, b ∈ S}. For example, if n = 7 and S = {1,2,4}, then D(S) = {1,2,3,4,5,6}.

Moreover, if n = 13 and S = {1,2,4,9}, then D(S) = {1,2,⋯,12}.

(⋅) Observe that if a, b ∈ S ⊆ Zn, then a − b (mod n) ∈ Z∗
n provided a ≠ 6.

(⋅) If ∣S∣ = s, then ∣D(S)∣ ≤ 2(s
2
) (procided s ≤ n).

(⋅) A set S is called an equi-difference set if the elements of S form an arithmetic

progresion, i.e., S = {a, a + d,⋯, a + (k − 1)d} where a + (t − 1)d ≤ n and d > 0.

(⋅) Note that an equi-difference set could produce the minimum number of dis-

tinct differences among all the sets of the same cardinality.

(⋅) If the difference of a and b is defined as min{∣a−b∣, n−∣a−b∣}, then it is known

as the circular difference of a and b or half-difference in short.

(⋅) {1,2,4} in Z7 will provide three half-differences 1,2 and 3. Clearly, in Zn, the
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set of half-differences will be {1,2,⋯, ⌊n2 ⌋}.

(⋅) The set of half-differences in S is defined as D2(S). Moreover, ∣D2(S)∣ ≤ (∣S∣
2
).

(⋅) Again, an equi-difference set S is the set whose D2(S) is of ”smaller” cardi-

nality. For example, D({1,2,3,4}) = {1,2,3} and D({0,2,4,6}) = {2,4} in Z8.

Definition 9.3. (Difference set)

A set of k elements D = {a1, a2,⋯, ak} in Zv is called a (v, k, λ)-difference set if

∀d ∈ Z∗
v there are exactly λ ordered pairs (ai, aj), ai, aj ∈ D such that ai − aj ≡ d (mod

v).

Definition 9.4. (Base blocks)

A collection of subsets of X = Zv is called a set of base blocks C of a 2-(v, k, λ)

design if the following conditions satisfied:

(1) Each set of C is of size k; and

(2) ⋃S∈Cdiff(S) contains each difference in ±{1,2,⋯, ⌊n2 ⌋} exactly λ times.

Constructing design cyclically

Theorem 9.5. If C is a set of base blocks of a 2-(v, k, λ) design (X,B) = (Zv,B),

then B = {i + S∣S ∈ C and i ∈ Zv}. (Note that if S = {x1, x2,⋯, xk}, then i + S =

{x1 + i, x2 + i,⋯, xk + i} (mod v).)

Example

X = Z7, C = {{0,1,3}} is a set of base block of an STS(7).

Example

X = Z15, C = {{0,3,4},{0,2,8},{0,5,10}} is a set of base blocks of an STS(15).

Note that {0,3,4} and {0,2,8} generate 15 blocks resp. and {0,5,10} generates 5

blocks.
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Definition 9.6. (Full orbit and short orbit)

A base block is of full orbit (short orbit) if the block generates v blocks (less than

v blocks) in (Zv,B) respectively.

Definition 9.7. (Cyclic design)

A design is called a cyclic design if the design can be obtained by using a set of base

blocks.

(∗) The above STS(7) and STS(15) are cyclic Steiner triple systems.

(∗∗) No cyclic STS(9) exists!

Theorem 9.8.

A cyclic Steiner triple system of order v ≠ 9 exists.

In order to prove the above theorem, we need to find a set of base blocks for

each order v ≡ 1 or 3 (mod 6). Therefore, a systematic construction should be obtained.

Definition 9.9. (Skolem sequences)

A Skolem sequence of order n is a sequence of length 2n (a1, a2,⋯, a2n) such that

each of the elements in {1,2,⋯, n} occurs exactly twice. Moreover, the indices of ”i”,

i ∈ {1,2,⋯, n}, occurred exactly ”i” apart, i.e. if at = i, then either at+i = i or at−i = i.

Example

n = 4, < 1,1,3,4,2,3,2,4 >

a1a2a3a4a5a6a7a8.

n = 5, < 1,1,3,4,5,3,2,4,2,5 >.

Theorem 9.10.

A Skolem sequence of order n exists if and only if n ≡ 0,1 (mod 4). (Type A)

For n ≡ 2 or 3 (mod 4), we can obtain an extended Skolem sequence by using

one extra bit. For example, n = 2, < 1,1,2,−,2 >. n = 3, < 1,1,2,4,3,−,3 >.
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Theorem 9.11.

An extended Skolem sequence of order n exists if and only if n ≡ 2 or 3 (mod 4).

(Type B)

For convenience, we can also use their indices of a Skolem sequence or an ex-

tended Skolem sequence to represent the sequence. For example, < 1,1,3,4,5,3,2,4,2,5 >∶=

{{1,2},{7,0},{3,6},{4,8},{5,10}} and < 1,1,2,3,2,−,3 >∶= {{1,2},{3,5},{4,7}}. There-

fore, they are partitions of [1,10] and [1,7]∖{6} into five 2-subsets and three 2-subsets

respectively.

For convenience, we shall use set-notation for Skolemn sequences. So, we hace a

revised definition for Skolemn sequence.

Definition 9.12.

A Skolemn sequence of order n is a partition of [1,2n, ] into 2-subsets {{ai, bi}∣i =

1,2,⋯, n} such that ∣ai − bi∣ = i,1 ≤ i ≤ n. An extended Skolemn sequence of order

n is a partition of [1,2n + 1] ∖ {2n} into 2-subsets {{ai, bi}∣i = 1,2,⋯, n} such that

∣ai − bi∣ = i,1 ≤ i ≤ n.

Fact. A Skolemn sequence of order n exists if n ≡ 0 or 1 (mod 4). An extended Skolemn

sequence of order n exists if n ≡ 2 or 3 (mod 4).

The constructions for Skolemn sequences and extended

Skolemn sequences

Let n ≥ 6. Case 1 and case 2 are for Skolemn sequences. The others are for extended

Skolemn sequences. Case 1: n ≡ 0 (mod 4). Let n = 4k.
Pairs Differences

r = 1,2,⋯,2k {4k + r − 1,8k − r + 1} {4k − 2r + 2}{2,4,⋯,4k}

r = 1,2,⋯, k − 2 {r,4k − r − 1} {4k − 2r − 1} ∪ {2k + 3,⋯,4k − 3}

r = 1,2,⋯, k − 2 {k + r + 1,3k − r} {2k − 2r − 1} ∪ {3,⋯,2k − 3}

{k − 1,3k},{k, k + 1},

{2k,4k − 1},{2k + 1,6k}
{2k + 1,1,2k − 1,4k − 1}
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Case 2: n ≡ 1 (mod 4). Let n = 4k + 1.

Pairs Differences

r = 1,2,⋯,2k {4k + r + 1,8k − r + 3} Check yourself!

r = 1,2,⋯, k {r,4k − r + 1}

r = 1,2,⋯, k − 2 {k + r + 2,3k − r + 1}

{k + 1, k + 2},{2k + 1,6k + 2},{2k + 2,4k + 1}

Case 3: n ≡ 2 (mod 4). Let n = 4k + 2.

Pairs Differences

r = 1,2,⋯,2k {r,4k − r + 2} Check yourself!

r = 1,2,⋯, k − 1 {4k + r + 3,8k − r + 4}

r = 1,2,⋯, k − 1 {5k + r + 2,7k − r + 3}

{2k + 1,6k + 2},{4k + 1,6k + 3},

{4k + 3,8k + 5},{7k + 3,7k + 4}

Case 4: n ≡ 3 (mod 4). Let n = 4k − 1.

Pairs Differences

r = 1,2,⋯,2k − 2 {4k + r,8k − r − 2} Check yourself!

r = 1,2,⋯, k − 2 {r,4k − r − 1}

r = 1,2,⋯, k − 2 {k + r + 1,3k − r}

{k − 1,3k},{k, k + 1},{2k,4k − 1},

{2k + 1,6k − 1},{4k,8k − 1}

Fact. For each d ∈ N, [i + d,2n + d], a Skolemn sequence of order n exists if n ≡ 0 or 1

(mod 4). This is also true for extended Skolemn sequence on [1+d,2n+d+1]∖{2n+d}.

In fact, there are quite a few modified sequences by using the above two sequences.
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For example,

Fact. [1,2n+1]∖{k} can be partitioned into 2-subsets {{ai, bi}∣i = 1,2,⋯, n} such that

∣ai − bi∣ = i for each 1 ≤ i ≤ n provided,

(a) n ≡ 0 or 1 (mod 4) and k ≡ 1 (mod 2); and

(b) n ≡ 2 or 3 (mod 4) and k ≡ 0 (mod 2).
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For example,

Theorem 9.13.

A cyclic STS(v) exists if and only if v ≠ 9 and v ≡ 1 or 3 (mod 6).

Proof.

Case 1: v ≡ 1 (mod 6). For convenience, let v = 6k + 1 and we consider the ”half”

difference. Then, the set of differences is {1,2,⋯,3k}. Note that the difference 3k is

the same as the difference 3k+1. Hence, by using Skolemn sequences of type A or type

B, {k + 1, k + 2,⋯,3k} or {k + 1, k + 2,⋯,3k − 1,3k + 1} can be partitioned (respectively)

into 2-subsets {{ai, bi}∣i = 1,2,⋯, k}, such that ∣ai − bi∣ = i, i = 1,2,⋯, k. This implies

that we can find k base blocks {0, i, i + ai = bi}(ai < bi) for i = 1,2,⋯, k. Thus, we have

a cyclic STS(v).

Example v = 19, differences are 1,2,3,⋯,9.

4,5,6,7,8,10⇒ (4,5), (6,8), (7,10)

⇒ Difference triples are {1,4,5},{2,6,8},{3,7,10}.

Base blocks: {0,1,5},{0,2,8},{0,3,10}.

Case 2: v ≡ 3 (mod 6). Let v = 6k+3 and the set of half differences is {1,2,⋯,3k+1}.

First, we delete 2k +1 form the above set. Hence, the set of differences is {1,2,⋯, k, k +

1, k+2,⋯,2k,2k+2,⋯,3k+1}. It remains to show that {k+1, k+2,⋯,2k,2k+2,⋯,3k+1}

can be partitioned into 2-subsets {ai, bi} such that ∣ai − bi∣ = bi − ai = i (bi > ai) for
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i = 1,2,⋯, k. Again, it can be done by using either 3k + 1 or 3k + 2 in respective cases.

In fact, it is up to the relationship between k and v. If k ≡ 1 or 2 (mod 4), then we par-

tition {k+1, k+2,⋯,3k,3k+2}∖{2k+1} into suitable 2-sets provided k ≡ 0 or 1 (mod 4).

On the other hand, if k ≡ 3 or 0 (mod 4), then we partition {k+1, k+2,⋯,3k+1}∖{2k+1}

into 2-subsets satisfying ∣ai − bi∣ = bi − ai = i (bi > ai).

Recursive Constructions

We may also use the idea of recursion to construct all STS(v). There are two

constructions.

1. v → 2v + 1 (If an STS(v) exists, then an STS(2v + 1) exists.)

Since v ≡ 1 or 3 (mod 6), Kv+1 is a complete graph of even order and thus Kv+1 can

be decomposed into v 1-factors by way of χ′(Kv+1) = v. Let F1, F2,⋯, Fv be the set of

1-factors mentioned above. Now, we are ready to constuct an STS(2v+1) = (Z2v+1,B).

Let the given STS(v) be defined on {0,1,2,⋯, v} and V (Kv+1) = {v, v+1,⋯,2v}. More-

over, let Fi = {{ai1, bi1},⋯,{aiv+1
2

, biv+1
2

} be the ith 1-factor, i = 1,2,⋯, v. So, B can be

obtained by the following:

(a) If B is a triple (block) in STS(v), then B ∈ B; and

(b) For each i ∈ {0,1,2,⋯, v − 1}, {i, a(i+1)
j , b

(i+1)
j } ∈ B where {a(i+1)

j , b
(i+1)
j } ∈ Fi+1.

(We use < i,Fi+1 > denote {i, a(i+1)
j , b

(i+1)
j } for convenience.)

It is a routine matter to check that (X,B) = (Z2v+1,B) is an STS(2v + 1).

2. v → 2n + 7

This construction is more complicate comparing to the first one. The main idea

comes from the graph Kv+7 ≈ G(v + 7;D) where D = {1,2,⋯, v+7
2 }. We can view

Kv+7 as a circulant graph with difference set D. By Stern and Lenz’s Lemma, G ∶=

Kv+7 ∖ G(v + 7,{1,2,3}) can be v-edge-colored for each v ≥ 3. This implies that G

can be decomposed into v 1-factors F1, F2,⋯, Fv. Now, we are ready to construct an

STS(2v + 7) by way of an STS(v) defined on X = {0,1,2,⋯, v − 1}. Let (X,B1) be

an STS(v) and STS(2v + 7) = (Z2v+7,B). It suffices to find B. The triples of B are

obtained as follows:
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(a) ∀B ∈ B1, B ∈ B;

(b) Decompose G(v + 7;{1,2,3}) into K3’s defined on {v, v + 1,⋯,2v + 6} and let

each of them be a triple of B; and

(c) < i,Fi+1 >⊆ B for each i = 0,1,⋯, v − 1. (< i,Fi+1 > is similar to (b) in case 1.)

Again, it is not difficult to check (Z2v+7,B) is indeed an STS(2v + 7).

Based on the above two constructions, we conclude the proof by showing each

STS(u) can be obtained by recursive constructions v → 2v + 1 or v → 2v + 7. First, if

u = 6t + 1, then u = 12s + 1 or 12s + 7. Since 12s + 1 = (6s − 3) × 2 + 7 ≡ 3 × 2 + 7 (mod

6) and 12s + 7 = (6s + 1) × 2 + 1, an STS(u) can be constructed recursively. On the

other hand, if u = 6t + 3, then u = 12s + 3 or 12s + 9. Since 12s + 3 = (6s + 1) × 2 + 1

and 12s + 9 = (6s + 1) × 2 + 9, an STS(u) can be constructed by the same reason. This

concludes the proof.

Theorem 9.14. (Stern and Lenz)

Let G(n;D) be a circulant graph with difference set D. If n
2 is an integer and n

2 ∈D,

then G(n;D) is of class 1.

This theorem can be applied to prove the will-known Doyen-Wilson theorem on

Steiner triple systems.

Theorem 9.15. (Doyen and Wilson, 1973)

An STS(v) adn be embedded in an STS(u) if and only if u ≥ 2v + 1.

Proof. (⇒) Let (X1,B1) be an STS(v) and (X,B) be an STS(u) such that X1 ∈ X,

say x0. Then, for each element xi ∈ X1, the triple contain x0 and xi should be {x0, xi, yi}

where yi ∈ X∖X1. Since there are v elements in X+1, X∖X1 contains x0, yi, i = 1,2,⋯, v.

Hence, u ≥ 2v + 1.

(⇐) It takes some effort to finish the proof.

Case 1. v = 6k + 1 and u = 6h + 3 where u ≥ 12k + 3, i.e. h ≥ 2k.

By the idea of recursive constructions, we define a complete graph G of order
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u − v = 6(h − k) + 2 defined on [0, u − 1] ∖ [0, v − 1]. Therefore, G ≅ G(u − v;D) where

D = {1,2,⋯,3(h− k) + 1}. Now, G can be decomposed into v 1-factors and a collection

of triples. See the following example to deseribe the idea.

Example v = 13, u = 45.

G ∶= G(32;{1,2,⋯,16}). Let D′ = {9,11,12,13,14,15,16}. By Stern and Lenz’s

lemma, G(32;D′) can be partitioned into 13 1-factors. On the other handG(32;{1,2,3,4,

5,6,7,8,10}) can be partitioned into cyclic triples by using extended Skolem sequence.

Case 2. v = 6k + 3 and u = 6h + 3 where u ≥ 12k + 7, i.e. h ≥ 2k + 1.

Example v = 15, u = 45. G ∶= G(30{1,2,⋯,15}

Now, D′ = {6,8,9,11,12,13,14,15}, D1 = {10} (short orbit), D2 = {1,2,3,4,5,7}

(full orbits). G(30;D′) can be partitioned into 15 1-factors and G(30;D1 ∪D2) can be

decomposed into triples.

Case 3. v = 6k + 1 and u = 6h + 1

Example v = 13, u = 43.

(⋅) G(30;{1,2}) can be decomposed into 10 triangles, B0, and one Hamilton cycle

(two 1-factors), let them be F1 and F2.

Let D′ = {5,8,12,13,14,15}. Together with F1 and F2 and G(30;D′), we hace

13 1-factors. For the other differences D” = {3,4,6,7,9,11} ∪ {10}. G(30;D”) can be

decomposed into triangles, B1. Combine B0,B1, STS(13) and (aiFi)’s we have the

embedding.

Case 4. v = 6k + 3 and u = 6h + 1

The proof is similar to that of case 3. ◻
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10 Constructing Designs Using Latin Squares

To start, we use a well-known construction to construct an STS(v) where v ≡ 3 (mod

6). Let v = 6k + 3 and L = [li,j] be an idempotent commutative Latin square of order

2k + 1. Now, we are ready to construct the Steiner triple system of order 6k + 3.

(1) Let X = Z3 ×Z2k+1.

(2) ∀i ∈ Z2k+1), let {(0, i), (1, i), (2, i)} ∈ B.

(3) ∀i < j ∈ Z2k+1, let {(0, i), (0, j), (1, li,j)}, {(1, i), (1, j), (2, li,j)}, {(2, i),

(2, j), (0, li,j)} be triples in B.

Then, (X,B) is an STS(6k + 3).

It is easy to check any two elements of X will occur in a triple and we have in total

(2k + 1) + 3 ⋅ (2k+1)2−(2k+1)
2 = 2k + 1 + 6k2 + 3k = 6k2 + 5k + 1 = (6k+3)(6k+2)

6 .

(∗) If (X,B) is an STS(v), then ∣B∣ = v(v−1)
6 .

(∗∗) In difference method, the part v ≡ 3 (mod 6) is comparatively more complicate,

we can replace it with this construction if we only try to prove the ”sufficient”

direction.

We can use MOLS(n) to construct designs with larger blocks.

(∗ ∗ ∗) An Affine plane of order n exists if n is a prime power.

Step 1 Construct n − 1 MOLS(n), let them be L(1), L(2), ..., L(n−1).

Step 2 Let L(r) and L(c) be the row-indices and column-indices squares respectively.

L(r) =

1 1 ⋯ 1

2 2 ⋯ 2

⋮

n n n

L(c) =

1 1 1

2 2 2

⋮ ⋮ ⋯ ⋮

n n n
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Step 3 Let X = (Zn ∪ {∞}) ×Zn = X ∪ ({∞} ×Zn).

Step 4 ∀i ≠ j ∈ Zn, let Bi,j = {(0, i), (1, j), (2, L(1)(i, j)), (3, L(2)(i, j)),⋯,

(∞, L(n−1)(i, j)) be a block in B. (There are n2 blocks.)

Step 5 Let B′ = {Bi,j − (∞, L(n−1)(i, j))∣ Bi,j ∈ B}.

Step 6 Let B = B′ ∪ {{i} ×Zn∣ i ∈ Zn}.

Then, we conclude the (X,B) is an Affine plane of order n.

⋅ Let X̃ = {{∞}} ∪X and B̃ = B ∪ {{{∞},{i} ×Zn}∣ i ∈ Zn}.

Then (X̃, B̃) is a projective plane of order n.

We can also use an orthogonal array to construct the desired projective plane of order

n where n is a prime power. The steps are similar, except the kth block Bk will be

obtained by using the kth column vector of the following array.

A ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bk

i

j

⋯ L
(1)
i,j ⋯

⋮

L
(n−1)
i,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(n+1)×n2

If the entries of A are in {1,2,⋯, n}, then we have Bk = {i, n+j,2n+L(1)
i,j ,⋯, n2+Ln−1

i,j }.

So, by adding {0,1,2,⋯, n},{0, n + 1, n + 2,⋯,2n},⋯,{0, n2 + 1, n2 + 2,⋯, n2 + n} to the

collection of n2 blocks B′
ks we obtain the PG(n). Now, an AG(n) can be constructed

by deleting {0, n2 + 1, n2 + 2,⋯, n2 + n} and keep those blocks B′
k = Bk/{0, n2 + 1, n2 +

2,⋯, n2 + n}.

Here, we mention some PBD’s.

Theorem 10.1. For each v ≡ 1 (mod 3), there exists a 2-(v,K,1) design where K =

{4,7} except v = 10,19.
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We omit the proof, but we present some examples here.

v = 22

∞1 ∞2 ∞3 ∞4 ∞5 ∞6 ∞7

By using a Kirkman triple system of order 15, we can attach 7 points in the ”infinity”

and obtain the desired PBD.

v = 85

21

21

21

21

First, we have a 2 − (85,{4,22},1) design by using two MOLS(21). Then, a 2 −

(85,{4,7},1)-design will be obtain from v = 22 case.

We can also use MOLS(n) to construct PBDs in which K is of size larger than one.

For example, we can use an Affine plane of order 5 to construct a PBD 2=(24,{4,5},1)

design: (X,B). The idea comes from deleting an element from X. Then, each block

which contains this element be comes a block of size 4, and the other blocks which do

not contain this element remain the same.

Hence, we can start with a special type of design, and then either adding or deleting

elements (to or from) X to obtain a new design.

Definition 10.2. (Group Divisible Designs of type nm)

A design (X,B) is called a group divisible design of type nm if X can be partitioned in

m disjoint subsets of size n (called groups) G1,G2,⋯,Gm such that each B ∈ B, ∣B∩Gi∣ ≤

1, ∣B∣ = k and every pair of two elements from different groups occurs together in exactly

λ blocks of B. The design (X,B) is denoted by GDD(n,m;k, λ).
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A GDD(n,m;k, λ) can be stated as a k-GDD of type nm and index λ. We shall

solve the case k = 3 and λ = 1 in what follows. First, we need a theorem.

Theorem 10.3. For each v ≡ 5 (mod 6), a 2-(v,{3,5},1) design exists. Moreover, we

have such a design with exactly one block of size 5.

Proof. (By difference method.) Let v = 6k + 5 and X = X1 ∪ X2 where ∣X1∣ = 5 and

∣X2∣ = 6k. Now let X2 = Z6k. Hence, the set of differences in Z6k = {1,2,⋯,3k(half)}. As

mentioned in the above construction, we can find difference triples either in {1,2,⋯,3k−

3} or {1,2,⋯,3k−4,3k−2}. Hence, after taking away those triples, we have a 5-regular

graph H left defined on Z6k. Since 3k is one of the differences, χ′(H) = 5. The proof

then follows by the same idea as in recursive construction.

◻

triples

K5

⋮⋮⋮⋮⋮ H

Note. Such a PBD also exists for v ≡ 1 or 3 (mod 6) since we can take all blocks of

size 3.
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Group Divisible Design (3-GDD)

Problem For which m and n, k3∣Km(n)?

Fact 1 If n = 1, then m ≡ 1 or 3 (mod 6).

Definition 10.4. (3-sufficient)

A graph G is said to be 3-sufficient if (1) ∣G∣ ≥ 3, (2) G is an even graph and (3)

3 ∣ ∣∣G∣∣.

Problem (Open) For which 3-sufficient graph G, K3∣G?

Nash-Williams Conjecture (Remains open)

If G is 3-sufficient and δ(G) ≥ 3
4 ∣G∣, then K3∣G.

Fact 2 If Km(n) is 3-sufficient, then

(1) Either n is even or n is odd and m is odd; and

(2) 3 ∣ (m2 ) ⋅ n2.

Theorem 10.5. If Km(n) is 3-sufficient and m ≥ 3, then K3∣Km(n).

We need several basic facts in order to prove the theorem.

Fact 3 K3∣K3(n). (By using a L.S. of order n.)

Fact 4 K3∣K4(n) if and only if n is even.

Proof. (⇒) Since m = 4, n must be even in order that each vertex is of even degree.

(⇐) If n = 2, then K3∣K4(2). This is a consequence of deleting one vertex of an

STS(9).

0 1 2
3 4 5
6 7 8

0 3 6
1 4 7
2 5 8

0 4 8
1 5 6
2 3 7

0 5 7
1 3 8
2 4 6

1 2

3 6

4 8

5 7

0

Now, let n = 2t. The proof follows by blowing up each vertex into t vertices and use

an LS(t) to construct all the K ′
3s we need.

For example,
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3

4

5

t

t

t⋅⋅⋅⋅ ⋅⋯

⋅⋅⋅⋅ ⋅⋯

⋅⋅⋅⋅ ⋅⋯

As a consequence, we have 8t2 K ′
3s in total. This is also the number K ′

3s we desire

: 6⋅(2t)2

3 = 8t2.

Fact 5 If m ≡ 1 or 3 (mod 6), then K3∣Km(n) for each positive integer n.

Proof. It is a direct consequence of blowing each vertex of Kn into n vertices. ◻

Fact 6 If m ≡ 0 or 4 (mod 6) and n is even, then K3∣Km(n).

Proof. First, we take an STS(2m+1) (X,B) and delete one vertex from X, then we

have K3∣Km(2). Since n is even, we use the same technique as that in Fact 4. This

concludes the proof. ◻

Fact 7 If m = 5 and 3 ∣n, then K3∣Km(n).

Proof. Let n = 3k. By the fact taht K3∣K5(3), we conclude the proof by blowing each

vertex into k vertices. ◻

Fact 8 If m ≡ 5 (mod 6) and 3 ∣n, then K3∣Km(n).

Proof. This is a direct result of the existence of a PBD (m,{3,5},1)-design and Fact

7. ◻

Fact 9 If m ≡ 2 (mod 6) and 6 ∣n, then K3∣Km(n).

Proof. Let m = 6k + 2. Consider 2m+ 1 ≡ 5 (mod 6). Since a (2m+ 1,{3,5},1)-design

exists, we may let it be as in the following figure.
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∞

The only K5

Figure for (2m+1,{3,5},1) PBD

Now, by deleting ∞, we obtain a decomposition of Km(2) into K ′
3s and one K5. Let

n = 6k. Then, the proof follows by blowing up each vertex into 3k vertices. ◻

Theorem 10.6. (3-GDD)

K3∣Km(n) if and only if m ≥ 3 and Km(n) is 3-sufficient.

Proof. Combining Facts 5, 6, 7, 8, 9; we have the proof. ◻
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11 Disproof of Euler’s Conjecture

Definition 11.1. (Transversal Designs)

A GDD(n,m;m,λ) is also known as a transversal design T (n;m,λ), i.e. each

block is of size m (the number of groups) or each block B ∈ B intersects each group.

(⋅) Observation

The existence of a pair of orthogonal Latin squares of order n is equivalent to the

existence of a T (n; 4,1) design.

(∗) If we can construct a T (n;m,1), then there exist m − 1 MOLS(n).

(⋅) Since a T (n;n + 1,1) exists for prime power n, there exist n − 1 MOLS(n).

The existence of T (n;n + 1,1) can be proved by a consequence of PG(n): Delete an

element say ”0” and then keep all the blocks of size n + 1.

Another idea of constructing MOLS(n) comes from the construction of PBD(X,B),

where ∣X∣ = n.

Theorem 11.2.

Let (X,B) be 2-(n,K,1) design such that for each k ∈ K, there exist at least t

mutually orthogonal Latin squares of order k. Then, there exist t − 1 MOLS(n).

Proof. If for each k ∈ K, there exists an idempotent Latin square of order k, then

there exists an idempotent Latin square of order n which is obtained from (X,B), see

next page for an example. Therefore, if there are at least t − 1 idempotent mutually

orthogonal Latin squares of order k for each k ∈ K, then we can construct t − 1 idem-

potent Latin squares of order n.

(∗) (A consequence of the existence of t MOLS(k)’s.)

By the fact that all induced subsquares from blocks are orthogonal, there t − 1

Latin squares of order n are also mutually orthogonal by two finger’s rule.

X = {0,1,2,⋯,9},

B = {0123,0456,0789,147,258,369,159,267,348,168,249,357}
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L ∶

0 2 3 1 5 6 4 8 9 7

3 1 0 2 7 9 8 4 6 5

1 3 2 0 9 8 7 6 5 4

2 0 1 3 8 7 9 5 4 6

6 7 9 8 4 0 5 1 3 2

4 9 8 7 6 5 0 3 2 1

5 8 7 9 0 4 6 2 1 3

9 4 6 5 1 3 2 7 0 8

7 6 5 4 3 5 1 9 8 0

8 5 4 6 2 1 3 0 7 9

a c b

c b a

b a c

a c d b

d b a c

b d c a

c a b d

(∗) If {i, j} occurs in Bk, then use the idempotent Latin square defined on Bk to

fill in Li,j or Lj,i respectively.

Conclusion

(i) If i = j, then Li,j = i.

(ii) If i ≠ j, Li,j is an element of Bk where {i, j} ⊆ Bk.

(iii) Li,j ≠ Li,j′ and Li,j ≠ Li′,j. ({i, j} and {i, j′},respectively {i, j} and {i′, j} are

not in the same block.)

Since a 2-(22,{4,7},1) design exists, there exists a pair of MOLS(22). In fact, for

each v ≥ 19 and v ≡ 7 and 10(mod 12), a 2-(v,{4,7∗},1) design exists where 7∗ means

that K7 occurs exactly once. Hence, pair of MOLS(v) exists for v ≡ 7 and 10(mod 12)

and v ≥ 19.

(∗) We can use a 2-(v,{7,8,9},1) design for certain v’s to show that five MOLS(v)

exist. For example, v = 70.
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Start with the AG(9) and truncate two elements from the last block.

Another example, v = 2590. A PBD with λ = 1

Let (X,B) = GD(81,32; 32,1) ≅ T (81,32,1). Truncate two elements from the last
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group and take groups as blocks. Then, we have a PBD, 2-(2590,{31,32,79,81},1)

design. This implies that there are at least ”29” MOLS(2590)’s where 2590 = 2 × 1295.

Construction of T (3m + u; 4,1) where (i) a T (m; 5,1) exists, (ii) a

T (u; 4,1) exists and (iii) m ≥ u.

Step 1. Let (X1,B1) be a T (m; 5,1) with five groups G1, G2, G3, G4, G5 and (X2,B2)

be a T (u; 4,1) with four groups Hi = {x1, x2,⋯, xu} × {i}, i = 1,2,3,4, i.e. Hi =

{(x1, i), (x2, i),⋯, (xu, i)} ∶= {x1,i, x2,i,⋯, xu,i}.

Step 2. Let (X′
1,B′

1) be the T (m; 4,1) obtained by trancating G5. Hence, B′
1 can be

partitioned into in parallel classes L1, L2,⋯, Lu,⋯, Lm where each Lj is a set of

m disjoint blocks of size 4 defined on X1 ∖G5 = X′
1. (∣X′

1∣ = 4m, ∣B′
1 =m2.)

Step 3. Let X be defined as follows:

Ḡ1 ∶ G1 × {1},G1 × {2},G1 × {3},H1

Ḡ2 ∶ G2 × {1},G2 × {2},G2 × {3},H2

Ḡ3 ∶ G3 × {1},G3 × {2},G3 × {3},H3

Ḡ4 ∶ G4 × {1},G4 × {2},G4 × {3},H4

Noticed that each group contains 3m + u elements.

Step 4. Choose u parallel classes from (X′
1,B′

1), say L1, L2, L3,⋯, Lu. Starting from

L1 = {B1,1,B2,1,⋯,Bm,1}, use (Bi,1 × {1,2,3}) ∪ {x1,1, x1,2, x1,3, x1,4} to construct

a T (4 ∶ 4,1) which contains the block {x1,1, x1,2, x1,3, x1,4}. Then in L2, use

(Bi,2 ×{1,2,3}) ∪ {x2,1, x2,2, x2,3, x2,4} to construct a T (4; 4,1) which contains the

block {x2,1, x2,2, x2,3, x2,4}. So, we have 12m ⋅ u blocks in total without using

{xj,1, xj,2, xj,3, xj,4} j = 1,2,⋯, u.

Step 5. For those blocks B′ = {a, b, c, d} in Lu+1 ∪Lu+2 ∪⋯ ∪Lm, we use
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(a,1), (a,2), (a,3)

(b,1), (b,2), (b,3)

(c,1), (c,2), (c,3)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

to construct a T (3; 4,1) for each blocks. In total, we have
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9(m − u) ⋅m blocks.

Step 6. Construct a T (u; 4,1) based on ∪uj=1Hj. In total, we have u2 blocks. Com-

bining Steps 4 - 6, we have 15mu + 9m2 − 9um + u2 = 9m2 + 6mu + u2 = (3m + u)2.

Step 7. Step 6 shows that the total numbers of pairs from different groups we have is

6(3m + u)2. We have to claim every pair from different groups occurs in a block

in Step 4 - 6. It can be done by a routine check.

(⋅) Note that u can be 1, since two MOLS(1) exist.

(⋅) The choice of m’s is interesting. If m ≡ 1 or 5(mod 6), then there exist at least

three MOLS(m)’s.
(⋅⋅) Let n ≡ 2i(mod 18), i = 0,1,2,⋯,8.

Then n = 18k + 2i for k ≥ 1.

n m u

18k 6k − 1 3

18k + 2 6k − 1 5

18k + 4 6k + 1 1

18k + 6 6k + 1 3

18k + 8 6k + 1 5

18k + 10 6k + 1 7

18k + 12 6k + 1 9 k ≥ 2;k = 1⇒ 30 = 3 ⋅ 9 + 3

18k + 14 6k + 1 11 k ≥ 2;k = 1⇒ 30 = 3 ⋅ 9 + 5

18k + 16 6k + 5 1

Theorem 11.3. (P. B. S., 1959) [1][2]

For each n ≠ 2,6, there exists a pair of MOLS(n).

Proof. Combining the results obtained above.
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Two mutually orthogonal Latin squares of order 10.

4 0 9 8 3 2 7 5 6 1

2 3 7 5 4 0 9 8 1 6

8 1 6 9 0 4 5 3 2 7

9 8 1 4 5 6 3 2 7 0

0 9 8 6 1 3 2 7 4 5

7 2 3 1 6 5 4 0 9 8

5 4 0 3 2 7 6 1 8 9

6 5 4 2 7 1 8 9 0 3

1 6 5 7 8 9 0 4 3 2

3 7 2 0 9 8 1 6 5 4

5 4 0 1 2 7 8 9 3 6

3 1 6 4 8 5 9 2 0 7

0 9 8 7 3 6 1 4 5 2

2 5 4 3 6 1 7 8 9 0

9 8 7 6 1 0 4 5 2 3

1 6 3 5 9 2 0 7 4 8

8 7 2 9 0 4 5 3 6 1

4 0 9 2 7 8 3 6 1 5

7 2 5 0 4 3 6 1 8 9

6 3 1 8 5 9 2 0 7 4
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Two mutually orthogonal Latin squares of order 14.

12 7 0 6 4 2 11 9 13 5 3 1 10 8

1 11 10 4 5 6 13 8 9 0 7 12 2 3

2 1 11 0 7 12 3 4 5 6 13 8 9 10

10 9 8 1 2 3 4 5 6 13 0 7 12 11

7 0 12 3 1 10 8 6 4 2 11 9 13 5

3 2 1 13 8 9 10 11 0 7 12 4 5 6

5 4 3 10 11 1 2 0 7 12 6 13 8 9

13 6 5 2 3 4 0 7 12 8 9 10 11 1

9 8 13 5 6 0 7 12 10 11 1 2 3 4

11 10 9 8 0 7 12 1 2 3 4 5 6 13

0 12 7 11 9 13 5 3 1 10 8 6 4 2

4 3 2 7 12 5 6 13 8 9 10 11 1 0

6 5 4 12 13 8 9 10 11 1 2 3 0 7

8 13 6 9 10 11 1 2 3 4 5 0 7 12

12 13 4 10 7 0 1 9 6 3 11 8 5 2

9 8 10 5 6 7 4 13 12 11 1 2 3 0

5 0 6 7 8 9 10 11 1 2 3 4 13 12

6 5 7 1 2 3 0 4 13 12 8 9 10 11

4 12 13 6 3 11 8 5 2 10 7 0 1 9

1 11 2 9 10 4 13 12 3 0 5 6 7 8

0 3 5 2 4 13 12 6 7 8 9 10 11 1

7 6 8 4 13 12 9 10 11 1 2 3 0 5

10 9 11 13 12 1 2 3 0 5 6 7 8 4

2 1 3 12 0 5 6 7 8 9 10 11 4 13

13 4 12 3 11 8 5 2 10 7 0 1 9 6

8 7 9 11 1 2 3 0 5 6 4 13 12 10

11 10 1 0 5 6 7 8 9 4 13 12 2 3

3 2 0 8 9 10 11 1 4 13 12 5 6 7
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12 On the construction of 2-(v, 4, 1) designs

Small cases

2 - (13, 4, 1) design ≈ projective plane of order 3.

2 - (16, 4, 1) design ≈ Affine plane of order 4.

Lemma 12.1. For each n ≥ 17, n ≠ 28, n ≡ 0 or 1 (mod 4), there exists a pairwise

balanced GDD with five (or four) groups G1, G2, G3, G4, G5 such that ∣G1∣ = ∣G2∣ =

∣G3∣ = ∣G4∣ = r, ∣G5∣ = r1 ≡ 0 or 1 (mod 4), 0 ≤ r1 ≤ r and all blocks are of size 4 or 5.

Moreover, a T(r, 5, 1) exists.

Proof. We use < r, r, r, r, r1 > to denote the sizes of groups.

17,20,21,...

24 → < 5, 5, 5, 5, 4 >

25 → < 5, 5, 5, 5, 5 >

28 → < 7, 7, 7, 7, 0 >

29 → < 7, 7, 7, 7, 1 >

32 → < 7, 7, 7, 7, 5 >

33 → < 8, 8, 8, 8, 1 >

36 → < 8, 8, 8, 8, 4 >

37 → < 9, 9, 9, 9, 1 >

40 → < 9, 9, 9, 9, 4 >

41 → < 9, 9, 9, 9, 5 >

44 → < 9, 9, 9, 9, 8 >

45 → < 9, 9, 9, 9, 9 >

48 → < 11, 11, 11, 11, 4 >

49 → < 11, 11, 11, 11, 5 >

52 → < 13, 13, 13, 13, 0 >

53 → < 13, 13, 13, 13, 1 >

For n ≥ 52, n = 4r + r1 where 0 ≤ r1 ≤ r and r1 ≡ 0 or 1 (mod 4) such a pairwise

balanced GDD does exist since there are at least three MOLS(r) for each order r > 10. ◻

Lemma 12.2. If a 2 - (v, 4, 1) exists, then v ≡ 1 or 4 (mod 12).

Proof. It follows by 3 ∣ v − 1 and 6 ∣ (v
2
) . ◻

Definition 12.3. (Pairwise balanced GDD, PGDD)

A PGDD (X,B) of order v denoted by GD(R,m;S,λ) is a (general) GDD of order

v whose group sizes are in R and block sizes are in S. For example, the truncated T(r,

5, 1) is a GD({r, r},5;{4, 5},1) of order 4r + r1.
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Lemma 12.4.

There exists a GD(3, 5; 4, 1). ({3} → 3, {4} → 4)

Proof. Since a 2 - (16,4,1) design exists, a GD(3, 5; 4, 1) can be obtained by deleting

one element from the design.

Here is an example to explain how can we constuct the design.

Example A 2 - (64, 4, 1) design exists.

Proof. 64 = 3 × 21 + 1. (n in Lemma 12.1)

First, we use r = 5 and r1 = 1 to obtain a GD({1 ,5}, 5; 4, 1).

∞

G5 G4 G3 G2 G1

Construction (X,B)

Step 1. (B1) Use {∞}∪(Gi ×{1, 2, 3}) to construct a 2 - (4, 4, 1) design and 2 - (16,

4, 1) design respectively.

Step 2. (B2) For each block B ∈ GD({1, 5}, 5; 4, 1), construct a GD(3, 4; 4, 1) or

GD(3, 5; 4, 1) depending on B × {1, 2, 3} and the size of B, ∣B∣ = 4 or 5. (See the

figure above.)

Step 3. Let X = {∞} ∪ ((
5

⋃
i=1
Gi) × {1, 2, 3}), and B = B1 ∪B2.

∣B1∣ = 1 + 4 × 20 = 81.

∣B2∣ = 5 × 15 + 20 × 9 = 255
⇒ ∣B∣ = 336.
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(∗) Any two elements occur together in a block. (Check!)

(∗∗) Small orders v s.t. a 2 - (v, 4, 1) design exists can be obtained by direct construc-

tion. ”25” is the hardest one (?).

Theorem 12.5. A 2 - (v, 4, 1) design exists if and only if v ≡ 1 or 4 (mod 12).

Proof. (⇒) By Lemma 12.1.

(⇐) We can construct all 2 - (v,4,1) designs recursively. Assume that small orders are

constructed. Let v = 3n + 1 where n ≡ 0 or 1 (mod 4). By the above construction

(or example), it suffices to write n = 4r + r1 where r > 0, r1 ≡ 0 or 1 (mod 4) and

3r+1, 3r1+1 ≡ 1 or 4 (mod 12). (For example, if n = 301, then we can write n = 4×72+13

where r = 72 and r1 = 13. Since 3 × 72 + 1 ≡ 1 (mod 12) and 3 × 13+1 ≡ 4 (mod 12), we

have a 2 - (904, 4, 1) design. )

So, we have two cases to consider in general.

Case 1. n ≡ 0 (mod 4)

n ≡ 4r + r1. If r ≡ 0 or 1 (mod 4) and r1 = 0, the we are done. On the other hand, if

r1 = 0 and r ≡ 2 (mod 4), then let n = 4(r − 1) + 4. Further, if r ≡ 3 (mod 4), then let

n = 4(r − 2) + 8. Hence, then GDD we use is of types < r − 1, r − 1, r − 1, r − 1,4 >, and

< r − 2, r − 2, r − 2, r − 2,8 > respectively.

Case 2. n ≡ 1 (mod 4)

Similarly, r1 can be either 1 or 5 or 9 to make sure that the corresponding r satisfies

3r + 1 ≡ 1 or 4 (mod 12). ◻

(∗) There are 16 non-isomorphic 2 - (25, 4, 1) designs.

(See Handbook of Combinatorial Designs, p.12-13.)

(∗∗) 28 is obtained from K4∣K9(3). (Again, see Handbook.)

How about 2 - (v, k,1) design where k > 4?

Observations

1. We need a GD(R,m;k,1) of certain order n first. (m ≥ k)
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2. A GD(m′, k;k,1) and a GD(m′, k +1;k,1) exists. (m′ = 3 for k = 4.) ⇒ v = 3n+1.

3. ∀r ∈ R, a 2 - (mr′ + 1, k,1) design exists for each r ∈ R.

Review k = 3 ( 4th construction!)

Consider n ≡ 0 or 1 (mod 3).

R = {3,4}, n = 3r + r1, r1 ≡ 0 or 1 (mod 3). (T(r, 4, 1) exists.)

Example n = 31

10
10
10

GD(2, 3; 3, 1) and GD(2, 4; 3, 1) exist. (m′ = 2)

2 - (21, 3, 1) and 2 - (3, 3, 1) exist.

∞

10 10 10

10 10 10

GD(2,4;3,1)

(⋅) Here, r is chosen to satisfy 2r + 1 ≡ 1 or 3 (mod 6), i.e., r ≡ 0 or 1 (mod 3).

(∗) If λ > 1, then we consider a 2-(v, k, λ) design as well.

In this case, the set of admissible v is larger than that for λ = 1 in general. For

example, if λ = 2, k = 3, then we have v ≡ 0 or 1 (mod 3). We skip the details

here.
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13 Packing and Covering

Definition 13.1. (H-packing)

An H-packing of G is a collection of edge-disjoint subgraphs of G which are iso-

morphic to H. Let H be an H-packing of G. If G ∖ ∪H∈HE(H) contains no subgraph

which is isomorphic to H, then H is a maximal H-packing. Furthermore, if H contains

the maximum number of copies of H, then H is a maximum H-packing.

For convenience, let L = G ∖ ∪H∈HE(H). L is called the leave of the H-packing H

with respect to G.

(⋅) It is interesting to know ”the maximum packing”.

Theorem 13.2.

The maximum packing of Kv with K3’s is obtained by using the following table

where the minimum leaves are listed.

v 0 1 2 3 4 5

L F φ F φ T C4

(mod 6)

F is 1-factor and T is tripole.

Proof.

Case 1: v ≡ 1 or 3 (mod 6). It follows by the existence of an STS(v).

Case 2: v ≡ 5 (mod 6). It follows by the existence of a 2-(v,{3,5∗},1) design.

Case 3: v ≡ 0 or 2 (mod 6). By deleting a vertex from Kv+1 we obtain the pack-

ings.

Case 4: v ≡ 4 (mod 6). By deleting a vertex from Kv+1 which is in K5 of the

design in Case 2, we have the conclusion.

Note that the leaves we obtain are minimum, therefore the packings are maximum

respectively.

Open problem For which leaves L, K3 ∣Kv −L?

(∗) Clearly, Kv − L must be 3-sufficient, i.e. each vertex is of even degree and

3 ∣ ∥Kv −L∥.
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Covering

Definition 13.3. (H-covering)

An H-covering of G is a collection H of edge-disjoint subgraphs of G which are

isomorphic to H such that each edge of G is covered by at least one member of H.

Then the collection H is a minimum covering of G if ΣH∈H∥H∥ − ∥G∥ is minimum.

e.g.

2 3

4

0

1

{012,034,134,234} is a minimum covering of K5 with K3’s.

(⋅) The set of extra edges induces a ”padding” of the covering. The above exam-

ple shows that 3 is the padding.

(⋅) The padding obtained is a minimum covering is called a minimum padding.

Theorem 13.4.

The minimum covering of Kv by using copies of K3 is obtained as in the following

table.

v 0 1 2 3 4 5

P F φ T φ T D2

(mod 6)

D2 is

Proof. For v ≡ 1 or 3 (mod 6), if follows from the existence of an STS(v). As to v ≡ 5

(mod 6), since L = C3 provides a maximum packing, it suffices to cover C4 by using two

extra K3’s such that D2 is the padding.
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Now, we consider v ≡ 0 (mod 6). First, we find the maximum packing of Kv−2 with

leave a tripole T . So, we shall add two verices u and v to cover T ∪ F ′ where F ′ is a

1-factor of Kv with an extra edge uv, see the following figure.

u v

a1 b

a2 b2

a3 b3

a4 b4

a5 b5

F ′

Figure. Use v = 12 for example

(Black edges are in leave, red edges are added)

It is easy to check that there are 33 edges to be packed by using K3’s. The following

K3’s are in the packing. a1a2b1, a1uv, b1uv, ua2b2, va2b2, ua3b3,

va3b3, ua4b4, va4b4, ua5b5, va5b5. Note that F ′ − uv is the minimum padding.

Finally, let v ≡ 2 or 4 (mod 6). Since there two cases are similar, we consider v ≡ 2

(mod 6) and use v = 12 for example to explain the idea of proof. Again we have the

maximum packing of Kv−2 ≅ K12. Therefore, the minimum leave is a 1-factor, see the

following figure for explanation. Let T (red edges) be the padding we plan to add.

87



u v

a1 b

a2 b2

a3 b3

a4 b4

a5 b5

a6 b6

F

K3’s: a1uv, b1uv, ua1b1, ua2b2, va2b2,⋯, ua6b6, va6b6.

(⋅) The reason why these paddings are minimum comes from the degree and size

conditions.

It is important to know that if Kv has a maximum Kk-packing H with m members

in H, then almost all pairs are covered by using Kk’s except these pairs in the leave.

Clearly, for these orders in which no 2-(v, k,1) designs exist, this is the best job we can

do.

Moreover, as packing is concerned, a graph G can be packed with not only one

subgraph. For example, we may use a path of length s and a cycle of length t to pack

Kv. Hence, we shall have a {Ps+1,Ct}-packing of Kv. Of course, Kv can be replaced by

other graphs, say Km(n) or a general graph.
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14 t -design

Definition 14.1. A t -design, t - (v, k, λ) design, is an (X,B) such that ∣X∣ = v, ∀B ∈

B, ∣B∣ = k, and for each t - subset of X, it occurs exactly λ times in the blocks of B.

When t ≥ 3, then finding a good t - design is getting more complicate especially when

the block size is also larger. The followings are some basic properties of t - designs.

⋅ If (X,B) is a t - (v, k, λ) design, then

(a) λ(vt)/(
k
t
) is an integer,

(b) for each 0 ≤ i ≤ t, the collection of all blocks Bi containing a given i-subset

of X is exactly λ(v−it−i
)/(k−it−i

), and

(c) if I is an i-subset with i ≤ t, then the collection of blocks Bi = {B/I ∣B ∈ B}

with Xi = X − I is a (t − i) - (v − i, k − i, λ) design.

X
I

⋱

⋅ Let k ≥ t ≥ 2. Then, the collection of all k-subsets of X = Zv is in fact a t - design

t - (v, k, λ) design where λ = (v−t
k−t

) if k > t and λ = 1 if k = t.

⋅ If k = 3 and t = 2, then (Zv

3
) forms a 2 - (v,3, λ) design where λ = v − 2. (If k = 4

and t = 2, then (Zv

4
) is a 2 - (v,4, λ) design with λ = (v−2

2
).)

⋅ In case of k = 3, if (Zv

3
) can be partitioned into v − 2 disjoint STS(v)’s, then we

have a large set of Steiner triple systems.

(∗) You may try the case when v = 7 and k = 3.

Theorem 14.2. (Lu, Jia-Xi) 1935-1983

A large set of STS(v)’s exists except for some small cases.
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(Reference: Lu Jia-Xi, On large sets of disjoint Steiner triple systems I, J. Combina-

torial Theory 34A (1983), 140-146.)

Definition 14.3. (Steiner systems)

In a t - design (X,B), if k = t+ 1 and λ = 1, then we have a Steiner t - design of order

∣X∣. A Steiner triple system of order v is a 2 - (v,3,1) design and a Steiner guadruple

system of order v is a 3 - (v,4,1) design or S(t, k, v) in short where t = k − 1.

⋅ Small example t = 3 and k = 4

Let X = Z4
2 and B{{w⃗, x⃗, y⃗, z⃗} ∣ w⃗, x⃗, y⃗, z⃗ ∈ Z4

2, w⃗ + x⃗ + y⃗ + z⃗ = 0⃗}.

Note that x⃗, y⃗, z⃗ and w⃗ are distinct vectors. Then, (Z4
2,B) is an S(3,4,16). It is

also true for an S(3,4,2m) where m ∈ N.

⋅ Let X = E(K5) and B = {
(5
1
)
,
(5
3
)
,
3 ⋅ (5

1
)

∣ labeled subgraphs of K5}.

Then, (X,B) is an S(3,4,10). ↓
1 2

34
(1,2,3,4),

1 2

34
(1,3,2,4),

1 2

34
(1,2,4,3)

⋅ How about t = 3 and v in general?

⋅ v ≡ 2 or 4 (mod 6). (Let (X,B) be an S(3,4,v).) Let x0 ∈ X (X′ = X/{x0}) and

B′ = {B/{x0}∣B ∈ B}. Then, (X′,B′) is an STS(v-1). This implies that ∣X′∣ = v−1 ≡

1 or 3 (mod 6).

Theorem 14.4. (H. Hanani, 1960)

An S(3,4,v) exists if and only if v ≡ 2 or 4 (mod 6).

Proof. It takes a let of effort in proving the sufficient part.

Doubling Construction

Construction 1. An S(3,4,2v) exists if an S(3,4,v) exists.
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Proof.

(a) (Method 1)

SQS(v)

SQS(v) S(3,4,v) : (X1,B1)

S(3,4,v) : (X2,B2)

Let KXi
denote the complete graph defined on Xi, i = 1,2. Since ∣Xi∣ is even, KXi

can be decomposed into 1-factors, there are v-1 of them, called F1, F2, ⋯, Fv−1 and

G1, G2, ⋯, Gv−1 for i = 1,2 respectively. Now, we use Fj and Gj, j = 1,2,⋯, v − 1 to

defind (v2)2 quadruples by the following way :

Fj = {{ai, bi} ∣ i = 1,2,⋯, v2}

Gj = {{cj, dj} ∣ j = 1,2,⋯, v2}
⇒ {ai, bi, cj, dj} ∈ B.

Combining the above blocks with B1 and B2, we have an S(3,4,2v).

(∗) This SQS(2v) contains two disjoint sub-design SQS(v) (or SQS(2v)).

(b) (Method 2) Let Y ′ = {y′ ∣ y ∈ Y } and X = Y ∪ Y ′. Let (Y,C) be an SQS(v).

Define B.

(1) ∀{x, y, z,w} ∈ C, let {x, y, z,w′},{x, y, z′,w},{x, y′, z,w},

{x′, y, z,w},{x′, y′, z′,w},{x′, y′, z,w′},{x′, y, z′,w′} and

{x, y′, z′,w′} be in B.

(2) For any two elements {x, y} ⊆ Y, let {x, y, x′, y′} ∈ B. Combining (1),(2), we

have an SQS(2v) = (X,B).

It is a routine matter to check (X,B) is indeed an SQS(2v) for both con-

structions : (a) and (b).
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The above doubling construction can only handle the cases v ≡ 4 or 8 (mod 12). For

the other cases, it takes more effort. (We omit the details here and present v → 3v − 2

construction.)

Let q(v) = v(v−1)(v−2)
24 , p(v′) = v′(v′−1)

6 and q′(v) = q(v) − p(v − 1).

(⋅) If v ≡ 2 or 4 (mod 6), then p(v − 1) = (v−1)(v−2)
6 .

Consider u ≡ 4 or 10 (mod 18).

u = 3v − 2 where v ≡ 2 or 4 (mod 6). (Example : if v = 8, then u = 22.)

Construction of SQS(u)

Let (X1,B1) be an SQS(v) such that ∞ ∈ X1. Let X = {∞} ∪ X′
1 × Z3 where X′

1 =

X1/{∞}. So,

X ∶ ∞

X′
1 × {0}

X′
1 × {1}

X′
1 × {2}

Quadruples (B)

1. ∀{x, y, z,w} ⊆ X′
1 and {x, y, z,w} ∈ B1, let {(x, a1), (y, a2), (z, a3), (w,a4)} ∈ B

where a1 + a2 + a3 + a4 ≡ 0 (mod 3).

((a1, a2, a3, a4) ∈ {(0,0,0,0), (0,1,1,1), (1,0,1,1), (1,1,0,1), (1,1,1,0),

(0,2,2,2), (2,0,2,2), (2,2,0,2), (2,2,2,0), and 18 others}.)

(⋅) Type 1 quadruples : 27 × q′(v) quadruples. (27 ⋅ (v(v−1)(v−2)
24 − (v−1)(v−2)

6 ))

2. For {∞, u, v,w} ∈ B1, define the following quadruples and let them in B :

{∞, (u, b1), (v, b2), (w, b3)} ∈ B where b1 + b2 + b3 ≡ 0 (mod 3).

((b1, b2, b3) ∈ {(0,0,0), (1,1,1), (2,2,2), (0,1,2), (0,2,1), (1,0,2),

(1,2,0), (2,0,1), (2,1,0)}.)

We have 9 × p(v − 1) such quadruples. (9(v−1)(v−2)
6 ).

3. Continue from 2.
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{(u, i), (v, i), (w, i + 1), (w, i + 2)}, i ∈ Z3.

(3
2
) ⋅ 3 9 ⋅ p(v − 1) quadruples.

4. ∀ pair (α,β) in X′
1, let

{(α, i), (β, i), (α, i + 1), (β, i + 1)} ∈ B. (3 ⋅ (v−1
2
) quadruples)

5. ∀γ ∈ X′
1, let

{∞, (γ,0), (γ,1), (γ,2)} ∈ B. (v − 1 quadruples)

In total, we have 27 ⋅ (v(v−1)(v−2)
24 − (v−1)(v−2)

6 ) + 9 ⋅ (v−1)(v−2)
6 + 9 ⋅ (v−1)(v−2)

6 + 9 ⋅ (v−1)(v−2)
6 +

(v − 1) = 27
24v(v − 1)(v − 2) + (v − 1) = (3v−2)(3v−3)(3v−4)

24 .

How about the other cases ?

Conjecture v → 2v + 6 constuction

For each SQS(v) (X1,B1), there exists an SQS(2v + 6) which contain (X1,B1) as as

subsystem.

Hanani’s Construction

1. n ≡ 4 or 8 (mod 12)

v → 2v;

2. n ≡ 4 or 10 (mod 18)

v → 3v − 2;

3. n ≡ 34 or 8 (mod 36)

v → 3v + 4 where v ≡ 10 (mod 12);

4. n ≡ 26 or 8 (mod 36)

v → 3v + 2 where v ≡ 8 (mod 12);

5. n ≡ 2 or 10 (mod 24)

v → 4v − 6 where v ≡ 2 or 4 (mod 6); and
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6. n ≡ 14 or 38 (mod 72)

v → 12v − 10 where v ≡ 2 or 4 (mod 6).

(∗) If we have v → 2v and v → 2v + 6 constructions, then the theorem about the

existence of SQS(v)’s is proved.

Proof. Consider v ≡ 2 or 4 or 8 or 10 (mod 12). Clearly, if v ≡ 4 or 8 (mod

12), then by v → 2v, we can construct such a system. On the other hand, if v ≡

2 or 10 (mod 12), let v = 12k + 2 or 12k + 10 respectively. By direct counting,

12k + 2 = 2(6k − 2) + 6 and 12k + 10 = 2(6k + 2) + 6. Hence, the construction

v → 2v + 6 works. ◻

The best known construction besides v → 2v on SQS(v) is the following.

Theorem 14.5. ( Hartman ) ( Tripling Construction ! )

If an SQS(v) contains a subsystem SQS(u), then there exists an SQS(3v−2u) which

contains the above SQS(v)

Note that we can also use this theorem to prove the cases v ≡ 2 or 10 (mod 12) except

some small cases. (?)

v ≡ 2 or 10 (mod 12)

⇒ v ≡ 2, 10, 14, 22, 26, 34 (mod 36)

36k + 2 = 3 (12k + 2) − 4 u = 2 SQS(2) is a trivial system

36k + 10 = 3 (12k + 4) − 2 u = 1 (one element)

36k + 14 = 3 (12k + 10) − 16 u = 8

36k + 22 = 3 (12k + 14) − 20 u = 10

36k + 26 = 3 (12k + 14) − 16 u = 2

36k + 34 = 3 (12k + 14) − 8 u = 4
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15 Hadamard matrices

Definition 15.1. (H-matrix)

A square n×n matrix H is called an Hadamard matrix (an H-matrix) of order n if

all the entries of H are ±1 and HHT = nIn where In is the identity matrix of order n.

Examples

⎡⎢⎢⎢⎢⎢⎣

1 1

1 −1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1

1 1 1 1

1 1 −1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We called the second matrix has standard form since the first row and column of

second matrix are all 1’s.

Fact 1. If H is an H-matrix, then HT is also an H-matrix.

Definition 15.2. (Generalized permutation matrices, G.P.M.)

An n × n generalized permutation matrix is an n × n matrix in which each row

(and each column) contains exactly one non-zero entry.

Furthermore, if all non-zero entries are either +1 or −1, then we have a monomial

permutation matrix (M.P.M.). For example,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0

−1 0 0 0

0 0 0
√

3

0 0 7 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a G.P.M., and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an M.P.M.

(⋅) We may permute the rows and columns of a G.P.M. to obtain a diagonal

(invertible) matrix.
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Fact 2 Let A and B be monomial permutation matrices. Then, H is an H-matrix if and

only if AHB is an H-matrix.

Proof. Note that if A is an n × n M.P.M., then AAT is a permutation matrix,

In, i.e. AAT = In and AT = A−1. (AT is also an M.P.M.)

(⇒) (AHB)(AHB)T = AHBBTHTAT = AHHTAT = nIn.

(⇐) Since AHB is an H-matrix, A−1(AHB)B−1 is an H-matrix by (⇒). Hence,

H is an H-matrix.

Definition 15.3. (H-equivalent)

Two H-matrices H1 and H2 are H-equivalent if there exist generalized (monomial)

permutation matrices A and B s.t. H2 = AH1B.

Fact 3 Any H-matrix is H-equivalent to an H-matrix with every entry in the first row

and first column equal to +1.

Proof. Let In(i) denote the generalized permutation matrix obtained from In

by replacing the (i, i) entry with −1. Then, by applying In(i) we can change the

sign of the ith row and ith column of H resp. (In(i) ⋅H or H ⋅ In(i))

Fact 4 (N.C. of the existence of an H-matrix)

If H is an H-matrix of order n, then n = 1 or 2, or n ≡ 0 (mod 4).

Proof. For n ≥ 4. W.L.O.G. let H be a stand and H-matrix, i.e. all +1’s in

the first row and first column. By considering the orthogonality of the first three

rows, we conclude the proof.

Conjecture

∀n ≡ 0 (mod 4), there exists an H-matrix of order n. (Many results have been

obtained, but not settled in general.)

Fact 5 (Doubling construction)

If H is an H-matrix of order n, then
⎛
⎜
⎝

H H

H −H

⎞
⎟
⎠

is also an H-matrix which is of
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order 2n.

Proof.
⎛
⎜
⎝

H H

H −H

⎞
⎟
⎠

⎛
⎜
⎝

H H

H −H

⎞
⎟
⎠

T

=
⎛
⎜
⎝

H H

H −H

⎞
⎟
⎠

⎛
⎜
⎝

HT HT

HT (−H)T

⎞
⎟
⎠
=

⎛
⎜
⎝

HHT +HHT HHT −HHT

HHT −HHT HHT +HHT

⎞
⎟
⎠
=
⎛
⎜
⎝

2In 0

0 2In

⎞
⎟
⎠
= 2I2n.

Fact 6 For each n = 2t, there exists an H-matrix of order n. (By Fact 5)

Example

Let Si = [si,j] be a matrix. We use a⊗ S = [a ⋅ si,j].

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(−1) ⊗ S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1

−1 1 −1 1

−1 −1 1 1

−1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fact 7 If M = [mi,j]m×m and S = [si,j]s×s are H-matrices, then M ⊗S is also an H-matrix

where

M ⊗ S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1,1 ⊗ S m1,2 ⊗ S ⋯ m1,m ⊗ S

⋯

mm,1 ⊗ S mm,2 ⊗ S ⋯ mm,m ⊗ S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly, M ⊗ S is of order m ⋅ s.

Proof. Let H = (M ⊗ S) ⋅ (M ⊗ S)T . Then, H(i, j) is equal to Σm
k=1(mi,k ⊗ S) ⋅

(mj,k ⊗ S) = Σm
k=1mi,k ⋅mj,k ⋅ sIs = sIs iff i = j

Fact 8 There exists an H-matrix of order 12 and therefore there exist H-matrices of order

3 × 2t where t ≥ 2.
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Proof. (Williamson’s method)

Let

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D

−B A −D C

−C D A −B

−D −C B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B = C = D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1

−1 1 −1

−1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Now, we have A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3

3 3 3

3 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B2 = C2 = D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1

−1 3 −1

−1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Moreover, AB = BA,AC =

CA,AD =DA, in fact, all of them are the same,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 −1

−1 −1 −1

−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Again, by using the multiplication of block form, we have

H ⋅HT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 +B2 +C2 +D2

0

⋱

0
A2 +B2 +C2 +D2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 12I12.

Fact 9 If there exists an H-matrix of order 4k, then there exists a 2-(4k − 1,2k − 1, k − 1)

design.

Proof. Let H be an H-matrix of standard form. Now, by deleting the first row

and first column, and replace all (−1)’s with 0’s, we obtain a (0,1)-matrix H ′ of

order 4k − 1. (For example, k = 2 we have
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H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 1 1 1 -1 -1 -1 -1

1 -1 1 -1 -1 1 -1 1

1 1 -1 -1 -1 -1 1 1

1 -1 -1 1 -1 1 1 -1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 B2 B3 B4 B5 B6 B7

0 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

2 0 0 1 1 0 0 1

3 1 1 1 0 0 0 0

4 0 1 0 0 1 0 1

5 1 0 0 0 0 1 1

6 0 0 1 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With idea of support by assigning row indices as Z4k−1 we have 4k−1 blocks.

So, in the example of k = 2, the blocks are 123,034,236,012,

146,056,245.

As to the design (X,B), we conclude that ∣X∣ = ∣B∣ = 4k − 1, and for each

B ∈ B, ∣B∣ = 2k − 1, since we have 2k − 1 1’s left.

For the λ of the design (X,B), we observe that in every two rows of H ′, they

have exactly k − 1 common 1’s in order to satisfy the orthogonality in H.

1

2k − 1
¬
⋯1⋯

2k
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
⋯ − 1⋯

1 s

1 −1

t

1 −1

1 + s = t

1 + s + t = 2k

2 + 2s = 2k

s = k − 1

Hence, we have a 2-(4k−1,2k−1, k−1) design, in fact, it is a symmetric design.

That is, a symmetric design exists (with certain parameters) if an H-matrix of

certain order exists.

On the existence of circulant Hadamard matrices

As mentioned above, an Hadamard matrix of order n is a (+−1)-matrix such that any

two distinct row vectors of length n are orthogonal, i.e., their inner product is ”0”.

99



Now, if we impose an extra condition that all the rows of the matrix can be obtained

by cyclic shift of the first row, then we have a ”circulant” Hadamard matrix. For

example,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 +1 +1 +1

+1 −1 +1 +1

+1 +1 −1 +1

+1 +1 +1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− + + +

+ − + +

+ + − +

+ + + −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(short form)

Problem Are there circulant Hadamard matrices of order larger than 4 ?

(⋅) Let a⃗ = (a0, a1, ⋯, an−1). The cyclic shift of a⃗ is defined as αi(a⃗) = (a−i, a1−i, ⋯, an−1−i)

for i = 1, 2, ⋯, n − 1, where the indices are modulo n. Hence,

α(a⃗) = (an−1, a0, a1, ⋯, an−2) and

α2(a⃗) = (an−2, an−1, a0, a1, ⋯, an−3).

(⋅) If A is a circulant H-matrix, then its rows are denoted by vectors A0,A1,⋯,An−1,

such that Ai = αi(A0).

(⋅) For fixed k ∈ {1,2,⋯, n − 1}, let

xk = ∣{(ai, ai−k) = (+1,+1)}∣,

yk = ∣{(ai, ai−k) = (+1,−1)}∣,

zk = ∣{(ai, ai−k) = (−1,+1)}∣, and

wk = ∣{(ai, ai−k) = (−1,−1)}∣.

(∗) Since A is a circulant, xk, yk, zk and wk are independent to i ∈ Zn.

Now, we are ready to prove the following theorem.

Theorem 15.4. If A is a circulant H-matrix of order n, then n = 4t2 for some t ∈ N.

100



Proof. If A is an H-matrix, Ai is orthogonal to Aj for j ≠ i.

Therefore, we may assume that

Ai = (+ +⋯ + − −⋯−)

n
2

n
2

and Ai+k = (+ +⋯ + − −⋯ − + +⋯ + − −⋯ −)

n
4

n
4

n
4

n
4

(for convenience to understand).

This implies that

1 xk + yk + zk +wk = n

2 xk +wk = yk + zk, and

3 If p is the number of (+1)’s and q is the number of (-1)’s, then p+ q = n, xk +yk =

xk + zk = p.

Hence, yk = zk and n = 4 yk ≡ 0 (mod 4). So, n is even.

Consider A0 and An
2
∶

⎛
⎜
⎝

a0 a1 ⋯ an
2

⋯ an−1

an
2

an
2
+1 ⋯ a0 ⋯ an

2
−1

⎞
⎟
⎠
.

If (ai, ai+n
2
) = (δ, δ) where δ = +1 or -1, so is (ai+n

2
, ai). Thus, both xk and wk are

even. Moreover, yk + zk = n
2 and

n−1

∑
k=1

(yk + zk) = n(n−1)
2 . The second equality gives the

total number of (+1,−1) or (−1,+1) pairs for one row to pair with the other n−1 rows.

Equivalently, the number of such pairs can also be equal to pq + qp by counting all

(+1,−1) or (−1,+1) pairs. Then, pq + qp = 2p(n − p) = 1
2n(n − 1). As a consequence,

(2p − n)2 = n, i.e., n = 4(p − n
2 )2. This fact also implies that no circulant H-matrices

exist when p = q when n > 4. ◻

From the above observation, we can conclude that if a circulant H-matrix exists,

then in each row (resp. column) the number of (+1)’s, p = 1
2(n +

√
n) and the number

of (−1)’s, q = 1
2(n −

√
n). So far, except for n = 4, no other circulant H-matrices have

been found. As a matter of fact, if n = 22a+1,a ≥ 1, no such matrices exist (by using
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Algebra), see the M.S. thesis by Hui-Chung Ko, ”On the construction of circulant near

Hadamard matrices”, NCTU, 2020.

Definition 15.5. (CPHM)

A circulant partial H-matrix of order n, A, with m rows is an m × n (+−1)-matrix

such that its m rows are A0,A1,⋯,Am−1 where Ai = αi(A0) and AAT = nIm.

e.g., n = 8 and m = 3
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ + + − + − − −

− + + + − + − −

− − + + + − + −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1.

Note that we can keep shifting rows to obtain a circulant matrix AD of order 8, but

ADATD ≠ 8I8, i.e., AD is not an H-matrix. Again, by observation, we can use any three

consecutive rows to obtain a PCHM of order 8 with m = 3.

Definition 15.6. (Circulant near H-matrix)(CNHM)

A circulant matrix A of order n with entries +−1 is said to be a circulant near H-

matrix if it contains the maximum number of zeros in each rows of AAT , we use αn to

denote this number.

Clearly, the above example shows that α8 ≥ 3. In order to maximize αn, we have

to choose the first row, an n-vector, properly. Now, let A0 = (a0, a1,⋯, an−1) where

ai ∈ {+1,−1}, i ∈ Zn. By letting ”-1” be replace by ”0”, then we obtain a (0,1)-vector,

D0. Therefore, we can represent A0 by a set S0 = {i ∣ ai = 1, i ∈ Zn}, i.e., S0 = supp(D0).

For example, (+,+,+,−,+,−,−,−) can be represented by {0,1,2,4}.

The set of differences

(⋅) Differences are defined on ”abelian groups” in general.

(⋅) For convenience, we consider < Zv, + > .
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(⋅) Therefore, ∀ a, b ∈ Zv, a − b = a + b−1 (mod v).

(∗) Let D ⊆ Zv and ∣D∣ = k. Then, there are k2 differences including k of them are 0’s

and the others are in pairs, i.e., if d is a difference obtained from D, then v − d is

also a difference. Sometimes, we use +−d to denote the differences.

Definition 15.7.

A (v, k, λ)-difference set is a set D = {d1, d2,⋯, dk} of distinct elements of Zv s.t.

each difference d appears exactly λ times in ∆D = {d = di − dj ( mod v) ∣ i ≠ j}. (The

difference ”0” is not included here.)

We can generalize the above notion in two ways.

1 Instead of using D, we use D = {D1,D2,⋯,Dn}. A generalize (v, k, λ)-difference

collection satisfies :

in
n

⋃
i=1

∆Di
, each difference d occurs exactly λ times. (See cyclic construction of

STS(v) for example.) D is known as a set of base-blocks.

2 The differences appear differently in ”times”. For example, if D = {1,2,3,5}, then

∆D = {1,1,2,2,3,4,4,5,6,6,7,7}. A generalized

(v, k;λ0, λ1,⋯, λv−1)-difference set (GDS) satisfies the difference d appears exactly

λd times, d ∈ Zv. We use ∆ to denote ∆D ∪ {0,0,⋯,0} (multi-set of v 0’s). For

convenience, we use (v, k,Λ) - difference set in short where Λ = {λ0, λ1,⋯, λv−1} =

{λi ∣ i ∈ Zv}.

Theorem 15.8. If there exists a (4t2,2t2 + t, t2 + t) - difference set D, then we have a

circulant H-matrix of order 4t2.

Proof. If suffices to show that any two rows of the following matrix AD are orthogonal.

Let A
(0)
D = (a0, a1,⋯, a4t2−1) where ai = +1 if i ∈ D and −1 otherwise. Then, AD is a

4t2 × 4t2 matrix corresponding to D by shifting A
(0)
D 4t2 − 1 times.
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Example

AD =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 ⋯ ⋯ a4t2−1

a4t2−1 a0 a1 ⋯ ⋯
⋮

a1 ⋯ ⋯ ⋯ a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

←D
←D + 1
⋮

⎡⎢⎢⎢⎢⎢⎢⎢⎣

+ + + − + − − −
− + + + − + − −
− − + + + − + −

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Now, any two rows D + a ((a + 1)th row) and D + b ((b + 1)th row) are considered.

Claim : ∣(D + a) ∩ (D + b)∣ = λ = t2 + t.

By definition of (v, k, λ)-difference set b − a occurs exactly λ times. Let g ∈ (D +

a) ∩ (D + b). Hence, g = d1 + a = d2 + b if and only if d1 − d2 = b − a. This implies

that by choosing d1 − d2 = b − a, then we have an element g ∈ (D + a) ∩ (D + b), thus

∣(D + a) ∩ (D + b)∣ = λ = t2 + t.

Let xa,b be the # of pairs (+1,+1) between the two rows.

ya,b be the # of pairs (+1,−1) between the two rows.

za,b be the # of pairs (−1,+1) between the two rows.

wa,b be the # of pairs (−1,−1) between the two rows.

Since ∣(D + a) ∩ (D + b)∣ = 4t2 + t, xa,b = t2 + t.

1 xa,b + ya,b + za,b +wa,b = 4t2

xa,b + za,b = k = 2t2 + t (+1 in row b + 1)

xa,b + ya,b = k = 2t2 + t (+1 in row a + 1).

⇒ ya,b = 2t2 + t − (t2 + t) = t2 = za,b.

By 1 xa,b +wa,b = 4t2 − 2t2 = 2t2 = ya,b + za,b.

Hence, they are orthogonal. ◻

Remark In fact, this theorem is reversible, i.e., if we have a circulant H-matrix of

order 4t2, then we have a (4t2,2t2 + t, t2 + t)-difference set.

Theorem 15.9. Let D = {d1, d2,⋯, dk} be a (v, k; Λ)-difference set and AD is the

incidence matrix of D. Then, the ith row of ADAD
T is (f(λ1−i), f(λ2−i),⋯, f(λv−i))
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where f(x) = v − 4k + 4x.

Remark v = 4m, k = 2m, λj = λ =m for j ∈ Z4m, gives a circulant H-matrix.

(∗) For application on functional magnetic resonance imaging (fMRI), We don’t need

a circulant H-matrix, a partial circulant Hmatrix can do the job. In order to obtain

better results, we would like to find as many circulant orthogonal vectors as possible.
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