Homework 6

Chapter 14.1.:30

30. All six graphs have different traces in the planes x=0 and y=0, so we investigate these for each function.

- (a) f(x,y)=|x|+|y|. The trace in x=0 is z=|y|, and in y=0 is z=|x|, so it must be graph VI.
- (b) f(x,y)=|xy|. The trace in x=0 is z=0, and in y=0 is z=0, so it must be graph V.
- (c) $f(x,y) = \frac{1}{1+x^2+y^2}$. The trace in x=0 is $z = \frac{1}{1+y^2}$, and in y=0 is $z = \frac{1}{1+x^2}$. In addition, we can see

that f is close to 0 for large values of x and y, so this is graph I.

- (d) $f(x,y)=(x^2-y^2)^2$. The trace in x=0 is $z=y^4$, and in y=0 is $z=x^4$. Both graph II and graph IV seem plausible; notice the trace in z=0 is $0=(x^2-y^2)^2 \Rightarrow y=\pm x$, so it must be graph IV.
- (e) $f(x,y)=(x-y)^2$. The trace in x=0 is $z=y^2$, and in y=0 is $z=x^2$. Both graph II and graph IV seem plausible; notice the trace in z=0 is $0=(x-y)^2 \Rightarrow y=x$, so it must be graph II.
- (f) $f(x,y)=\sin(|x|+|y|)$. The trace in x=0 is $z=\sin|y|$, and in y=0 is $z=\sin|x|$. In addition, notice that the oscillating nature of the graph is characteristic of trigonometric functions. So this is graph III.

Chapter 14.2.:29

29. $F(x,y)=\arctan\left(x+\sqrt{y}\right)=g(f(x,y))$ where $f(x,y)=x+\sqrt{y}$, continuous on its domain $\{(x,y)|y\geq 0\}$, and $g(t)=\arctan t$ is continuous everywhere. Thus F is continuous on its domain $\{(x,y)|y\geq 0\}$.

Chapter 14.3.:66

- 66. (a) If we fix y and allow x to vary, the level curves indicate that the value of f decreases as we move through P in the positive x –direction, so f_x is negative at P.
- **(b)** If we fix x and allow y to vary, the level curves indicate that the value of f increases as we move through P in the positive y –direction, so f_y is positive at P.

(c) $f_{xx} = \frac{\partial}{\partial x} (f_x)$, so if we fix y and allow x to vary, f_{xx} is the rate of change of f_x as x increases. Note that at points to the right of P the level curves are spaced farther apart (in the x –direction) that

Note that at points to the right of P the level curves are spaced farther apart (in the x-direction) than at points to the left of P, demonstrating that f decreases less quickly with respect to x to the right of P. So as we move through P in the positive x-direction the (negative) value of f_x increases, hence

$$\frac{\partial}{\partial x} (f_x) = f_{xx}$$
 is positive at P .

(d) $f_{xy} = \frac{\partial}{\partial y} (f_x)$, so if we fix x and allow y to vary, f_{xy} is the rate of change of f_x as y increases.

The level curves are closer together (in the x -direction) at points above P than at those below P, demonstrating that f decreases more quickly with respect to x for y -values above P. So as we move through P in the positive y -direction, the (negative) value of f_x decreases, hence f_y is negative.

(e) $f_{yy} = \frac{\partial}{\partial y} (f_y)$, so if we fix x and allow y to vary, f_{yy} is the rate of change of f_y as y increases.

The level curves are closer together (in the y -direction) at points above P than at those below P, demonstrating that f increases more quickly with respect to y above P. So as we move through P in

the positive y –direction the (positive) value of f_y increases, hence $\frac{\partial}{\partial y} \left(f_y \right) = f_{yy}$ is positive at P.