Homework 4

Chapter11.12. :17(withoutpart(c))

17.		
\boldsymbol{n}	(n) (x)	(n)
	tan x	
	sec x	
	$2\sec^2 x \tan x$	
	4sec $x \tan^2 x + 2\sec^4 x$	
	8sec $x \tan^3 x + 16$ sec $x \tan x$	

(a)
$$
f(x)=\tan x \approx T_3(x)=x+\frac{1}{3}x^3
$$

(b)
$$
|R_3(x)| \le \frac{M}{4!} |x|^4
$$
, where $|f^{(4)}(x)| \le M$. Now $0 \le x \le \frac{\pi}{6} \Rightarrow x^4 \le \left(\frac{\pi}{6}\right)^4$, and letting $x = \frac{\pi}{6}$
\n
$$
\left[\text{since } f^{(4)} \text{ is increasing on } \left(0, \frac{\pi}{6}\right)\right] \text{ gives}
$$
\n
$$
|R_3(x)| \le \frac{8\left(\frac{2}{\sqrt{3}}\right)^2 \left(\frac{1}{\sqrt{3}}\right)^3 + 16\left(\frac{2}{\sqrt{3}}\right)^4 \left(\frac{1}{\sqrt{3}}\right)}{4!} \left(\frac{\pi}{6}\right)^4
$$
\n
$$
= \frac{4\sqrt{3}}{9} \left(\frac{\pi}{6}\right)^4 \approx 0.057859
$$

Chapter12.4. :39

The distance between a point and a line is the length of the perpendicular from the point to the line,

here
$$
|\overrightarrow{PS}| = d
$$
. But referring to triangle PQS , $d = |\overrightarrow{PS}| = |\overrightarrow{QP}|\sin\theta = |\boldsymbol{b}|\sin\theta$. But θ is the angle
between $\overrightarrow{QP} = \boldsymbol{b}$ and $\overrightarrow{QR} = \boldsymbol{a}$. Thus by Theorem 6, $\sin \theta = \frac{|\boldsymbol{a} \times \boldsymbol{b}|}{|\boldsymbol{a}||\boldsymbol{b}|}$ and so
 $d = |\boldsymbol{b}|\sin \theta = \frac{|\boldsymbol{b}| |\boldsymbol{a} \times \boldsymbol{b}|}{|\boldsymbol{a}||\boldsymbol{b}|} = \frac{|\boldsymbol{a} \times \boldsymbol{b}|}{|\boldsymbol{a}|}$.
\n**(b)** $\overrightarrow{a} = \overrightarrow{QR} = \langle -1, -2, -1 \rangle$ and $\overrightarrow{b} = \overrightarrow{QP} = \langle 1, -5, -7 \rangle$. Then
\n $\overrightarrow{a} \times \overrightarrow{b} = \langle (-2)(-7) - (-1)(-5), (-1)(1) - (-1)(-7), (-1)(-5) - (-2)(1) \rangle = \langle 9, -8, 7 \rangle$. Thus the distance is
\n $d = \frac{|\boldsymbol{a} \times \boldsymbol{b}|}{|\boldsymbol{a}|} = \frac{1}{\sqrt{6}} \sqrt{81 + 64 + 49} = \sqrt{\frac{194}{6}} = \sqrt{\frac{97}{3}}$.

Chapter 12.5. : 43
43. Setting $x=0$, we see that (0,1,0) satisfies the equations of both planes, so that they do in fact have
a line of intersection. $v=n_1 \times n_2 = \langle 1,1,1 \rangle \times \langle 1,0,1 \rangle = \langle 1,0,-1 \rangle$ is the direction of th direction numbers of the intersecting line are $1, 0, -1$.