Homework 4

Chapter 11.12.:17(withoutpart(c))

17.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	tan x	0
1	$\sec^2 x$	1
2	$2\sec^2 x \tan x$	0
3	$4\sec^2 x \tan^2 x + 2\sec^4 x$	2
4	$8\sec^2 x \tan^3 x + 16\sec^4 x \tan x$	

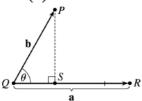
(a)
$$f(x) = \tan x \approx T_3(x) = x + \frac{1}{3}x^3$$

(b)
$$|R_3(x)| \le \frac{M}{4!} |x|^4$$
, where $|f^{(4)}(x)| \le M$. Now $0 \le x \le \frac{\pi}{6} \Rightarrow x^4 \le \left(\frac{\pi}{6}\right)^4$, and letting $x = \frac{\pi}{6}$
 $\left[\operatorname{since} f^{(4)} \operatorname{isincreasingon}\left(0, \frac{\pi}{6}\right)\right]$ gives

 $\left|R_3(x)\right| \le \frac{8\left(\frac{2}{\sqrt{3}}\right)^2 \left(\frac{1}{\sqrt{3}}\right)^3 + 16\left(\frac{2}{\sqrt{3}}\right)^4 \left(\frac{1}{\sqrt{3}}\right)}{4!} \left(\frac{\pi}{6}\right)^4$
 $= \frac{4\sqrt{3}}{9} \left(\frac{\pi}{6}\right)^4 \approx 0.057859$

Chapter 12.4. :39

39. (a)



The distance between a point and a line is the length of the perpendicular from the point to the line,

here $|\overrightarrow{PS}| = d$. But referring to triangle PQS, $d = |\overrightarrow{PS}| = |\overrightarrow{QP}| \sin \theta = |\mathbf{b}| \sin \theta$. But θ is the angle between $\overrightarrow{QP} = \mathbf{b}$ and $\overrightarrow{QR} = \mathbf{a}$. Thus by Theorem 6, $\sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|}$ and so $d = |\mathbf{b}| \sin \theta = \frac{|\mathbf{b}| |\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|} = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}| |\mathbf{b}|}$.

(b)
$$a = \overrightarrow{QR} = \langle -1, -2, -1 \rangle$$
 and $b = \overrightarrow{QP} = \langle 1, -5, -7 \rangle$. Then $a \times b = \langle (-2)(-7) - (-1)(-5), (-1)(1) - (-1)(-7), (-1)(-5) - (-2)(1) \rangle = \langle 9, -8, 7 \rangle$. Thus the distance is $d = \frac{|a \times b|}{|a|} = \frac{1}{\sqrt{6}} \sqrt{81 + 64 + 49} = \sqrt{\frac{194}{6}} = \sqrt{\frac{97}{3}}$.

Chapter 12.5.: 43

43. Setting x=0, we see that (0,1,0) satisfies the equations of both planes, so that they do in fact have a line of intersection. $v=n_1 \times n_2 = \langle 1,1,1 \rangle \times \langle 1,0,1 \rangle = \langle 1,0,-1 \rangle$ is the direction of this line. Therefore, direction numbers of the intersecting line are 1,0,-1.