Homework 12

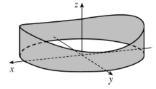
Chapter15.9. :24

24. Let u=x+y and v=y, then x=u-v, y=v, $\frac{\partial(x,y)}{\partial(u,v)}=1$ and R is the image under T of the triangular region with vertices (0,0), (1,0) and (1,1). Thus $\int \int f(x+y) dA = \int_{0}^{1} \int (1) f(u) dv du = \int_{0}^{1} f(u) [v]_{v=0}^{v=u} du = \int_{0}^{1} u f(u) du$ as desired.

Chapter16.2. :44

44. Consider the base of the fence in the xy –plane, centered at the origin, with the height given by z=h(x, y). The fence can be graphed using the parametric equations

 $x=10\cos u , y=10\sin u ,$ $z =_{v} \left[4+0.01((10\cos u)^{2}-(10\sin u)^{2}) \right]$ $=_{v}(4+\cos^{2} u-\sin^{2} u)$ $=_{v}(4+\cos 2u) , 0 \le u \le 2\pi , 0 \le v \le 1 .$



The area of the fence is $\int_C h(x, y) ds$ where C, the base of the fence, is given by $x=10\cos t$, $y=10\sin t$, $0 \le t \le 2\pi$. Then

$$\int_{C} h(x, y) ds = \int_{0}^{2\pi} \left[4 + 0.01 ((10\cos t)^{2} - (10\sin t)^{2}) \right] \sqrt{(-10\sin t)^{2} + (10\cos t)^{2}} dt$$
$$= \int_{0}^{2\pi} (4 + \cos 2t) \sqrt{100} dt = 10 \left[4t + \frac{1}{2}\sin 2t \right]_{0}^{2\pi}$$
$$= 10(8\pi) = 80\pi \text{ m}^{2}$$

If we paint both sides of the fence, the total surface area to cover is 160π m², and since 1 L of paint covers 100 m², we require $\frac{160\pi}{100} = 1.6\pi \approx 5.03$ L of paint.

Chapter16.3. :26

26. $\nabla f(x, y) = \cos(x-2y)i-2\cos(x-2y)j$ (a) We use Theorem 2: $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$ where C_1 starts at t=a and ends at t=b. So because $f(0, 0) = \sin 0 = 0$ and $f(\pi, \pi) = \sin (\pi - 2\pi) = 0$, one possible curve C_1 is the straight line from (0, 0) to (π, π) ; that is, $\mathbf{r}(t) = \pi t \mathbf{i} + \pi t \mathbf{j}$, $0 \le t \le 1$. (b) From (a), $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$. So because $f(0, 0) = \sin 0 = 0$ and $f\left(\frac{\pi}{2}, 0\right) = 1$, one possible

(b) From (a), $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$. So because $f(0, 0) = \sin 0 = 0$ and $f\left(\frac{\pi}{2}, 0\right) = 1$, one possible curve C_2 is $\mathbf{r}(t) = \frac{\pi}{2} t \mathbf{i}$, $0 \le t \le 1$, the straight line from (0, 0) to $\left(\frac{\pi}{2}, 0\right)$.