Calculus: Homework 6

October 25th, 2007

1. Show that

$$\left(\cos x \cdot e^{-x}\right)^{(4)} = -4\cos x \cdot e^{-x}.$$

2. Let f(x) be a given function and $a \in \mathbb{R}$. Find the polynomial $p_n(x)$ of degree n with

$$p_n^{(i)}(a) = f^{(i)}(a) \qquad 0 \le i \le n.$$

Which meaning does $p_1(x)$ have?

Hint: Set $p_n(x) = \sum_{i=0}^n a_i (x-a)^i$.

3. Find absolute extreme values of

$$f(x) = x^2 - 2 - \cos x$$

on [-1, 3].

4. Consider the function $f(x) = x(x^2 - x - 2)$ on [-1, 1]. Check wether the assumptions of the mean value theorem are satisfied. If yes, find all $c \in (-1, 1)$ with

$$f'(c) = \frac{f(1) - f(-1)}{1 - (-1)}.$$

5. Assume that for C > 0 and $\alpha > 1$, we have

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all $x, y \in (a, b)$. Show that f must be constant. If $\alpha = 1$, is the latter conclusion still true? Hint: Try $f(x) = \sin x$.