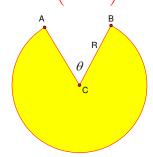
Calculus **B** 0314

Quiz 4.

- Find the absolute maximum and the absolute minimum values of f(x) = xe^{-x} on [0,2]. (10%)
 Absolute maximum value is e⁻¹. Absolute minimum value is 0.
- (2) Find the critical numbers of $x^{\frac{4}{5}}(x-4)^2$. (10%) The critical numbers are 0, $\frac{8}{7}$ and 4.
- (3) Find all numbers c that satisfy the conclusion of the Mean Value Theorem. (10%)

$$f(x) = 3x^2 + 2x + 5$$
, and $[a, b] = [-1, 1]$. $c = 0$.


- (4) If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be? (10%) 16.
- (5) Find the local extrema and inflection points of $y = \frac{x^2}{x^2 + 3}$ (10%) Local minimum point at x = 0, and the inflection points at $x = \pm 1$.
- (6) Find the limit. (15%)

(a)
$$\lim_{x \to \infty} \frac{\ln x}{x}$$
 (b) $\lim_{x \to 0} \frac{\sin^{-1} x}{x}$ (c) $\lim_{x \to 0} \frac{\sin x - x}{x^3}$
(d) $\lim_{x \to \infty} (\sqrt{x^2 + x} - x)$ (e) $\lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$
(a) 0 (b) 1 (c) $-\frac{1}{6}$ (d) $\frac{1}{2}$ (e) e^{-1} .

- (7) If f' is continuous, f(2) = 0, and f'(2) = 6, evaluate $\lim_{x \to 0} \frac{f(2+3x) + f(2+5x)}{x}$ (7%) 48.
- (8) (a) Let $f'(x) = \sqrt{x}(6+5x)$, f(1) = 10. Find $f(x) = 4x^{\frac{3}{2}} + 2x^{\frac{5}{2}} + 4$.

(b) Find the most general antiderivative of $f(x) = 6\sqrt{x} - \sqrt[6]{x}$. (5%) $F(x) = 4x^{\frac{3}{2}} - \frac{6}{7}x^{\frac{7}{6}} + c$.

- (9) A box with a square base and open top must have a volume of $32,000 \text{ cm}^3$. Find the dimensions of the box that minimize the amount of material used. (7%) $40 \times 40 \times 20$.
- (10) A cone-shaped drinking cup is made from a circular piece of paper of radius R by cutting out a sector and joining the edges CA and CB. Find the maximum capacity of such a cup, and when does such maximum capacity occur (i.e. find the corresponding θ)? (7%) Maximum capacity is $\frac{2\pi}{9\sqrt{3}}R^3$, which occurs at $\theta = 2\left(1 - \sqrt{\frac{2}{3}}\right)\pi$.

(11) For what value of a is the following equation true? (4%)

$$\lim_{x \to \infty} \left(\frac{x+a}{x-a} \right)^x = e \quad a = \frac{1}{2}.$$