Calculus II 0314

Quiz 6.

- (1) (8%) Evaluate the double integral. $\int \int_D \frac{2y}{x^2 + 1} dA$, $D = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\}$. $\frac{1}{2} \ln 2$
- (2) (8%) Evaluate $\int_0^1 \int_{\sin^{-1} y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos^2 x} \ dx \ dy. \ \frac{1}{3} (\sqrt{8} 1)$
- (3) (8%) Find the volume of the solid described in the following: above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$. $\frac{\pi}{3}(2 \sqrt{2})$
- (4) (8%) Evaluate $\int_{\frac{1}{\sqrt{2}}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \ dy \ dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \ dy \ dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \ dy \ dx.$ (Hint: Combine the sum into one double integral). $\frac{15}{16}$
- (5) (8%) Find the area of the surface. The part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies within the cylinder $x^2 + y^2 = ax$ and above the xy-plane. $a^2(\pi 2)$
- (6) (8%) Find the area of the part of the surface $z = x^2 + y$ that lies above the triangle with vertices (0,0), (1,0), and (0,2). $\ln(\sqrt{2} + \sqrt{3}) + \frac{\sqrt{2}}{3}$
- (7) (8%) Evaluate the triple integral. $\int \int \int_E x \, dV$, where E is bounded by the paraboloid $x = 4y^2 + 4z^2$ and the plane x = 4. $\frac{16}{3}\pi$
- (8) (12%) Rewrite the integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) \, dz \, dy \, dx$ as an iterated integral in the order $dx \, dy \, dz$ and $dy \, dz \, dx$. $\int_{0}^{1} \int_{0}^{1-z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) \, dx \, dy \, dz$; $\int_{-1}^{1} \int_{0}^{1-x^2} \int_{x^2}^{1-z} f(x, y, z) \, dy \, dz \, dx$
- (9) (8%) Sketch the solid whose volume is given by the integral and evaluate the integral. $\int_0^{\frac{\pi}{6}} \int_0^{\frac{\pi}{2}} \int_0^3 \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi. \frac{9\pi}{4} (2 \sqrt{3})$
- (10) (8%) Use spherical coordinates. Evaluate $\int \int \int_B (x^2 + y^2 + z^2) dV$, where B is the unit ball $x^2 + y^2 + z^2 \le 1$. $\frac{4}{5}\pi$
- (11) (8%) Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^2+y^2}$ and below the sphere $x^2+y^2+z^2=z$. $\frac{\pi}{8}$
- (12) (8%) Evaluate the integral by changing to spherical coordinates.

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2-y^2}} z\sqrt{x^2+y^2+z^2} \ dz \ dy \ dx. \ \frac{243}{5}\pi$$