Calculus II 0314

Quiz 5.

- (1) (11%) Find the local maximum and minimum values and saddle points of the function $f(x, y) = x^3 6xy + 8y^3$. minimum value=-1; (0,0) is a saddle point.
- (2) (11%) Find the absolute maximum and minimum values of f(x, y) = 4xy² x²y² xy³ on the set D, where D is the closed triangular region in the xy-plane with vertices (0,0), (0,6), and (6,0). maximum=4; minimum=-64.
- (3) (11%) Find the points on the surface $xy^2z^3 = 2$ that are closest to the origin. $\pm (\frac{1}{\sqrt{3}}, \pm \frac{\sqrt{2}}{\sqrt{3}}, \sqrt[4]{3})$
- (4) (11%) A pentagon is formed by placing an isosceles triangle on a rectangle, as shown in the figure. If the pentagon has fixed perimeter P, find the lengths of the sides of the pentagon that maximize the area of the pentagon.

- (5) Let $p(x_0, y_0, z_0)$ be a point on the surface $\Gamma : xy^2z^2 = 1$.
 - (a) (3%) Find the equation of tangent plane T_p to Γ at (x_0, y_0, z_0) . (Write your equation in terms of x_0, y_0, z_0) $y_0^2 z_0^2 x + 2x_0 y_0 z_0^2 y + 2x_0 y_0^2 z_0 z = 5$
 - (b) (3%) Find the distance d_p between the origin and the tangent plane T_p . $\frac{5}{\sqrt{y_0^4 z_0^4 + 4x_0^2 y_0^2 z_0^4 + 4x_0^2 y_0^4 z_0^4}}$
 - (c) (6%) Find p on the surface Γ so that d_p is a maximum or a minimum. $(2^{\frac{-2}{5}}, \pm \sqrt[10]{2}, \pm \sqrt[10]{2})$
- (6) Let $u = \langle h, k \rangle$ be a unit vector.
 - (a) (4%) Compute the directional derivative $D_u f$ of f in the direction of u. $f_x h + f_y k$
 - (b) (7%) Compute $D_u^2 f$, where $D_u^2 f = D_u(D_u f)$. $f_{xx}h^2 + f_{yx}hk + f_{xy}hk + f_{yy}k^2$
- (7) (11%) Evaluate the double integral by first identifying it as the volume of a solid. $\int \int_R (4 2y) dA$, $R = [0, 1] \times [0, 1]$. 3
- (8) (11%) Find the volume of the solid in the first octant bounded by the cylinder $z = 9 y^2$ and the plane x = 2. 36

(9) (11%) Let
$$g(x,y) = \int_0^x \int_0^y \sin^2(st) dt ds$$
. Find $g_{xy}(x,y)$. $\sin^2(xy)$