Calculus 0314

Quiz 2.

(1) Determine whether the series is absolutely convergent, conditionally convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{5+n}$$
 (b) $\sum_{n=1}^{\infty} \frac{\cos(\frac{n\pi}{3})}{n!}$ (c) $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{n!}$ (20%)
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$

- (a) divergent, (b) absolutely convergent, (c) divergent, (d) conditionally convergent.
- (2) Find the radius of convergence and interval of convergence. (15%)

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n2^n}$ (c) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$.
(a) radius= 1, interval= [-1,1); (b) radius= 2, interval= (-4,0]; (c) radius= 4, interval=

- (-4, 4).
- (3) Suppose $\sum_{n=0}^{\infty} c_n (x-2)^n$ converges when x=6 and diverges when x=-4. What can be said

about the convergence or divergence of the following series? (8%)

(a)
$$\sum_{n=1}^{\infty} c_n \mathbf{C}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n c_n \mathbf{C}$ (c) $\sum_{n=0}^{\infty} c_n 7^n \mathbf{D}$ (d) $\sum_{n=0}^{\infty} c_n 8^n \mathbf{D}$

- (4) Suppose the series $\sum c_n x^n$ and $\sum d_n x^n$ have, respectively, radius of convergence 2 and 3.
 - (a) What is the radius of $\sum (c_n + d_n) x^n$? (5%) 2.
 - (b) What is the radius of $\sum c_n x^{2n}$? (5%) $\sqrt{2}$.
- (5) Find a power series representation for the function and determine the radius of convergence.

(a)
$$f(x) = \ln(5-x)$$
 (b) $f(x) = \frac{x^2}{(1+x)^2}$ (12%)
(a) $f(x) = \ln 5 - \sum_{n=1}^{\infty} \frac{x^5}{n \cdot 5^n}$, and radius = 5.
(b) $f(x) = \sum_{n=0}^{\infty} (-1)^n (n+1) x^{n+2}$, and radius = 1.
(6) (a) Find $\sum_{n=1}^{\infty} nx^{n-1} = ?$ as $|x| < 1$. (Hint: $(x^n)' = nx^{n-1}$.) (5%) $\frac{1}{(1-x)^2}$.
(b) $\sum_{n=1}^{\infty} nx^n = ?$ as $|x| < 1$. (5%) $\frac{x}{(1-x)^2}$.
(c) $\sum_{n=1}^{\infty} \frac{n}{2^n} = ?$ (5%) 2.

- (7) Find the Maclaurin series of $f(x) = \cos x$. (Assume that f has a power series expansion). (6%) $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$
- (8) Use the binomial series to expand the function $f(x) = \frac{x}{\sqrt{4+x^2}}$ and state its radius of convergence. (6%) $f(x) = \frac{x}{2} + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdots (2n-1)}{2^{3n+1} n!} x^{2n+1}$, and radius=2. (9) (a) Find the Maclaurin series of $f(x) = \sqrt{1 + x^2}$. (5%)
- - (b) Evaluate f'(10). (3%) Should be corrected by $f^{(10)}(0)$. (a) $1 + \frac{x^2}{2} + \sum_{n=2}^{\infty} (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n n!} x^{2n}$, (b) $f'(10) = \frac{10}{\sqrt{101}}, f^{(10)}(0) = 99,225$.