(@a+Ax,b+ Ay, f(a+ Ax, b+ Ay))

surface z = f(x, y)
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For a differentiable function of two variables, z = f(x,y),

(a, b, f(a, b))

I~

.1 : define the diff tials d d dy to be ind dent iables: that is, th be given a alues.
B iT{{E —Linear Approximation If flS differentiable at (CL, b), W To:.1 Differential we€ deline tne diirerentials ar and ay to be 1naepenaent variables; that 1s, eg ZCELII g(;\zf n any valu

then the approximating function L(x,y) = f(a,b) + fz(a,b)(z — a) + f,(a,b)(y — b) is the linearization of f at (a,d). Then the differential dz, also called the total differential, is defined by dz = — dx + —dy.
The approximation f(x,y) ~ L(x,y) is called the linear approximation of f at (a,b).

Ox Oy

tangent plane
z—fla,b)= f(a, b)(x —a) + fy(a, b)(y — D)

Let f be a differentiable function. D, f(x) = Vf(x) - u.
1. V f(x) points in the direction of maximum rate of change of f at x,
~Relationship with Directional Derivative If V f(x) # O: while -V f(x) points in the direction of minimum rate of change of f at x. WSS E R AR T
2. The maximum rate of change is |V f(x)|, and the minimum rate of change is -|V f(x)]|.

If Vf(x)=0: D,f(x) = 0 for all u.

AREE

At each point of the domain, the gradient vector V f, if not 0,
-® #EEEZssM%sHE is prependicular to the level curve or level surface of f through that point.

A Salas W EFHFH > T ELEEHFE !

~Equation [ (%0, Y0)(z — zo) + fy(z0,y0)(y — yo) = 0

~Tangent Line —
~ Application of Gradient -

~Level Curve f(CIZ, y) =

“~Normal Line -

Level Curve and Level Surface

" (Salas (ELEMIE » IUES 1)

~Tangent Plane -

Z A= P EN r = x9+ fz(xo,Yo,20)1t
REE (ERAR) ~Equation Y = Yo + fy(ZE(), Yo, ZO) t

2= 2z0 T fz(CUO)yOa ZO) t

~Level Surface f(.’L‘, Y, Z) — C-; Normal Line -

The tangent plane at (zg, yo, 20) has equation g,(zo,yo0) (x — z0) + g4(x0,Y0) (¥ — ¥o) + (—1)(2 — 20) = 0,

A surface of the form z = g(«, y) can be written in the form f(z,y, z) = 0 by setting ~Tangent Plane which we can rewrite as z — 2o = gx(%0,%0) (= — Zo) + 9y(z0, %) (¥ = yo)- It Vg(20,30) =0,

s af (2,4, 7) — 8y (z,1) then both partials of g are zero at (xz, yo) and the equation reduces to z = zy. In this case,
L i rn Oz 377 3 Oz 3™ 7 | the tangent plane is horizontal.
& E B 2N Graph #Y .1 : : of dg
Tangent Plane A Normal Line #3753 f(x,y,2) = g(z,y) — z. If g is differentiable, so is f. Moreover, 8—y(a:, Y, 2) = 8—y(a¢, Y) . z = o + go(0, Yo) t
%(CE, Yy, Z) — —1] ~Normal Line Y = Y -+ gy(mg, y()) t

z=2zp+ (—1)t

Suppose that f is a function of several variables.

. . bsolut ' : >
Absolute Extrema The function f is said to have a D0 DG HAFIIUIR ot X0 provided that f(x0) 2 f(x)
BT absolute minimum f(xo0) < f(x)

for all x in the domain of f. The absolute maxima and minima of f comprise the absolute extreme values of f.

IBIE T 4E

Suppose that f is a function of several variables and x is an interior point of the domain.

Local Extrema . - . local maximum . f (XO) > f (X)
L] [ ] h
e The function f is said to have a {local inimm at x( provided that { f(x0) < F(x)

for all x in some neighborhood of x;. The local maxima and minima of f comprise the local extreme values of f.

Let f defined on an open region R containing (zg, yo)-

The point x is a critical point of f if one of the following is true.
If f has a local maximum or minimum at xg,

® Th Critical Points =+ . (%0) =0
— IritiCal roints
“>*“™ then x is a critical point of f. 2. V f(%0) does not exist.

& M #% Critical Points Hr > V f(xo) = 0 f I8 & x( % Stationary Points -
1 52 —{@ Stationary Points % A #i {8 > 5t #% & %& Saddle Point ( }§ # 25)

HARSIE(E Let f have continuous second partial derivatives on an open region containing a point (a,b) and V f(a, b) = (0, 0).

f:m:(wa y) fa:y(xa y)
fyw(x,y) fyy(way)

Consider the matrix and the quantity D = f..(a,b)f,,(a,b) — [fzy(a,b)]* .

s . Sy IREE B IS E—1% > BT %0i& Critical Points A2 A B¥H1&(E >
HABEIEE 1) If D > 0 and f,;(a,b) > 0, then f has a local m1n1.mum at (a,b) . e e ] st Forme ot ST
Second Derivatives Test (2) If D > 0 and f,.(a,b) < 0, then f has a local maximum at (a,b) . 2B REFTAR Critical Points A 1BE1H(E !

)
)
3) If D < 0, then (a, b, f(a,b)) is a saddle point.
AR (E )

(

(

(

(4) If D = 0, then the test fails.

AN FEHGE T Z > W LR B G K fk K 55 2 B3 G R !

If fis continuous on a closed and bounded set D, then on that set ] g A subset of the plane or three-space is said to be bounded
- n
f takes on an absolute maximum and an absolute minimum. P provided there exists a positive number R such that |x|| < R forallx € S.

@® Extreme Value Theorem

B (E To find the absolute extrema of a continuous function f on a closed, bounded set D:
1. Find the value of f at the critical points of f in D.
® HEHEES S .
2. Find the extreme values of f on the boundary of D.
3. Compare the values of 1 and 2. (15 & {5 o £ K B Bt & 48 S M R ME 5 B/ NBU Bt & 48 S /e | )
Let f and g have continuous first partial derivatives such that
® == f has an extremum at a point (z¢, yo, 29) on the smooth constraint curve g(x, y, z) = c.
If Vg(xo, Y0, 20) # (0,0,0), then there is a real number A such that V f(xg, yo, 20) = AVg(xo, Yo, 20) -
£—EBRHIT
..., (1) Find all value of z,y, z, and A such that V f(z,y, 2) = AVg(z, y, 2) and g(z,y,2) = c.
PR (2 LB B A @y, 2 R ABIRA F(, Y, 2) A A o G (R R f R G N R f B RN
RITSEA HEREUA

(EHH IS S R R If f(x,y, z) subject to the side constraints g(x,y, z) = k and h(z,y, z) = c and f has an extremum at a point (z¢, yo, 20),

® =2 then V f(x, yo, 20) is in the plane determined by Vg(z¢, yo, z0) and Vh(zg, yo, 20).

If Vg(xo, Yo, 20) and Vh(xzg, yo, z9) are not parallel and not (0, 0, 0), then there exist A and p such that V f(xq, yo, 20) = AVg(xo, Yo, 20) + uVh(xzg, yo, 20) -
Vf(z,y,2) = AVg(z,y, 2) + pVh(z,y, 2)

(1) Find all value of z, y, z, A, and p such that < g(x,y,2) = ¢
h(z,y,z) =k

) LA AER Ty, 2 Z2HRA f(z,y,2) BIEEREEK - BREPRRPM®E fRORKE > ENMBRE fNRNME -
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