A curve C'is called simple if it has an injective parametrization;
simple that is, there exists r: I — R® such that r(I) = C and r(z) = r(y) | GESSEEE G attoE
implies that = y.

A subset C' in the plane (or space) is called a curve if C'is the image of an interval I C R under a continuous vector function r.

z = r1(t) . o 5 e
Definition The continuous function r: I — R?* (or R?) is called a parametrization of the curve, and the equations { y = ro(t), t € I (L= 4 A H) | Closed A curve C' with Parametnzatmn r: [ — R is called closed if I = [a, b]
J— for some closed interval [a,b] C R and r(a) = r(b).

° ° o . [} ] A z/z_é » Yy, l]\ N ! . . . . . . —
where z, y, and z are simply scalar functions of ¢, are called parametric equations of the curve, and ¢ is called a parameter % # ik A ME A smooth curve is a curve with differentiable parametrization | [uyemss——————w—"

Smooth — N )
r: I — R%such that r'(¢) #0forallt € I. MDA 0
Let C be a curve parametrized by an injective continuously differentiable parametrization r: |a, b| — R3. HESthEEEN  BHe FS—ES N RSN ERE
P : W y y B o s e EE 2 AETUERES - B4R
: . L Y < FE THRNRE - GENESAE LMETEREEEN
Then length of C'is L = r'(t)]| dt = \/—2 | 2 4 2 dt . .
Curve g . H ( ) H . ( dt ) ! ( dt ) ! ( dt ) *@BEU%;R o

The arc length function s for a curve given by a vector function r(t) = f(¢t)i+g(t)j+ h(t) k a <t <0,
! g dx dy dz

; _ / — —)2 4 2 2 .

ss) = [ Ielan= [ /2y By (L,

Definition d d d d
Arc Length SRR fii 7& : By the fundamental Theorem of Calculus, e Ir'(t)]] = \/[f’(t)]z +[g'(t)]? + [A/()]* = \/(d_f)z - ( d::)Q - ( dj)z'

dt

b b
d d d
Then by Substitution Rule for Definite Integrals, / \/ (d_i)2 - ( d?z )2 + ( dj )2 dt = / ds.
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Arc Length Function : ds : : : : :
| Since — = [|r’(¢)]| > 0, the function s(t) is a one-to-one increasing function.

dt

Thus, no two points of C' can lie at the same arc distance from r(a). It follows
that for each s € |0, L], there is a unique point R(s) on C at arc distance s from r(a).
The vector function R(s), s € |0, L] parametrizes C by arc length. We call s the arc length parameter for the curve.

Reparametrize the helix r(t) = costi+ sintj + t k with respect to

ds dr arc length measured from (1,0,0) in the direction of increasing ¢.
#i 7t 1 : Since — = H — || > 0 the function s(¢) has a differentiable inverse ¢(s) and we can write
dt |
TR 0 (BE g oA & KA ) . Since both R(s(t)) and r(t) lies at arc distance s(t) from r(a),
&5 S ar
dt
S
dR drdt dr 1 = i ization i '
R(s(t)) = r(t). Therefore R(s) = r(t(s)). Differentiation gives —— — r _ gar | Therefore ¢ NG and the required reparametrization is obtained by
ds dt ds dt |4 |
dt S s ., .S S
IR substituting for ¢: r(¢(s)) =cos —i+sin—j+ —k s>0
Taking the norm of both sides, we have — = 1. Thus, for a curve parametrized by arc length, V2 V2 V2
S

the tangent vector can change in direction but not in length: the tangent vector maintains length 1.

i 3£ 2 : Moreover, if the curve C: r(t), t € [0.b] has tangent vector of constant length 1, then
the parametrization is by arc length and the length of the curve is b.

Let C be a smooth curve represented by r on an interval 1.

r'(t
The unit tangent vector T is defined as T(t) = (t)

@l

~ Unit Tangent Vector

The curvature of C at a given point is a measure of how quickly the curve changes direction at that point.

__ Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector with respect to
CEREE e length. Because the unit tangent vector has constant length, only changes in direction contribute to the

rate of change of T.
The curvature is easier to compute if it is expressed in terms of the parameter ¢ instead of s
: : 7 dT
Let C be a smooth curve given by r(s), where s is the arc length parameter. . ., dT  dT ds r
so we use Chain Rule to write — = — —
-5 , dT , . : - BE%ES dt ds dt
The curvature k at sis k = || —|| = ||T'(s)|| where T is the unit tangent vector.
~ Curvature - ds ds

, And — = [|r'(%)]|, so we can also write k(t) =

dt

If C is a smooth curve given by r(t),

L rem T/ t / t % ! t
® Theore then the curvature k of C at tis Kk = | ,( )| = Ir’( ), . 3( )| :
Ir’(2)]] e’ (t)]]

Suppose that C is twice differentiable. If C has nonzero tangent vector | QBXJRAEEIE) ROERATTRsiiiSRNnEII Rt anl TR G ]
/ t /! t ! t /! t B I/

r'(t):w'(t)i—l—y’(t)j,then/ﬁ:: ‘CE()y () y()CE (3)’ &:Lﬂé
([z'(1))? + [y (2)]?) 2 (1+1y'(z)]%)>

~@® Theorem

Among the vectors orthogonal to the unit tangent vector T,
there is one of particular significance because it points the direction

_ in which the curve is turning. Since T has constant length, the derivative

“ dT dT
— is orthogonal to T. Therefore, if we divide 0 by its length, we obtain
S S

a unit vector N orthogonal to T.

r

~ Principal Unit Normal -

- If a smooth curve r(t) is already given in terms of some parameter ¢ other than

. / . . .
At a point where || T'(s)|| # 0, the principal unit normal vector for the arc length parameter s, we can use the Chain Rule to calculate N directly:
- w5 . . T'(s) i HEitEAR
a smooth curve in the plane is N = , :
I'T(s)|]

When we study the motion of a partical, it is often useful to resolve

the acceleration into two components, one in the direction of the tangent
and the other in the direction of the normal.

If we write v = |v| for the speed of the partical,

0
- ]~ w
Differentiation with respect to t gives a = v'T + vT".
T/
I'T|]
Finally, we have a = v'T + kv*N.
s E X nl LLsnE > i E —EE T N Frsg iiny 7 E !

and sov = vT.

= T' = TN = soN ([T = &lle’(£)]| = wv)

—Tangential and Normal Components of Acceleration PNk

If the acceleration vector is written asa = ar'T + ayN,
d’s __ dv __ ’U,

iy ar = GF = G = . .
then dt” o 2dt , are the tangential and normal scalar components of acceleration.
ay = k(%) = Kv

|all* =a-a=(ar)” + (an)® = an = /[ a] — (ar)?

With this formula, we can find a without having to calculate x first.

Binormal vector is the tendency of your motion to “twist” out the plane created by
~@m= T and N in the direction perpendicular to this plane. F # S 55t &
B 28 nse T A N A& b T3l ) 208 5% 1 1 5 5 W J7 [n) 5 58 &) 4 0] |

— Binormal Vector -

The vector B is defined so that the ordered triple (T, N, B)
lx2B - T x N } is a right-handed system. And B is a unit vector since

IB|| = |T| N[ sin= =1-1-1=1.
2

A space curve can also lift or “twist” out of the osculating plane at P.
dB

Since B is normal to the osculating plane, — gives us information

ds

about how the osculating plane changes as P moves along C.

dB
Since 0 is orthogonal to B (the latter has constant length) and T, ds

S

dB d(TxN) dT dN dT

- dB dar — =~ 7 — — N4+ Tx — (N isthe direction of —
It follows that e is orthogonal to the plane B and T'. In other words, ds ds Z5 T ds (Nis the direction o ds )

° dN
dB . dB . . =T x —
—Is parallel to N, so —. 1sa scalar multiple of N. In symbols, ds

S S

dB
— = —7N. (The negative sign in this equation is traditional.)
S

T is the rate at which the osculating plane turns about T as P moves along the curve.

dB
Prove that — is orthogonal to T.

Torsion is easier to compute if it is expressed in terms of the parameter ¢

dB

. —— N = — N — — dB dB d
— Torsion - N=-N-N=—7 instead of s, so we use the Chain Rule to write — = — il SO — =

| s ds L dt ds dt

dB
B'(t) - N(t)

T=——7" N
ds Finallly, we have 7(t) = — 00
r

) < (@) ()
"= T <@

= @ Theorem

- Frenet-Serret Formulas
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