```
之前有提到可微則存在切線,我們可以用切線作線性近似,說明如下。
                                                                                                                                              The idea behind linear approximations are sometimes formulated in the terminology and notation of differentials.
                                                                                                                                              If y = f(x), where f is a differentiable, then the differential dx is an independent variable;
 Linear Approximation If f is differentiable at x=a,
                                                                                                                                   Differential that is, dx can be given the value of any real number.
                                                                                                                                              The differential dy is then defined in terms of dx by the equation dy = f'(x)dx
                      then the approximating function L(x) = f(a) + f'(a)(x-a) is the linearization of f at a.
                                                                                                                                              so dy is an dependent variable; it depends on the values of x and dx.
                      The approximation f(x) \approx L(x) is called the linear approximation of f at a.
                                                                                        c is the solution of the equation f(x) = 0. We can approximate c as follows:
                                                                                        Start at x_1. The tangent line at (x_1, f(x_1)) intersects the x-axis at a point x_2
                                                                                    -概念 which is closer to c than x_1. The tangent line at (x_2, f(x_2)) intersects the x-axis
                                                                                        at point x_3 which in turn is closer to c than x_2. In this manner, we obtain numbers
                                                                                        x_1, \ldots, x_n, x_{n+1}, which more and more closely approximate c.
                  The method of locating a root of an equation f(x) = 0
                  is call the Newton-Raphson method.
                                                                                        Suppose that f is twice differentiable.
                                                                                        1. Make an initial estimate x_1 \in (a, b) that is close to c. (f(x)f''(x) > 0 for all x between c and x_1.)
                                                                                        ^{\frac{1}{5}} 2. Determine a new approximation using the iterative relation: x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
                                                                                        3. When |x_n - x_{n+1}| is within the desired accuracy, let x_{n+1} serve as the final approximation.
      Indeterminate Forms 1.岩x	o a時,有f(x)	o 0及g(x)	o 0,則我們稱該極限為「rac{0}{0}不定型」.
                         2.若x	o a時,有f(x)	o\infty及g(x)	o\infty,則我們稱該極限為「\dfrac{\infty}{\infty}不定型」.(\infty可改為-\infty)
                          上述所提及的x \to a可改為x \to a^+, x \to a^-, x \to \infty或x \to -\infty
                           Suppose f and g are differentiable and g'(x) \neq 0 on an open interval I that contains a (except possibly at a).
     L'Hospital's Rule \lim_{x \to a} \frac{f(x)}{g(x)}屬於\frac{0}{0}或\frac{\infty}{\infty}不定型,則\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} if the limit on the right side exists (or is \infty or -\infty).
                                                                                                                                                                          1.因為 \lim_{x \to a} f(x)g(x) = \lim_{x \to a} rac{f(x)}{\frac{1}{2}},所以0 \cdot \infty不定型可化為\frac{0}{0}不定型。
                                       Consider \lim f(x)g(x):
                                                                                                                                                         這種不定型有
                 Indeterminate Products
                                                                                                                                                        兩種計算方式,
                                       \dot{a} = a 君a 時,有f(x) 	o 0及g(x) 	o \infty,則我們稱該極限為「0\cdot \infty不定型」.(\infty可改為-\infty) 哪個好用就用哪個
                                                                                                                                                                         2.因為 \lim_{x	o a}f(x)g(x)=\lim_{x	o a}rac{g(x)}{1},所以0\cdot\infty不定型可化為rac{\infty}{\infty}不定型。
                               Consider \lim [f(x) - g(x)]:
                              若x 	o a時,有f(x) 	o \infty及g(x) 	o \infty,則我們稱該極限為「\infty - \infty不定型」.
                                                                                                                                        此種不定型的計算重點在於「\Diamond y = f(x)^{g(x)}」,此時
                                     Consider \lim_{x\to a} [f(x)]^{g(x)},其中f(x)>0:
                                                                                                                                       \lim_{x \to a} \ln y = \lim_{x \to a} g(x) \ln f(x) 為 0 \cdot \infty 不定型, 然後因為
                 Indeterminate Powers (1)若x	o a時,有f(x)	o 0及g(x)	o 0,則我們稱該極限為「0^0不定型」。
                                                                                                                                       \lim_{x	o a}f(x)^{g(x)}=\lim_{x	o a}y=\lim_{x	o a}e^{\ln y}=e^{\lim_{x	o a}\ln y}。 因此只要
                                      (2)若x 	o a時,有f(x) 	o \infty及g(x) 	o 0,則我們稱該極限為「\infty^0不定型」。
                                                                                                                                      能算出\lim_{x\to a} \ln y,就能得到\lim_{x\to a} f(x)^{g(x)}的答案。
                                      (3)若x 	o a時,有f(x) 	o 1及g(x) 	o \infty,則我們稱該極限為「1^{\infty}不定型」。
                  Let c be a number in the domain D of a function f. Then f(c) is the
          絕對極值 \cdot (Absolute) Maximum value of f on D if f(c) \geq f(x) for all x in D.
                   · (Absolute) Minimum value of f on D if f(c) \leq f(x) for all x in D.
-極值介紹 -
                  The number f(c) is a
         局部極值 · Local Maximum value of f if \overline{f(c)} \geq \overline{f(x)} when x is near c.
                  · Local Minimum value of f if f(c) \leq f(x) when x is near c.
                                                                                                                                                     If f(x) = x^3, then f'(0) = 0, but
                                                                                                         ▲謹記:若P則Q;非Q則非P!
                              If f has a local maximum or minimum at c and f'(c) exists,
         - 🕞 Fermat's Theorem
                                                                                                         1.就算f'(c)=O,也有可能沒有局部極值!
                              then f'(c)=0.
                                                                                                        2.就算f'(c)不存在,也有可能有局部極值
                                                                                                                                                     If f(x) = |x|, then f(0) = 0 is a mini-
              綜合上述,我們發現極值不是在f'(c) = 0就是在f'(c)不存在的點上,
                                                                                                                      A critical number of a function f is a number c in the domain of f
          因此,可以把 Fermat's Theorem 改成如下:
                                                                                                        Critical Number
             If f has a local maximum or minimum at c,
                                                                                                                      such that either f'(c) = 0 or f'(c) doesn't exists.
              then c is a critical number of f.
                                    Let f be defined on an interval I.
                                                                                                                              A function that is increasing or decreasing on an interval
                                定義 1.\ f is increasing on I if for all x_1,x_2\in I, x_1< x_2 implies f(x_1)< f(x_2).
                                                                                                                              is said to be monotonic on the interval.
                                    2.\ f 	ext{ is decreasing on } I 	ext{ if for all } x_1, x_2 \in I, x_1 < x_2 	ext{ implies } f(x_1) > f(x_2).
         Increasing/Decreasing
                                        Let f be continuous on a closed interval [a, b] and f be differentiable on an open interval (a, b).
                                       _{\pm} 1.If f'(x) > 0 for all x \in (a, b), then f is increasing on [a, b].
                                                                                                                                                                                                  前面的定理只告訴我們若該點有相對極值
                              到別方式 2.	ext{If } f'(x) < 0 	ext{ for all } x \in (a,b), 	ext{ then } f 	ext{ is decreasing on } [a,b].
                                                                                                                                                                                                  該點一定是 Critical Number 上。
                                                                                                                                                                                                   因此我們需要 The First Derivative Test
                                       3. \text{If } f'(x) = 0 \text{ for all } x \in (a,b), \text{ then } f \text{ is constant on } [a,b].
                                                                                                                                                                                                   來告訴我們在 Critical Number 是否有相對極值
                                  Suppose that c is a critical number of a continuous function f.
一相對極值
          The First Derivative Test 1.If f' changes from positive to negative at c, then f has a local maximum at c.
                                  2.If f' changes from negative to positive at c, then f has a local minimum at c.
                                  3. If f' is positive to the left and right of c, or negative to the left and right of c, then f has no local extrema at c.
                                  Let f be differentiable on an open interval I.
                             -定義 1. {
m The\ graph\ of}\ f is concave upward on I if f' is increasing on I.
                                 2. The graph of f is concave downward on I if f' is decreasing on I.
              Concave
          Upward/Downward
                            1. If f''(x) > 0 on an interval I, then the graph of f is concave upward on I.

2. If f''(x) < 0 on an interval I, then the graph of f is concave downward on I.
                        Let f be a differentiable on an open interval containing c.
         Inflection Point The point (c,f(c)) is called an inflection point of the graph of f
                        if the concavity of f changes from upward to downward or downward to upward at this point.
                                 Suppose that f'' is continuous near c.
             The Second Derivative 1. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
                                                                                                                 通常會用 The First Derivative Test
               (找相對極值方法 2) 2.	ext{ If } f'(c) = 0 	ext{ and } f''(c) < 0, 	ext{ then } f 	ext{ has a local maximum at } c.
                                 3. If f'(c) = 0 and f''(c) = 0 or doesn't exist, then the test fails.
                                                                       連續函數提到的 Extreme Value Theorem嗎?這邊提醒大家
                                                              R要極值定理中的其中一個條件沒有被滿足就「有可能」沒有絕對極值
           「有可能」沒有絕對極值的情況
                                                                 邊的圖沒有在閉區間上(沒有絕對極大也沒有絕對極小)
                               If f is continuous on a closed interval [a, b],
                               we can follow below to find the absolute maximum and minimum:
             The Closed Interval 1. Find critical numbers of f in (a, b).
              (找絕對極值方法 1) 2. Evaluate f at each critical points in (a,b).
                                                                                                                                                              除了這兩種方法,
                               3. Evaluate f at the end-points in [a, b].
                                                                                                                                                              也可以在找到全部的相對極值後
                                                                                                                                                              直接和端點比較就知道最大最小值了
                               4.Compare the values of 2 and 3. (這些值中最大的就是絕對極大值;最小的就是絕對極小值!)
            The First Derivative Test Suppose that c is a critical number of a continuous function f defined on an interval.
          for Absolute Extrema 1.If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the absolute maximum value of f.
                                  2.If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the absolute minimum value of f.
                ┏Domain:確定定義域
                - Intercepts∶找出x截距、y截距
                - Symmetry: 確定函數是否具有對稱性
                · Asymptotes : 判斷是否有水平、垂直、斜漸近線
                · Intervals of Increase or Decrease : 找出函數的遞增遞減區間
                 Local Extrema : 利用 Critical Numbers 與一次導數判別法找出局部極值
                 Concavity and Points of Inflection: 利用反曲點確定函數的凹性
                ┗Sketch the Curve : 綜合上述畫圖
                             Use the guidelines to sketch the curve y = \frac{2x}{2}
                          A. Domain The domain is
                           \{x \mid x^2 - 1 \neq 0\} = \{x \mid x \neq \pm 1\} = (-\infty, -1) \cup (-1, 1) \cup (1, \infty)
                         B. Intercepts The x- and y-intercepts are both 0.
                         C. Symmetry Since f(-x) = f(x), the function f is even. The curve is symmetric
                          about the y-axis.
                         D. Asymptotes \lim_{x \to \pm \infty} \frac{2x}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{2}{1 - 1/x^2} = 2
                           Therefore the line y = 2 is a horizontal asymptote (at both the left and right).
                            Since the denominator is 0 when x = \pm 1, we compute the following limits:
                           Therefore the lines x = 1 and x = -1 are vertical asymptotes. This information
                           about limits and asymptotes enables us to draw the preliminary sketch in Figure 5
                           showing the parts of the curve near the asymptotes.
                          E. Intervals of Increase or Decrease
                          Since f'(x) > 0 when x < 0 (x \ne -1) and f'(x) < 0 when x > 0 (x \ne 1), f is
                           increasing on (-\infty, -1) and (-1, 0) and decreasing on (0, 1) and (1, \infty).
```

單變數純量函數

F. Local Maximum or Minimum Values The only critical number is x = 0. Since changes from positive to negative at 0, f(0) = 0 is a local maximum by the First

 $f''(x) > 0 \iff x^2 - 1 > 0 \iff |x| > 1$ and $f''(x) < 0 \iff |x| < 1$. Thus the curve is concave upward on the intervals $(-\infty, -1)$ and $(1, \infty)$ and concave downward on (-1, 1). It has no point of inflec-

G. Concavity and Points of Inflection

Since $12x^2 + 4 > 0$ for all x, we have

tion because 1 and -1 are not in the domain of f.

導數(應用篇)