```
together with a "rule" that assigns to each x \in X a special element of Y denoted
                                                                                                  by f(x). One writes f(x) to denote that x is mapped to the element f(x).
                                                                                       -Definition X is called the domain (定義域) of f, and Y is called the target or co-domain of f.
                                                                                                  The range (值域) of f or the image of f, is the subset of Y defined by f(X) = \{f(x) \mid x \in X\}.
                                                                                                  P.S. We will frequently use the notation f: X \to Y for a function.
                                                                                        –Onto (Surjective) \operatorname{A} function f:X	o Y is said to be \operatorname{{f onto}} if range f=Y
                                                                                       One-One (Injective) A function f:X	o Y is called one-one if whenever x_1,\,x_2\in X and x_1
eq x_2, then f(x_1)
eq f(x_2).
                                                                                        -Bijection A function f:X	o Y is called an bijection if it is one-to-one and onto.
                                                                                                           Let X, Y, and Z be sets and f: X \to Y and g: Y \to Z be functions.
                                                                                        -Composite Function \operatorname{By} following f with g, we obtain a function g\circ f\colon X 	o Z
                                                                                                                                                                                                    Functional composition is associative but not commutative.
                                                                                                           called the composite of g and f. Thus (g \circ f)(x) = g(f(x)) \ \ \forall \ x \in X
                                                                                                           A function f: X \to Y is said to be invertible
                                                                                                          	ext{if } \exists \, g \! : Y 	o X 	ext{ such that } egin{cases} (f \circ g)(y) = y \ \ orall \, y \in Y \ (g \circ f)(x) = x \ \ orall \, x \in X \end{cases}
                                                                                                                                                                                       1. f is invertible \Leftrightarrow f is bijection
                                                                                       Invertible Function If such a function g exists, then it is unique and
                                                                                                                                                                              Theorem 2. If f: X \to Y is invertible, then f^{-1} is invertible, and (f^{-1})^{-1} = f.
                                                                                                                                                                                       3. If f: X \to Y and g: B \to C are invertible, then g \circ f is invertible, and (g \circ f)^{-1} = f^{-1} \circ g^{-1}.
                                                                                                           is called the inverse of f. We denote the inverse
                                                                                                          of f (when it exists) by f^{-1}.
                                        Let f be a function defined on some open interval that contains the number a,
                                  定義 except possibly at a itself. We write \lim f(x) = L if for every \varepsilon > 0
                                                                                                                                               若極限值存在則唯一
                                        there is a number \delta > 0 such that if 0 < |x - a| < \delta then |f(x) - L| < \varepsilon.
                                                               \lim_{\varepsilon} f(x) = L if for every \varepsilon > 0 there is a number \delta > 0
                                             – Left-hand Limit x 
ightarrow a
                                                              such that if |a - \delta < x < a| then |f(x) - L| < arepsilon
                                                                                                                                           \lim f(x) = L if and only if
                                                                                                                                                                               \lim f(x) = L and
                                   <mark>-</mark>單邊極限·
                                                                \lim_{\varepsilon} f(x) = L if for every \varepsilon > 0 there is a number \delta > 0
                                             Right-hand Limit x \rightarrow a
                                                               	ext{ such that if } \ a < x < a + \delta \ 	ext{ then } \ |f(x) - L| < arepsilon
                                                 左右極限不
                                   - 不存在的情況 -
                                                                       \int_{x	o a}^{\infty} \overline{f(x)} = \infty: orall \, M>0, \exists \, \delta>0 \quad 	ext{ such that if } \quad 0<|x-a|<\delta \quad 	ext{ then } \quad f(x)>M
                                                                      \lim_{x	o a}f(x)=-\infty:orall\,N<0,\exists\;\delta>0 \quad	ext{such that if}\quad 0<|x-a|<\delta \quad	ext{ then }\quad f(x)< N
                                                                            The vertical line x = a is called a vertical asymptote of the curve y = f(x)
                                                  -Infinite Limit
                                                                            if at least one of the following statements is true:
                                                                                                   \lim_{x	o a_-}f(x)=\infty \qquad \lim_{x	o a_+}f(x)=\infty
                                                                - 垂直漸近線 \lim f(x) = \infty
                                                                           \lim_{x	o a}\overline{f(x)}=-\infty \qquad \lim_{x	o a} f(x)=-\infty \qquad \lim_{x	o a_{\perp}}f(x)=-\infty
                                                                 Suppose that \lim f(x) = L, then \exists \ \delta > 0, \ M > 0 such that
                                                一極限的局部有限性
                                                                 |\sin 0 < |x-a| < \delta 	ag{then} |f(x)| < M.
                                                If f(x) = g(x) when x \neq a, then \lim_{x \to a} f(x) = \lim_{x \to a} g(x), provided the limit exists.
                                                                                                                       \lim_{x	o a}\left[f(x)\pm g(x)
ight]=L\pm M
                                   - Proposition -
                                                                                                                        \lim_{x	o a}\left[\,cf(x)\,
ight]=cL
                                                                                                                       \lim_{x	o a} \overline{[f(x)g(x)]} = LM
                                                                                                                                                                            透過已知函數極限和 Limit Laws 可以更快地算出未知函數的極限!例如:
                                                               Suppose that c is a constant and
                                                Limit Laws the limits \lim_{x	o a}f(x)=L and \lim_{x	o a}g(x)=M. \lim_{x	o a}[f(x)]^n=L^n where n\in\mathbb{N}
                                                                                                                                                                            透過 Limit Laws ,我們可以知道 If f is a polynomial or rational function
                                                                                                                                                                            and a is in the domain of f, then \lim_{x \to a} f(x) = f(a).
                                                                                                                                        doesn't exist if M=0
                                                                                                                     \lim_{x	o a}\sqrt[n]{f(x)}=\sqrt[n]{L}\quad	ext{where }n\in\mathbb{N}
                                                                                                                        If n is even, we assume that L > 0.
                                                                    Let p > 0. Suppose that, for all x such that f(x) \leq g(x) \leq h(x) when 0 < |x - c| < p.
                                   – Theorem — 🕞 Squeeze Theorem
                                                                                           \lim_{x	o c}f(x)=\lim_{x	o c}h(x)=L, 	ext{then }\lim_{x	o c}g(x)=L.
                                                          \int_{-\infty}^{\infty} f(x) = L means that for every arepsilon > 0 there is a corresponding number N such that if |x>N| then |f(x)-L| < arepsilon
單變數純量函數
                                                                                                                                                                                                                          若極限存在則唯一!
                                                                                                                                                                                                                          All the Limit Laws are true when we replace lim by lim or lim
                                                    定義一
                                                            \lim_{x \to \infty} f(x) = L means that for every arepsilon > 0 there is a corresponding number N such that if |x| < N then |f(x) - L| < arepsilon
                                                                                                                                                                                                                          That is, the variable x may approach a finite number c or \pm \infty.
                                                                1. If r>0 is a rational number and c\in\mathbb{R}, then \lim_{x\to\infty}\frac{c}{x^r}=0.
                                                                                                                                                                 這個定理在計算無窮遠處的極限
                                                     -Theorem -2. If r>0 is a rational number such that x^r is defined for all x and c\in\mathbb{R},
                                                                                                                                                                 可以自行嘗試證明。
                                                                  \lim_{x	o -\infty}rac{c}{x^r}=0.
                                                                        The straight line y=mx+\overline{k} is an asymptote of the graph y=\overline{f(x)}
                                                                       \inf_{x	o\infty}(f(x)-mx-k)=0 \quad 	ext{or} \quad \lim_{x	o-\infty}(f(x)-mx-k)=0
                                                                                                                                                                  水平漸近線的定義可以寫成—The line y = L
                                                                                                                                                                  is a horizontal asymptote of curve y = f(x) if
                                                             \mathsf{C}^{\mathsf{Definition}} The straight line y=mx+k is called a horizontal asymptote of
                                                                                                                                                                  \lim_{x	o\infty}f(x)=L	ext{ or }\lim_{x	o-\infty}f(x)=L.
                                                                        the graph of f if m = 0, and is called a slant asymptote of the graph
                                                                       of f if m \neq 0.
                                                                      If y = mx + k is a slant asymptote of the graph y = f(x),
                                   - Limit at Infinity -
                                                                     k=\lim \left(f(x)-mx
ight) \quad 	ext{or} \quad k=\lim \left(f(x)-mx
ight).
                                                                    若 \lim_{x	o\infty}f(x)=L 存在,則 m=\lim_{x	o\infty}rac{f(x)}{x}=0。
                                                           觀念補充 若 m=\lim_{x	o\infty}rac{f(x)}{x} 存在且不等於 0,則 \lim_{x	o\infty}f(x)=\pm\infty。
                                                                      綜合上述,我們知道水平和斜漸近線不會並存,也就是
                                                                      只存在其中一個或都不存在。(上述的∞可改成-∞)
                                                                              \lim_{x	o\infty}\overline{f(x)}=\infty: orall\, M>0, \exists\ N>0 \quad 	ext{ such that if } \quad x>N \quad 	ext{ then } \quad f(x)>M
                                                                             \lim_{x	o\infty} \overline{f(x)} = -\infty: orall \ \overline{M} < 0, \exists \ N>0 \quad 	ext{ such that if } \quad x>N \quad 	ext{ then } \quad \overline{f(x)} < M
                                                    Infinite Limit at Infinity
                                                                              \lim_{x 	o -\infty} f(x) = \overline{\infty} : orall \ M > 0, \exists \ N < 0 \quad 	ext{ such that if } \quad x < N \quad 	ext{ then } \quad f(x) > M
                                                                               \lim \ f(x) = -\infty : orall \ M < 0, \exists \ N < 0 \quad 	ext{such that if} \quad x < N \quad 	ext{ then } \quad f(x) < M
                                              \lim 1 = 1
                                             \lim x = a
                                             \lim_{x	o a}|x|=|a|
                                             -\lim rac{\sin ax}{1} = 1 \quad 	ext{for each number } a 
eq 0
                                              -\lim \frac{\sin aa}{\cos a} = 0 for each number a \neq 0
                                                            \frac{1}{1} = 0 for each number a \neq 0
                                                   \frac{\cos ax - 1}{2} = 0 \quad 	ext{for each number } a 
eq 0
                                          - _{	ext{在點上連續}} A function f is continuous at a number a if \lim_{x \to a} f(x) = f(a)
                                                   A function f is continuous from the right at a if \lim_{x \to a^+} f(x) = f(a). A function f is continuous from the left at a if \lim_{x \to a^-} f(x) = f(a)
                                                                                                                                        f is continuous at a iff f(a), \lim_{x \to a} f(x), \lim_{x \to a} f(x) all exist and are equal.
                                          - 單邊連續 -
                                   定義
                                                       A function f is continuous on an interval if it is continuous at every number in the interval.
                                          -在區間上連續 (If f is defined only on one side of an endpoint of the interval, we understand continuous at the endpoint to mean
                                                      continuous from the right or continuous from the left.)
                                         處處連續 A function f is continuous everywhere if it is continuous at its domain.
                                   - 不連續的情況
                                                   If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:
                                                 1.\ f\pm g 2.\ cf 3.\ fg 4.\ rac{f}{a} if g(a)
eq 0

    Proposition

                                                                                                                                                    \text{ If $f$ is continuous at $g(a)$ and $g$ is continuous at $a\left(\lim_{x\to a}g(x)=g(a)\right)$,}
                                                     If f is continuous at b, and \lim_{x \to a} g(x) = b
                                                     \lim_{x \to a} f(g(x)) = f(b). \quad 	ext{In other words, } \lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))
                                                                                                                                           Corollary
                                                                                                                                                     then \lim f(g(x)) = f(g(a)). That is f(g(x)) is continuous at a.
                                                                              Suppose that g is continuous on the closed interval [a, b]
                                              m{\epsilon} Intermediate Value Theorem and let N be any number between f(a) and f(b), where f(a) 
eq f(b).
                                                                               \Rightarrow Then there exists a number c in (a,b) such that f(c)=N.
                                    Theorem
                                                                                                                                                                                                        Balzano's Theorem If f is continuous on [a,b] and f(a)f(b)<0, 勘根定理 then there exists c\in(a,b) such that f(c)=0.
                                                                          If f is continuous on a closed interval [a, b],
                                               - \bigcirc Extreme Value Theorem then f has both a minimum and a maximum on the interval.
                                                                          (連續函數在閉區間上必有最大最小值)
                                                                                                                                                                      Special Case -
                                                            Polynominal Function
                                                             - Rational Function
                                                             - Root Function
                                    ·在定義域上一定連續的函數 — Logarithmic Function
                                                             - Exponential Function
```

極限與連續

Trigonometric Function

Inverse Trigonometric Function

Let X and Y be given sets. A function $f: X \to Y$ consists of two sets X and Y