Mathmatical Statisticals

Chen, L.-A.

Chapter 4. Distribution of Function of Random variables

Sample space S : set of possible outcome in an experiment.

Probability set function P:
(1)P(A) > 0,VACS.
(2)P(S) = 1.

1 1
Random variable X:
X:S—R

Given B C R,P(X € B) = P{s € S: X(s) € B}) = P(X"'(B)) where
X-Y(B)cS.

X is a discrete random variable if its range
X(s)={z € R:3s€ 5, X(s) =z}

is countable. The probability density/mass function (p.d.f) of X is defined

f(z)=P(X =2x),z € R.

Distribution function F':
F(z)=P(X <z),z € R.

A r.v. is called a continuous r.v. if there exists f(x) > 0
such that

F(z) = / f(t)dt,z € R.

where f is the p.d.f of continuous r.v. X.



Let X be a r.v. with p.d.f f(z). Let g: R — R

Q: What is the p.d.f. of g(z)? and is g(x) a r.v.?(Yes)
Answer:

(a) distribution method :

Suppose that X is a continuous r.v.. Let Y = g(X)
The d.f(distribution function) of Y is

G(y) = P(Y <y) = P(9(X) <y)

If G is differentiable then the p.d.f. of Y = ¢(X) is g(y) = G'(y).
(b) mgf method :(moment generating function)

E[e"] = { Yo e f(x) (discrete)

[ e f(x)dx  (continuous)

Thm. m.g.f. M,(t) and its distribution (p.d.f. or d.f.) forms a 1 —1 func-
tions.

ex.
My (t) = e2' = My(.1)(t) = Y ~ N(0,1)

Let X4,..., X, be random variables.
If they are discrete, the joint p.d.f. of Xq,..., X, is

a1
f(ml,...,xn):P(Xl:xl,ngxg,...,Xn:a:n),V ER”
Tn
If Xq,...,X, are continuous r.v.’s, there exists f such that
T
F .Il, / / f tl, . dtl dtn, for € R"
Tn
We call f the joint p.d.f. of Xy,..., X,,.
If X is continuous, then
/ f(t)dt and P(X /f )dt = 0,Vx € R.



Marginal p.d.f’s:

Discrete:
fx,(x)=P(X;, =x) = Z"'ZZ"‘Zf(xl""’xi—l’x’xi+1"“’x”>
Tn Tit1 Ti—1 1
Continuous:

fXZ(.I‘)I/ / / / f(ml,...,xi,l,x,xiﬂ,...,mn)dxl...dxi,ldxiﬂ...d:cn

Events A and B are independent if P(AN B) = P(A)P(B).
Q: If AN B =@, are A and B independent?
A: In general, they are not.

Let X and Y be r.v.’s with joint p.d.f. f(x,y) and marginal p.d.f. fx(z) and
fr(y). We say that X and Y are independent if

Py = Fx()fr ()Y ( ' ) c R

Random variables X and Y are identically distributed (i.d.) if marginal
p.d.f.’s f and g satisfy f = g or d.f.’s F' and G satisfy F' = G.

We say that X and Y are iid random variables if they are independent and
identically distributed.

Transformation of r.v.’s (discrete case)
Univariate: Y = ¢(X), p.d.f. of Y is

g(y) = P(Y =y) = P(g(x) =y) = P({z € Range of X : g(z) =y}) = > f(x)
{z:g9(z)=y}

For random variables X1, ..., X,, with joint p.d.f. f(z1,...,2,), define trans-
formations

Yi :gl(Xla"'aXn)>"'7Ym:gm(Xla--'7Xn)'

The joint p.d.f. of Y7,....Y,, is



g(y17>ym):P(Y'1:y177Ym:ym)

€
= P({ : c91(Ty, ) =YL, (T, ) = Ym )
T,
= Z flxy, ... xy)
x
(| |[o@ien)=y1gm@1zn)=ym}
T,

Example: joint p.d.f. of X7, X5, X3 is

(¢1,25,23) | (0,0,0) (0,0,1) (0,1,1) (1,0,1) (1,1,0) (1,1,1)
flavanmg) | 3 5 5 3 5

Yi=X1+Xo+ X5, Y, = [ X35 — X5

Space of (Y1,Y3) is {(0,0), (1,1),(2,0), (2,1), (3,0)}.
Joint p.d.f. of Y7 and Y5 is

(yi,92) | (0,00 (1,1) (2,00 (2,1) (3,0)

9(914/2) ‘ % % % % %

Continuous one-to-one transformations:
Let X be a continuous r.v. with joint p.d.f. f(z) and range A = X (s).

Consider Y = g(z), a differentiable function. We want p.d.f. of Y.
Thm. [If g is 1-1 transformation, then the p.d.f. of Y is

) :{ Fx(a %52 v € g(A)

0 otherwise.

Proof. The d.f. of Y is
Fy(y) =P <y)=Pg(X) <y)

. 1 . d—l
(a) If gis 7, g~' is also (> 0)



= p.d.f. of Yis

. _ . d—l
(b) If g is N\, g~ ! is also \.. (Z—y < 0)

o) 9 ()
Rl =Pz )= [ =1 [ i

= p.d.f. of Y is

g ()
fr(y) = Dy(1 - / Fx(w)dz)

= —fx(g‘l(y))—dg;y(y)

- el W)

Example : X ~U(0,1),Y = —2 In(x) = g(z)
sol: p.d.f. of X is
1 Jif0<z<1

xTr) =
fx(@) { 0 ,elsewhere.

y dx 1 Y
_ -y _ .
r=et o g G = e
p.d.f. of Y is
dy 1 Y
_ -1 _ Ly
fr(y) = fx(g (Z/))‘dx‘ 26 2,y>0

(XNU(a,b)iffX(;p):{ aa fa<az<b

0 elsewhere.



=Y ~x*(2)

1 T x
X ~x3(r) if xr) = —x2 teT2 x>0
O~ X0 i fx(0) = e )
Continuous n-r.v.-to-m-r.v., n > m, case :
g1

Ty }/lzgl(Xh"'vXn) g
| — : R 57 R
Ty, Yo = gm (X1, ..., Xp)

Q : What are the marginal p.d.f. of Y7,--- .Y},
A : We need to define Y11 = g1 (X1, .-, Xn)y oo, Y = gu(Xy, ..., X))

g1
such that : is 1-1 from R" to R".

In
Theory for change variables :

€

P( GA)://le 77777 Xn(l'l,...,l'n)dl'l"'dl'n
x’n
Let y1 = g1(x1, ..., Z0),  ,Yn = gn(x1,...,2,) be a 1 — 1 function with
inverse 1 = wi (Y1, .-, Yn), "+ »Tn = Wy(y1,...,yn) and Jacobian
oY1 Oyn
J: . .
Ozn ,, Ozn
891 8yn

Then

Hence, joint p.d.f. of Y7,--- Y, is

le ..... Yn(?/la . >Z/n) = le ..... Xn(wb cee 7wn)‘<]’



Thm. Suppose that X, and Xy are two r.v.’s with continuous joint p.d.f.
fx1.x, and sample space A.

If i = 1( X1, Xo) , Yo = g2(Xy, Xy) forms a 1 — 1 transformation inverse
function

X1 . wl(YhYQ) . . ‘3—”; 3—‘;1
(X2>_(w2(Y1,Y2) and Jacobian J = 8_x; a_mz

Oy1 Oy

the joint p.d.f. of Y1,Ys 1s

Y g
P e) = P ) sl () () ),
Steps :
(a) joint p.d.f. of X, X5, space A.
(b) check if it is 1 — 1 transformation.
Inverse function X; = w; (Y1, Y2), Xo = we(Y1,Y2)
(c) Range of (2) = (2)(4)

92

Example : For X1, X, < U(0,1), let ¥; = X; + X5,V = X; — Xo.
Want marginal p.d.f. of Y7, Y,

Sol : joint p.d.f. of X7, X5 is

1 if0<z<1,0<2y<1

0 elsewhere.

fX1,X2 (1’1, xQ) = {

X
A:{(X;):O<x1<1,0<x2<1}

Given yi, Yo, solve y; = 1 + X2, Y2 = T1 — To.

Y1+ Yo Y1 — Y2
= T = 2 :wl(ylay2)7x2 = 92 :wZ(yl’yQ)
(1 — 1 transformation)
Jacobian is

gny 0w 11

J:‘ayi ay;‘:‘i 2 ‘:_1_1:_1
dzy  dzy 1 1 4 4 2
oy1 Oyo 2 2

The joint p.d.f. of Y7,Y5 is

le,Y2(y17y2) - le,Xz(w17w2)|J|’ (;jl) €EB

2

7



Marginal p.d.f. of Y,Y; are

J2, 3dye = wn 0 <y <1
fY1(y1> = f;liy; %dQQ =1—-y , 1<y <2
0 , elsewhere.

2+
f_y2y2 sdypi=1y2+1 ,—1<y <0

fra(y2) = f;;” ldp=1—y, ,0<yp<1

0 , elsewhere.

Def. If a sequence of r.v.’s X1,...,X,, are independent and identically dis-
tributed (i.i.d.),then they are called a random sample.

If Xq,...,X, is arandom sample from a distribution with p.d.f. fy, then the
joint p.d.f. of Xy,..., X, is

n Ty
fln,. ) =[] fol@).| : | R
i=1

Tn

Def. Any function g(Xi,...,X,) of a random sample X1, ..., X, which is
not dependent on a parameter 6 is called a statistic.

Note : If X is a random sample with p.d.f. f(z,0), where 6 is an unknown
constant, then 6 is called parameter.

For example, N(u,0?) : u,0? are parameters.
Poisson(A) : A is a parameter.

Example of statistics :
Xi,..., X, areiid r.v.’s = X and S? are statistics.

Note : If Xi,..., X, arer.v.’s, the m.g.f of Xy,..., X, is

,,,,, Xn (tl, P 7tn) — E(€t1X1+~..+tnX”)

m.g.f
M,(t) = E(e") = /emf(a:)dx

— DiM,(t) = D;E(e") = Dt/emf(x)dx = /Dtet”f(x)dx



Lemma. X; and X5 are independent if and only if
My, x,(t1,t2) = Mx, (t1) Mx, (t2), V1, t2.

Proof. =) If Xy, X5 are independent,

Mx, x,(t1,t2) = E(e thl‘*‘tQXz)

t t
// 1Iﬁsz 3317552)(133161332

—/_ tlmlel(xl)dxl/_ e fx, (w2)das
= E(e""*1)E(e2%2)
= MX1 (tl)MX2 <t2)

<)

oo oo
MXl,Xg (tl, t2> — E(ethl-i-thg) — / / 6t1m1+t2$2f($1, ZL‘Q)dZL‘ld$2
o o0

My, (t1) Mx, (t2) = B(e" ™) E(e"?)

= / etlxl le ({L‘l)dl‘l / €t2x2fX2 (l‘g)dIQ

—00 — 00

00
= / €t1x1+t2x2f(l‘1,l'2>dl'1dl‘2

—00

With 1 — 1 correspondence between m.g.f and p.d.f,

then f(z1,x2) = fi(x1) fa(x2), Vo, 29
= Xy, Xy are independent.

X and Y are independent, denote by X []Y.

X ~ N(u,o?) , M, (t) = e* i 512 Vte R

X ~ Gamma(a, 5) , M,(t) = (1= pt)"*t < B

X ~b(n,p) M(t) =1 —p+pe’)",Vt € R
X ~ Poisson(\) M, (t) = M=V vt € R

Note :



(a) If (X1,...,X,) and (Y1,...,Y,,) are independent, then g(Xi,...,X,)
and h(Y7,...,Y,,) are also independent.

(b) If X , Y are independent, then

Thm. If (Xy,...,X,) is a random sample from N(u,c?), then

(@)X ~ N(p, =)

(b)X and S? are independent .
n—1)5?
©" )% -y

Proof. (a) m.g.f. of X is

en X E(en 2B (en )

=X~ (1, %)
(b) First we want to show that X and (X; — X, X, — X,..., X, — X) are

10



independent. Joint m.g.f. of X and (X; — X, Xy — X,..., X,, — X) is

MY,Xl—Y,XQ—Y Xn 7(?5 tl, e 7t )

1111

:E[etYthl(Xl X+ ttn(Xn X)]

— E[e% S XA X = ‘)
. R R it

i

n(t;—t)+t
n Zn X

— E[ezz':1

n(t; t)+t
He :
H n(t t)+t 2(n<t —1)+1)2
= 2

=1

> (n(t; ft>+t>+—22 (n(ti—7)+1)?
1

m

n

= e i=

2 — 2 — 2 —
_ T (=D G S (D) Syt Y (D)

2 2 —
_ ot T o St D)

= Mf(t)M(Xl—Y,XQ—Y Xn—X) (tlv ce 7tn)

= X and (X; — X, X, — X,..., X, — X) are independent.
= X and 5% = -1 Z( ) are independent.

(c)
(1) Z ~ N(0,1), = 2% ~ y*(1)

(2)

X ~ x*(r1) and Y ~ x*(ry) are independent. = X +Y ~ x*(r; 4+ 73)

H|

Proof. m.g.f. of X +Y is
My (t) = (")) = B(e™H) = E(e")E(e™) = Mx (1) My (1)

—(1—20)F(1—20)F =(1—20) "%
= X +Y ~x%(r; +r9)
(3
(X1,...,X,) ~ N(u,o)
Xi—p Xo— X — 1 i
e e Bt P N0, 1)
o g g

11



My x,—w2 (t) = E(e

P X=X X
o2

t
Gy

(n71)52 (?*#)2

E(et o2 e o2 /n )

12

) = E(e

)2
VeI

)

s 2 =X 4n(X—p)?
2

o



Chapter 3. Statistical Inference — Point Estimation

Problem in statistics:

A random variables X with p.d.f. of the form f(z,0) where function f is
known but parameter 6 is unknown. We want to gain knowledge about 6.
What we have for inference:

There is a random sample X1, ..., X, from f(z,0).

Point estimation: 6 = (X1, ..., X,,)

Estimation nterval estimation

Statistical inferences
such that 1 —a=P(T; <6 <Ty)

Hypothesis testing: Hy : 0 = 6y or Hy : 0 > 0.

Want to find a rule to decide if we accept or reject Hy.

Def. We call a statistic 6 = é(Xl,...,Xn) an estimator of parameter 0
if it is used to estimate 0. If X1 = x1,..., X, = x, are observed, then
0 =0(xq,...,x,) is called an estimate of 6.

Two problems are concerned in estimation of 6 :

(a) How can we evaluate an estimator f for its use in estimation of 6 ?
Need criterion for this estimation.

(b) Are there general rules in deriving estimators 7 We will introduce two
methods for deriving estimator of 6 .

Def. We call an estimator 0 unbiased for 0 if it satisfies

Ey(0(Xy, ..., X)) = 0,V0.

[ [ 0, ) (2, g, O)day - - dy,

Eo(A(Xy,.... X

A~

Def. If Ey(A(X1,..., X)) # 0 for some 0, we said that 0 is o biased esti-

mator.

13

Find statistics T1 = t1<X1, e ,Xn), T2 = tQ(Xl, ce

W)= { [ 07 £5(07)d0* where 6 = 0(X,,..., X,) is a r.v. with pdf f;(6)

, Xn)



Example : Xq,..., X, & N(u,0?), Suppose that our interest is p, X,

EM(Xl) {4, is unbiased for pu,
(X0 + X), E(21322) = 41 is unbiased for ,
X,E,(X) = u, is unbiased for p,

n—o0

» a, — a, if , for € > 0, there exists N > 0 such that |a,—a| < e if n > N.

{X,} is a sequence of r.v.’s. How can we define X,, — X as n — oo?

Def. We say that X,, converges to X, a r.v. or a constant, in probability
if for e >0,
P(X,—X|>¢€¢) — 0, asn — oc.

In this case, we denote X, Ly X,

Thm.
If BE(X,) =a or E(X,) — a and Var(X,) — 0, then X, s a.
Proof.

E[(X,, — a)’] = E[(X,, — E(X,) + E(X,,) — a)’]
= E[(X,, — E(X,))’] + E[(E(X,,) — a)?] + 2E[(X,, — E(X,)))(E(X,.) — a)]
= Var(Xn) +E((X,) —a)?

Chebyshev’s Inequality :
E(X, — X)?

P(|X,—X|>¢) < 5

1
or P(|1X, — p| > ko) < =

€

For e > 0,

0< P(|X,—a|l>¢) =P(X,—a)>é)
E(X, —a)? _ Var(X,) + (E(X,) — a)?

5 — 0 asn — 0.

€
P(| X, —a|] >¢€) — 0, asn — 00. = X, — a.
[
Thm. Weak Law of Large Numbers(WLLN)

If X1,..., X, is a random sample with mean j and finite variance o2, then
X5

14



Proof.

2
E(Y):u,Var(Y):U——>Oasn—>oo.:>7i>p.

n
O
Def. We sat that 0 is a consistent estimator of 0 ifé L.
Example : Xi,...,X,, is a random sample with mean p and finite variance

02.Is X, a consistent estimator of u ?
E(X;)=u, X; is unbiased for p.
Let € > 0,

P(Xi—p>e)=1-P(Xi —p[<e)=1-Plp—e< Xy <p+te)

pte
:1—/ fx(x)dz > 0,-» 0 as n — 0.
n—e

= X is not a consistent estimator of p

2
E(X) = p, Var(X) = 7 L 0asn— oo
n

=X -5
= X is a consistent estimator of .

» Unbiasedness and consistency are two basic conditions for good estimator.

Moments :
Let X be a random variable having a p.d.f. f(z,8), the population ky,
moment is defined by

ST oakf(x,0) , discrete
Eo(X") =< all«

ffooo xkf(x, Q)dx , continuous

n

The sample k;, moment is defined by % > Xk
i=1

Note :
E(l Z X5 = % Z E(X;F) = % Z Eo(X*) = Eo(X¥)

15



= Sample ky, moment is unbiased for population k;, moment.
Vaur(l iXk) = iVar(i XM = L iVar(X‘k) = l\/'au"(Xk) — 0 asn — o0
né&—"" n? L n? & ‘ n '

= Ly XF 2 Ey(XF).

=1

=1y X,;* is a consistent estimator of Eg(X*).
i=1

Let X1, ..., X, be arandom sample with mean p and variance 2. The sample
variance is defined by 5 = —L- 3~ (X;—X)? Want to show that S? is unbiased
i=1

for o2.
Var(X) = E[(X — u)?] = EIX? - 230X + ] = B(X?) —
= BE(X?) = Var(X) + ¢* = Var(X) + (E(X))?

2

E(X) = p, Var(X) = —

ZX2—2XZX +nX)

) — nE(X")]

E(5?) = E( ! Z(Xi—y

n—1
=1

ZX2

1 2 2 o’ 2 1 2 2
= ——fno* (S + ) = ——(n = 1)oP =0

= 52 = L 3"(X; — X)? is unbiased for o2,

1=

—_

92 _ X2—X X2—PEX2_2:2 2_ 2 _ 2
n—lg " T a1 nz (X ==y —p ?
Xi,..., X, are iid with mean p and variance o>
X%, ..., X% are iid r.v.’s with mean E(X?) = p? + o2
By WLLN , L 3~ x2 55 B(X2) = 12 4 o2
i=1
= 52 L2 o2

16



Def. Let Xq,...,X,, be a random sample from a distribution with p.d.f.

f(z,0)

(a) If 0 is univariate, the method of moment estimator 0 solve 0 for X =

Ep(X)

(b) If 6 = (61,0,) is bivariate, the method of moment estimator (0y,6,)

solves (01, 60) for

— 1 <
X = By ,(X), > X = By g,(X?)
i=1

(c)If0 = (6.,...,6;) is k-variate, the method of moment estimator (6, . ..

solves 0, ... ,0, for

1 ; N
_ZXi]:Ebh ..... Gk(X])aj:L"'7k
n <

Example :

(a) X1,..., X, “ Bernoulli(p)
Let X =E,(X)=p
= The method of moment estimator of p is p = X
By WLLN, p = X N E,(X) = p = p is consistent for p.
E(p) = E(X) = E(X) = p = p is unbiased for p.

(b) Let Xy,..., X, be a random sample from Poisson()
Let X = Ey(X) = A o
= The method of moment estimator of A is A = X
E(\) = E(X) = A = X is unbiased for A.
Ai=Xx5 E(X) = A = ) is consistent for \.

(c) Let X1,..., X, be a random sample with mean p and variance o>

0 :(_,u,az)
Let X = B, ,2(X) =

S X =B, (X?) = 0%+
=1

= Method of moment estimator are ji = X |

17



§2=1 ZXZ X' = Ly (X, — X)?
i=1
X is unblased and con_sistent estimator for .
B(6%) = E(: T(X - X)?) = 22 DX - X)) = 25to £ 02
=062 is not unblased for o?
A2 1ZX2 2 E(X2)—/L2:O'2

= 62 is con51stent for o2.

Maximum Likelihood Estimator :
Let Xi,..., X, be a random sample with p.d.f. f(z,0).
The joint p.d.f. of Xy,..., X, is

n

f($1a"'7$n79) :Hf($za9)axz€RaZ:17an

i=1
Let © be the space of possible values of . We call © the parameter space.

Def. The likelihood function of a random sample is defined as its joint p.d.f.

as
L(0)=L0,z,...,x,) = f(x1,...,2,,0),0 € O.
which is considered as a function of 6.

For (xy,...,x,) fized, the value L(0,x1,...,x,) is called the likelihood at 6.

Given observation 1, ..., x,, the likelihood L(0,z1, ..., x,) is considered as
the probability that X; = zq,..., X,, = x,, occurs when 6 is true.

Def. Let 0 = H(xl, ., Ty) be any value of O that maximizes L(0, x4, ..., x,).
Then we call 6 = H(xl, ..., Ty) the mazimum likelihood estimator (m.l.e)
of 0. When X1 = x1,...,X,, = x, is observed, we call 0 = é(ml, .., Ty) the
mazimum likelihood estimate of 6.

Note :

(a) Why m.l.e 7
When L(01,z1,...,2,) > L(02, 21, ..., 2,),

we are more confident to believe 8 = #; than to believe 6 = 6,

18



(b) How to derive m.l.e 7
ag‘x: >0=Inzis Sinz
=If L(@l) > L(0y), then In L(61) > In L(6s)

If 6 is the m.lLe., then L0, xy,...,x,) = rglzg;L(@,xl,...,xn) and
E

In L(é,xl, ey X)) = rgleagxlnL(Q, S

Two cases to solve m.l.e. :

(b.1) alnL( ) — ¢

(b.2) L(Q) is monotone. Solve IglE%XL(H,xl,...,mn) from monotone
property.

Order statistics:

Let (Xy,...,X,) be a random sample with d.f. F and p.d.f. f.

Let (Y3,...,Y,) be a permutation (Xi,...,X,) such that Y} <Y, <-.-Y,.
Then we call (Y3,...,Y,) the order statistic of (Xi,...,X,) where Y] is
the first (smallest) order statistic, Y3 is the second order statistic,..., Y, is
the largest order statistic.

If (Xi,...,X,) are independent, then
P(Xi €A, Xy€4,,...,X, € A) / fxl,...,xn)dx1-~dacn

_/ fn(xn)dxn A fi(x1)dx,
= P(X,€A,) --P(X, €A

Thm. Let (Xy,...,X,) be a random sample from a “continuous distribution”

with p.d.f. f(z) and d.f F(x). Then the p.d.f. of Y, = max{Xy,..., X} is
9n(y) = n(F(y))" " f(y)
and the p.d.f. of Y1 = min{Xy,..., X} is
gi(y) =n(l = F()" " fy)
Proof. This is a R™ — R transformation. Distribution function of Y, is

Gn(y) = P(Y, <y)=Pmax{X;,...,. X, } <y)=P(X; <vy,.... X, <)
=P(X1 <y)P(Xy <y)--- P(X, <y)=(F(y)"
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= p.d.f. of Y, is gu(y) = Dy(F(y))" = n(F(y)" " f(y)
Distribution function of Y is

Gi(y) = P(Y1 <y) = Pmin{Xy,..., X,,} <y)=1— P(min{X;,..., X,,} > v)
=1-PX;>y,Xo>y,...., X, >y)=1—P(X; >y)P(Xa>y) - P(X,, >v)
=1-(1-F(y)"

= p.df. of Y1 is gi1(y) = Dy(1 = (1 = F(y))") =n(l - F(y))" " f(y)

Example : Let (Xi,...,X,) be a random sample from U(0, 9).
Find m.l.e. of 8. Is it unbiased and consistent ?

sol: The p.d.f. of X is
f(z,0) = {

Consider the indicator function

1 ifa<z<b
Tap () :{ -

o<z <6

elsewhere.

S o=

0 elsewhere.

Then f(z,0) = }ljg)(x).
The likelihood function is

H [EZ, H%I[OG :L‘z 0" HI[OG] :Ez
i=1 =1

Let Y,, = max{Xy,..., X, }

Then [] Ijpg(z;) =1 0<2; <0, foralli=1,.... n< 0y, <0
i=1

We then have

L()

. Loty
L(0) = - Toa() = - lpyog(8) = 77 1020
(0) on [09](31) on [yv}() {0 if 0 <y,

L(0) is maximized when 6 = y,. Then m.le. of 0is 0§ =Y,
The d.f. of x is
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The p.d.f. of Y is

n—1

Yyl Yy
gnly) =n(H)"" 5 =n"g y
E(Y,) = foe yny;:dy = #19 # 60 = m.le. 0 = Y,, is not unbiased.

However, E(Y,,) = 50 — 6 asn — oo, mle. 6 is asymptotically unbiased.

0 n—1
EY?) = [ y*nl—dy= "¢
00 = [ n iy =

n 0> —( n 207 — 6?—0> = 0 as n — oo.

Y.) = E(Y?)—(EY,)? =
Var(V) = (V)= (BY,)* = ——0°~(-——

=Y, L0 =mle 0= Y,, is consistent for 6 .
Is there unbiased estimator for 6 7

1 1 1
A W e s 1 ¥ YO L Ly

E
( n n n+1

= 1Y), is unbiased for 6.
Example :

(a) Y ~ b(n,p)
The likelihood function is

L(p) = fy(y.p) = (Z)pyu )

In L(p) =1In <Z) +ylnp+(n—y)n(l-p)

Oln L(p) vy n—vy Y y
— 7 _ :()4:)—:—(:)y1p p\in—y) <=y =np
5 o — il (1=p) = p(n—y)
= m.l.e p—%

(b) X1,..., X, are a random sample from N (u,c?). Want m.l.e.’s of y and

0.2

The likelihood function is

2 n )2
202 = (271-)7%(0-2)*%672:#12(55 g

m\»—t

Ilwﬁ



2y _ 2
In L(u,a)—(——)ln(27r)—§lna _T‘Qizl(%_u)
oln L(p, 0® IR —
n (M?U):_ (xl—u)2:O:>ﬂ:X
O o? i=1
dln L(ji, 0?) n 1< . U .
002 :—20_24—@' (.ZUZ—{L‘) :0#0’2252({[‘1—37)

E(f1) = E(X) = p (unbiased),Var(j1) = Var(X) = % —0asn — o0
= m.l.e. fi is consistent for p.

E(6?) = E(2 Y (X; — X)?) = 2=10? # o (biased).

E(6%) = =20% — 0% as n — 00 = 67 is asymptotically unbiased.

1 & 1 (zi = 2)°
SN —\2y _ 2i=1
Var(6%) = Var(; ZZ:;(JEZ —T)°) = ﬁ\/ar(a p )
N2
ot Z;(xz 7) 2(n—1) 4,
= — Var( 5 ) = 5—0 —0asn— o0
n o n
= m.le. o2 is consistent for o2.
Suppose that we have m.le. § = é(xl, ..., Zy,) for parameter 6 and our in-

terest is a new parameter 7(6), a function of 6.
What is the m.l.e. of 7(0) 7
The space of 7(0) is T ={r:30 € © s.t T =7(0)}

Thm. If 0 = 0(xy, . .. ,Tp) s the m.l.e. of 0 and 7(0) is a 1-1 function of 0,
then m.l.e. of T(0) is 7(0)

Proof. The likelihood function for 6 is L(#,x1,...,x,). Then the likelihood
function for 7(#) can be derived as follows :

L0, x1,...,2,) = L(r7(7(0)),21,...,2,)
= M(7(0),x1,...,2,)
M(r,x1,...,2,),TE€T



(T(Q)7x17 CRCI 7In)7ve - @
(1,21,...,2,), TET

~

= 7(0) is m.Le. of 7(0).
This is the invariance property of m.l.e. O

Example :
(DY ~b(n,p), mleofpisp=1X
7(p) m.l.e of 7(p)

PP opr= ()

NG \//\;5 - \/% p(1 —p) is not a 1-1 function of p.
ep éb — @%

e_p e/_\p g 6_%

(2) X1,.. ., X % N(p,0%), mLes of (u,02) is (X, (X, — X)2).
m.le.’s of (u,0) is (X, \/% SN(X; —X)?) (o€ (0,00) .. 0% — 0 s

1-1)
You can also solve

Oln L(p, 02, 21,...,2,)

=0
o
Oln L 2 Cey Ty
1 (Maaaxla ’a:):()fOI'[L,O'
oo
(4%, o) is not a 1-1 function of (i, o?).
(€ (—00,00) . — p? isn’t 1-1)
Best estimator :
Def. An unbiased estimator 6 = é(Xl, .., X)) is called a uniformly min-

imum variance unbiased estimator (UMVUE) or best estimator if for any
unbiased estimator 0* ,we have

Vary 0 < Vary é*, for 8 € ©

(0 is uniformly better than 0* in variance. )
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There are several ways in deriving UMVUE of 6.
Cramer-Rao lower bound for variance of unbiased estimator :
Regularity conditions :

(a) Parameter space © is an open interval. (a,o0),(a,b),(b,00), a,b are
constants not depending on 6.

(b) Set {z : f(x,0) = 0} is independent of 6.

(c) [ 2R gy = O [ f(x,0)dzr =0

(d) If T'=t(z4,...,x,) is an unbiased estimator, then

/ afg’;e)dx ;;/tf(x 0)dz

Thm. Cramer-Rao (C-R)
Suppose that the regularity conditions hold.
If 7(0) = t(X4, ..., X,) is unbiased for 7(0), then

: ((0)? Q)
Varg 7(0) > In /(2,0)\2] 2In f(z oo
U TNy e o) R

Proof. Consider only the continuous distribution.

e e (O Rttt

a o

7(0) = Eg7(0) = Eg(t(x1, ..., 7)) :/---/t(zl,...,xn)Hf(xi,H)dei

Taking derivatives both sides.

:%/.../t(xl,..., lf[ 75,0 del 9/.../§f(xi,9)
://m aﬁﬁ s dei—/-~-/7<e>%ﬁf<xi,e>

/ / Tiy. ., T ﬁ xl,Q))ﬁdxi
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Then

T’(Q)z/---/(t(xl ..... 1) —7(0)(> ah”;—(;j’@))ﬂf(xi,e)nd%

= B[(t(z1,. .., ) ﬂ@))Zam J(;g”]’ )
(7(0)7 < Bl(t(ar, .. ) — (@) B IOy

E[(Z alnf—(”“"f’e)y] _ ZE(M ZE 8lnf .x], )alng(;i’e))




Then, we have

) (7'(9))?
Varg 7(0) > nE, K%{gﬂcm)?]

You may further check that

9?In f(z,0), Oln f(x,0)

Bl ) =Bl )

]

Thm. If there is an unbiased estimator 7(0) with variance achieving the

Cramer-Rao lower bound i ([Z;(Qel)ff w0 ,then 7(0) is a UMVUE of 7(0).
_ ELIN 2]

Note: X
If 7(#) = 0, then any unbiased estimator 6 satisfies

Varg (é) > (T/(‘g))2

21n f(x
_nEe(a lagé ,9))

Example:

(@)X, .., X, % Poisson(\), E(X) = A, Var(X) = .
MLE \ = XE()—/\Vr) g
1,.

pdf f(flf, /\) = Ta - 07 )
=1Inf(z,\) =zlnA— X —Inz!
0
—1 N=2-1
) =4

8/\

3/\2 In f(z,\) = IV

0? x E(X
By In f(e, X)) = B(—ig) =~ 200 = 2

Cramer-Rao lower bound is

— MLE \ = X is the UMVUE of \.
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(b)Xy,..., X, w Bernoulli(p), E(X) = p, Var(X) = p(1 — p).
Want UMVUE of p.
p.df fz,p) =p*(1-p)'~

= Inf(z,p) =zlnp+ (1 —z)In(1 — p)

0 z 1—=x
—Inf(z,p) = — —
o f(z,p) > T 1 o,
0? x 1—x
iy | - _
apQ nf(x’p) p2 + (1 _p)z
0? X 1—-X 1 1 1
B(ZIn f(X,p) = B(—2 + -+ — -
(0192 (X.9) (p2 (1—p)2) p l1—-p  p(l-p)
C-R lower bound for p is
1 p(1—p)

1
n(_p(lfp)) n

m.le. of pisp= X
E(p) = E(X) = p, Var(p) = Var(Y) = I@ = C-R lower bound.
= MLE p is the UMVUE of p.
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Chapter 4. Continue to Point Estimation-UMVUE

Sufficient Statistic:
A B are two events. The conditional probability of A given B is

P(AN B)

JACS.

P(-|B) is a probability set function with domain of subsets of sample space S.

Let X,Y be two r.v’s with joint p.d.f f(x,y) and marginal p.d.f’s fx(z) and
fy(y). The conditional p.d.f of Y given X = z is

_ [z y)
f(y|517) - fX(x) 7y € R

Function f(y|z) is a p.d.f satisfying [*°_ f(y|z)dy =1

In estimation of parameter 6, we have a random sample Xi,..., X, from
p.d.f f(x,0). The information we have about 6 is contained in Xi, ..., X,.

Let U = u(Xy,...,X,) be a statistic having p.d.f fi(u,0)
The conditional p.d.f Xy,..., X, given U = u is

- f(xl,...,xn,e) . o
flzy, ... xp|u) = T, 0) Az, ) rul(x, . w,) = ul
Function f(xq,...,z,|u) is a joint p.d.f with

~~~~~~

Let X be r.v. and U = u(X)

=)
=
>
S~—
|

Ix(z
u
f(x|U =u) = flz,u) — { fUO(“)
fu(u) 7oy = 0 if w(X) #u
If, for any u, conditional p.d.f f(z1,...,x,,0|u) is unrelated to parameter 6,
then the random sample X7,...,X,, contains no information about # when

U = u is observed. This says that U contains exactly the same amount of
information about 6 as X, ..., X,.

Def. Let X1, ..., X, be a random sample from a distribution with p.d.f f(x,0),0 €
O. We call a statistic U = u(Xy,...,X,) a sufficient statistic if, for any
value U = wu, the conditional p.d.f f(xy,...,z,|u) and its domain all not
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depend on parameter 6.
Let U = (X1,...,X,). Then

f($f@3,--~:$:u€)

flxe, ..,z 0lu=(27,25,...,2))) =
o b 0 if x; # xf for some i's.

Then (X1, ...,X,) itself is a sufficient statistic of 6.

Q: Why sufficiency?
A: We want a statistic with dimension as small as possible and contains
information about € the same amount as X, ..., X, does.

Def. If U = u(Xy,...,X,) is a sufficient statistic with smallest dimension,
it 1s called the manimal sufficient statistic.

Example:
(a) Let (Xi,...,X,) be a random sample from a continuous distribution
with p.d.f f(x, ). Consider the order statistic Y; = min{Xy,..., X,,},..., Y, =
max{Xy,..., X, }. IfY; =u,...,Y, =y, are observed, sample X1, ..., X,

have equal chance to have values in

{(z1,...,2,) : (x1,...,2,) is a permutation of (yi,...,yn)}
Then the conditional joint p.d.f of Xy,..., X, given Y] =y,...,Y, =
Yn 18

flxy, ...z, 0y, ...
(1 2 0 otherwise.

Then order statistic (Y1,...,Y,) is also a sufficient statistic of 6.
Order statistic is not a good sufficient statistic since it has dimension n.

(b)Let X7, ..., X, be a random sample from Bernoulli distribution.
The joint p.d.f of Xy,..., X, is

n

f(xla cee 7xn7p) = Hpml(l_p>17xz = pzml(l_pylilewrz = 07 17?‘ = 17 ceey T
i=1
Consider the statistic Y = ) X; which has binomial distribution b(n, p)

i=1
with p.d.f

fr(y,p) = (Z)py(l —-p)"Yy=0,1,...,n

29
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If Y =y, the space of (Xy,...,X,) is {(z1,...,2,) : Dz, =y}
i=1
The conditional p.d.f of Xy,..., X, given Y =y is

n n

> oz n— 3 x; L
p=l _(I—p) =L pv(lep)™Y 1 1 if Y x;=
= = — = 7o\ = T (2 y
pY(1—p)—¥ pY(l—p)¥ > '
flx1,.. .z, ply) = G) G) G (El”) .
i=1

which is independent of p.

Hence, Y = > X is a sufficient statistic of p and is a minimal sufficient
i=1
statistic.

(c)Let X3,..., X, be a random sample from uniform distribution U (0, 6).
Want to show that the largest order statistic Y,, = max{Xy,..., X, } is
a sufficient statistic.
The joint p.d.f of X;,..., X, is

flz1,...,x,,0) :ﬁ% 0<z <) = f[ (0 <z <0)
:{ a f0<z;<0i=1,....n
0 otherwise.
The p.d.f of Y, is
o, 6) = ()12 = n%l,o <y<8
When Y,, = y is given, Xy,..., X, be values with 0 < z; < y,i =

1,....n
The conditional p.d.f of Xy,..., X, given Y,, =y is

f(l’l,...,xn,e)_ %:ﬁ O<z; <y,i=1,....n
fYn(y76) 0

f('rla o ,$n|y) =
otherwise.

= independent of 6.
So, Y, = max{Xj,..., X, } is a sufficient statistic of 6.
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(a) If U is a sufficient statistic, are U+5, U?, cos(U) all sufficient for 6 ?
(b) Is there easier way in finding sufficient statistic 7

T = t(Xy,...,X,) is sufficient for 6 if conditional p.d.f f(xy,...,z,,0|t) is
indep. of 6.

Independence:

1.function f(z1,...,x,,0|t) not depend on 6.

2.domain of Xi,..., X, not depend on 6.

Thm. Factorization Theorem.

Let X1,..., X, be a random sample from a distribution with p.d.f f(x,0).
A statistic U = u(Xy,...,X,) is sufficient for 0 iff there exists functions
Ky, Ky > 0 such that the joint p.d.f of X1,...,X, may be formulated as
flz,. . x,,0) = Ky(u(Xy, ..., X,),0)Ka(xy, ..., x,) where Ky is not a func-
tion of 6.

Proof. Consider only the continuous r.v’s.
=) If U is sufficient for 0, then

~ fzy, 2, 0)
flz,. .. 2, 0lu) = o 0)

= f(x1, ..., 20, 0) = fu(u(Xy,..., X0),0)f(z1,...,2,|u)
:Kl(u(Xl,...,Xn),H)KQ(xl,...,:Un)

is not a function of 0

<) Suppose that f(z1,...,2,,0) = Ki(u(Xy, ..., X,),0)Ka(xq,. .., 2,)
Let Y1 = u1(Xq,..., X)), Yo =ua(Xq,. .., X0), oo, Yo = up(Xy, ..., X,,) bea

1-1 function with inverse functions x1 = w1 (Y1, -+, Yn), T2 = W2 (Y1, -+ -, Yn)s - - Tp =
Wy (Y1, ..., yn) and Jacobian
Oz, Om
oY1 OYn
J=1 (not depend on 6.)
Ozn Oz
oY1 Oyn

The joint p.d.f of Y7i,...,Y,, is

le ..... Yn(yla s >yn70) = f(wl(y17 s ayn)’ s 7wn(y1’ s 7y7l)78)|‘]|
= Kl(ylae)KQ(wl<y17 s ,yn)7 s an(ylv s 7y7l>76)“]|
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The marginal p.d.f of U =Y} is

fU(yla‘g):Kl(yhe)/"'/K2(w1<y17~~->yn)>'"7wn(y17---

.

s yn)) TN dys - - dyn

not depend on .

Then the conditional p.d.f of Xy,..., X, given U = u is

T, 0
flan,. s an, Olu) = f(xlng(u’g) )

Kg([l)h PN ,l’n)

- [ S Ka(wi(ys, - yn), - wn(yn, - -

which is independent of 6.
This indicates that U is sufficient for 6.

O
Example :
(a) X1, ..., X, is a random sample from Poisson(\).Want sufficient statistic
for A.

Joint p.d.f of X7,..., X, is

n

N\ -\ )\Z:cz —n\ 1
flan oz d) = [[ o = S = AT e
x;!
=1 I] ! ;!
i=1 i=1
= Kl(z Xy, )\)KQ(.I'l, e ,l’n)
i=1
= Y X is sufficient for A.
i=1
We also have
- 1
flzy, .., A) = NTe™™ ——— = K\(T, \)Ky(1, ..., 2,)

n
i=1

3

=X =
1

% X, is sufficient for .
We also have

o\ 1 1
Flan, . g, A) = A e

n
=1

= 72 is sufficient for \.
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(b)Let X1, ..., X, be arandom sample from N (u,c?).Want sufficient statis-
tic for (u,o?).
Joint p.d.f of Xy,..., X, is

2 @imn?

_(ei=w)? 1 _
202 = — 202

1
e n n
2o (2m)2(02)2

f(xla"'axn7u702> = H
i=1

n n n

Z(Ii—,u)2 = Z(xi—f—i—f—,u)Z = Z(xi—E)Q—i—n(f—,u)Z = (n—1)s*+n(T—pu)?

i=1 i=1 i=1
IS _
(2= =3 (0= 7))
i=1
1 _ (n=1)s’4n@-pn)? _
f(.Tl,...,JJn,/l,,O'2) :We 202 '1:K1<I,82,,LL,0'2)K2(1‘1,...

= (X, s?) is sufficient for (u,o?).

What is useful with a sufficient statistic for point estimation 7
Review : XY r.v.’s with join p.d.f f(z,y).
Conditional p.d.f

~ flz,y) o) = Flule) ez
flylr) = () = f(z,y) = f(ylz) fx(x)
faly) = ’;ff(’yy)) = flavy) = faly) fr (9)

Conditional expectation of Y given X = z is

B(Y|r) = / "y la)dy

o0

The random conditional expectation E(Y|X) is function E(Y |x) with x re-
placed by X.
Conditional variance of Y given X = x is

Var(Yz) = E[(Y — E(Y|2))*|z] = E(Y?|2) — (B(Y|2))*
The conditional variance Var(Y|X) is Var(Y|z) replacing x by X.
Thm. Let Y and X be two r.v.’s.

(a) E[E(Y|z)] = E(Y)
(b) Var(Y') = E(Var(Y|x)) + Var(E(Y|z)
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Proof. (a)

BlE(Y]) = [ T E(V]2) fx (2)de

=[] vttty
_/_Z /:yf(x,y)dxdy
[ tanindy

— [ utvtuiy

= E(Y)

(b)
Var(Y|z)
= E(Var(Y|x))

E(Y?|z) — (E(Y]x))?

E[E(Y?|z)] - E[(E(Y]x))’] = E(Y?) - E[(E(Y]x))’]
[

[

Also, Var(E(Y |z) = E[(E(Y|2))?] — E[(E(Y]z))]?
= E[(E(Y|2))?] — (E(Y))’
= E(Var(Y|z)) + Var(E(Y|z) = E(Y?) — (E(Y))? = Var(Y)

O

Now, we comeback to the estimation of parameter function 7(6). We have a
random sample X, ..., X, from f(x,¥@).

Lemma. Let7(Xq,..., X,) be an unbiased estimator of T7(0) and U = u(X;
s a statistic. Then

(a)Epl7 (X1, ..., X)|U] is unbiased for 7(6)

(b) Varg(E[T(X1, ..., X,)|U]) < Varg(7(Xy,...,X,))

Proof. (a)

Eo[E(+(X1, ..., X)|U)] = Eo(F(X1,...,X,)) = 7(0),V0 € ©.

Then Ey[7(X1,. .., X,,)|U] is unbiased for 7(0).
(b)
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Conclusions:

(a) For any estimator 7(Xj,...,X,) which is unbiased for 7(#), and any
statistic U, Eg[7(X7, ..., X,,)|U] is unbiased for 7(#) and with variance
smaller than or equal to 7(Xi,..., X,).

(b) However, Eg[7(X1,...,X,)|U] may not be a statistic. If it is not, it
cannot be an estimator of 7(#).

(c)If U is a sufficient statistic, f(x1,...,2,,0Ju) is independent of €, then

Eg[7(X1, ..., X,)|u] is independent of 6. So, Eg[7(X1, ..., X,)|U] is an
unbiased estimator.
If U is not a sufficient statistic, f(z1,...,2,,0lu) is not only a function of u
but also a function of , then Eg[ (Xl, ..., Xp)|u] is a function of u and 6.

And Ey[7(Xq,. .., n)|u] is not a statistic.

Thm. Rao-Blackwell

If 7(Xyq, ..., X,) is unbiased for 7(0) and U is a sufficient statistic, then
(a)Ep|7T(X1, ..., X,)|U] is a statistic.

(b)Eg|7 (X1, ..., X,)|U] is unbiased for 7(0).

(c)Varg(E[T(X1, ..., Xn)|U]) < Varg(7(X4, ..., X,)), V0 € ©.

If 7(0) is an unbiased estimator for 7(0) and Uy, U, ... are sufficient statis-
tics, then we can improve 7(0) with the following fact:

Varg(E[#(0)|U1]) < Varg?(6)
VargB(E(7(0)|U))|Uz) < VarE(7(6)|U7)
VargE[E(E(7(0)|U1)|U2)|Us] < VargE(E(7(6)[U1)|U2)

Will this process ends with Cramer-Rao lower bound 7
This can be solved with “complete statistic”.

Note: Let U be a statistic and h is a function.

(a) If A(U) = 0 then Eg(h(U)) = E4(0) = 0, V0 € O.
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(b) If Py(h(U) = 0) = 1,¥0 € ©.h(U) has a p.d.f

1 ,ifh=0

0 ,otherwise.

Then Eo(h(U)) = Z h fuwn(h) =0
all n

Jran(h) = {

Def. Xi,..., X, is random sample from f(x,0). A statisticU = u(Xq,...,X,)
is a complete statistic if for any function h(U) such that Eo(h(U)) = 0,V0 €
O, then Py(h(U) =0) =1, for 6 € ©.

Q : For any statistic U, how can we verify if it is complete or not complete ?

A

(1) To prove completeness, you need to show that for any function h(U)
with 0 = Ey(h(U)),V0 € O.the following 1 = Pp(h(U) = 0),V8 € ©
hold.

(2)To prove in-completeness, you need only to find one function A(U) that
satisfies Eg(h(U)) = 0,V0 € © and Py(h(U) = 0) < 1, for some 6 € O.

Examples:

(a)X1,..., X, P Bernoulli(p)
Find a complete statistic and in-complete statistic ?

sol: (a.1) We show that Y = >~ X is a complete statistic. Y ~ b(n,p).

i=1
Suppose that function h(Y') satisfies 0 = E,h(Y),V0 < p <1
Now,

OZJ%MY)ZﬁzMw(Z)ﬂﬂ—pW”

== o) (1) 2o <<

@O—EZMQCDHfWWNO<p<1

(Let@—%,0<p<1<:>0<9<oo)
@0:Zh(y)<n)0y,0<9<oo
Yy
y=0
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An order n+1 polynomial equation cannot have infinite solutions except
that coefficients are zero’s.

:h(y)(Z) =0,y=0,...,nfor 0 < < oo

= h(y) =0,y=0,...,nfor 0 < p< 1.
=1>P,(h(Y)=0)>P,(Y =0,....,n)=1

=Y = Z X, is complete

=1

(a.2) We show that Z = X; — X5 is not complete.

E,Z =E,(X; - X5) =E,X; —E,X, =p—p=0,Y0<p<1

P

p

(Z=0)=Py)(X,—Xs=0)= P(X; = X =0 or X; = X5 = 1)
= Py(X1 =Xy =0)+ Py(X;, = Xp = 1)
=(1—-pP+p’<lfor0<p<l.

= Z = X1 — X5 is not complete.

(b)Let (X3,...,X,) be a random sample from U(0, ).
We have to show that Y,, = max{Xy,..., X,,} is a sufficient statistic.
Here we use Factorization theorem to prove it again.

n

ol 1
f(xl,...,xn,Q):H51(0<xi<0):e—nHI(O<xi<9,i:1,...,n)
i=1 i=1

1
= O0<y,<0)-1

=Y, is sufficient for 6
Now, we prove it complete.

The p.d.f of Y,, is

_ gnfll_ﬁ n—1
Frly) =n(y)" " 5 =gy, 0<y <0
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Suppose that h(Y,,) satisfies 0 = Egh(Y,,),V0 < 0 < o0
o n
0 = Egh(Y,) = / hy)gmy"tdy = o= | h(y)y"dy
0 0

0
S 0= / h(y)y" dy,¥0 > 0
0

Taking differentiation both sides with 6.

= 0=h(0)0""V0 >0

< 0="~n(y),0<y<6,Vl>0

& Py(h(Y,)=0)=P0<Y,<0)=1,¥0>0
=Y, = max{Xi,..., X,,} is complete.

Def. If the p.d.f of r.v. X can be formulated as
f($,0) _ ea(m)b(0)+c(9)+d(a:)’l <z <q

where | and q do not depend on 0, then we say that f belongs to an exponential
famaly.

Thm. Let Xy,..., X, be a random sample from f(x,0) which belongs to an
exponential family as

f(flf,@) _ 6a(a:)b(9)+c(0)+d(x)7l <z <gq
Then Y a(X;) is a complete and sufficient statistic.
i=1

Note: We say that X =Y if P(X =Y) =1

Thm. Lehmann-Scheffe

Let Xy, ..., X, be a random sample from f(x,0). Suppose thatU = u(Xy,...,X,)
is a complete and sufficient statistic. If 7 = t(U) is unbiased for 7(0), then

7 is the unique function of U unbiased for 7(0)and is a UMVUE of 7(6).
(Unbiased function of complete and sufficient statistic is UMV UE.)

Proof. 1f 7* = t*(U) is also unbiased for 7(#), then
Eo(7 —77) = Eo(7) — Eg(77) = 7(0) — 7(0) = 0,V0 € ©.

= 1=Py(7 — 7 =0)=P(+ = 7),¥0 € ©.

= 7 = 7, unbiased function of U is unique.
If T is any unbiased estimator of 7(#) then Rao-Blackwell theorem gives:
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(a) E(T'|U) is unbiased estimator of 7(6) .

By uniqueness, E(T|U) = 7 with probability 1

(b) Vary(7) = Vary(E(T'|U)) < Vary(T),V0 € O.

This holds for every unbiased estimator T.

Then 7 is UMVUE of 7(6) O

Two ways in constructing UMVUE based on a complete and sufficient statis-
tic U:

(a) If T is unbiased for 7(0), then E(T|U) is the UMVUE of 7(0).
This is easy to define but difficult to transform it in a simple form.

(b) If there is a constant such that E(U) = ¢-6, then T' = 1U is the UMVUE
of 6.

Example :

(a)Let Xi,...,X, be a random sample from U(0, §).

Want UMVUE of 6.
sol: Y,, = max{Xy,...,X,} is a complete and sufficient statistic .

The p.d.f of Y}, is

_ gn—ll_

0 n—1

y n
E(Y,) = dy = 0.
(¥,) / ¥y = "
We then have E(2HY,) = 2 E(Y,,)

So, "HY is the UMVUE of 6.

(b) Let Xi,..., X, be a random sample from Bernoulli(p).
Want UMVUE of 6.
sol: The p.d.fis

—x xln(—2— n(l—
flz,p) =p"(1 —p)'™" = (1 - p)(—— In(£-)+In(1-p)

=e€

= Y X, is complete and sufficient.
i=1

B(Y Xi) = L E(X:) = np
=1 in = X is UMVUE of p.

_n
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(©) X1, ..., Xn % N(u,1).

Want UMVUE of pu.
sol: The p.d.f of X is

1 _(a:—u)2 1 _(x2—2;x+u2) e 2 2 ln\/ﬂ

f(l”all)zﬁe ;=

n
= > X, is complete and sufficient.
i=1
n

E(i:il X)) = L B(X,) = np

1=

= =13 X, =X is UMVUE of 4.
=1

Since X is unbiased, we see that E(X;| Y. X;) = X

i=1

(d)Xy,..., X, % Possion(\).
Want UMVUE of e~
sol: The p.d.f of X is

1
f(xa >\) - —‘)\ze_A - ezlnk—k—lnm!
X

= Y X, is complete and sufficient.
i=1
E(I(X; = 0)) = P(X; =0) = f(0,\) = e where I(X; = 0) is an
indicator function.
= I(X; = 0) is unbiased for e™*

= E(I(X; = 0)| > X;) is UMVUE of e~
=1
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Chapter 5. Confidence Interval

Let Z be the r.v. with standard normal distribution N (0, 1)
We can find z, and ze that satisfy

a=P(Z< —z,)=P(Z>z,)and 1l —a=P(—z: < Z <z

).

N1}
N1l

A table of za is the following :

1—«a Zg

0.8 1.28 (20.1)
0.9 1.645 (20.05)
0.95 1.96 (20.025)
0.99 2.58 (20.005)
0.9973 3 (20.00135)

Def. Suppose that we have a random sample from f(x,0). For 0 < o < 1,
if there exists two statistics Ty = t1(Xq,...,X,) and Ty = to( Xy, ..., X,)
satisfying

l—a=P(T <0<Ty)

We call the random interval (T1,Ts) a 100(1 —«)% confidence interval of pa-

rameter . If X1 = xq,..., X, = x, is observed, we also call (t1(X1, ..., Xn), t2( X1, ...

a 100(1 — a)% confidence interval(C.1.) for 6
Constructing C.I. by pivotal quantity:

Def. A function of random sample and parameter, Q = q(Xy, ..., Xp,0), is
called a pivotal quantity if its distribution is independent of 0

With a pivotal quantity ¢(X7, ..., X,,0), there exists a, b such that
l—a=Pla<qXy,...,X,,0) <b),V0 € O.

The interest of pivotal quantity is that there exists statistics 77 = t1 (X, ..., X,,)
and Ty = t9( X7, ..., X,,) with the following 1-1 transformation

agq(Xl,,Xn,Q)SblfleSHng

Then we have 1 —a = P(Ty < 0 <T3) and (11, T) is a 100(1 — )% C.I. for
0

Confidence Interval for Normal mean:
Let Xi,...,X, be a random sample from N(u,c?). We consider the C.I. of
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parameter pu.
(I) o = 09 is known

= (X — z%\‘;—%,yjt 22 7) is a 100(1 — )% C.L for p.
iid

ex: n=40,00 = V10,T = 7.164 (X1, ..., X40 ~ N(p, 10).)
Want a 80% C.I. for p.
sol: A 80% C.IL. for u. is

— o) = (o) \/m \/m
X 20 7% X420 2%y = (7164 — 1.28Y =, 7.164 + 1.28Y —
Xz Xt m) = VIO Vi)
— (6.523,7.805)
PX =22 < <X t2a0)=1-a=08

W
P(6.523 < ;1 < 7.805) =1 or 0

(I)o is unknown.

Def. If Z ~ N(0,1) and x*(r) are independent, we call the distribution of
the r.v.

a t-distribution with r degrees of freedom.

The p.d.f of t-distribution is
(=) 1

G
O=T) o e
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v fr(=t) = fr(t)
.. t-distribution is symmetric at 0.
Now X1,..., Xn & N(u,0?). We have

B o? Yi'u' ~
{ X~ N, 50) mndep. = { o/vn N (@O 1) indep.

n— 82 n— 52
3~ P (n - B~ (- 1)

—_
~—

o/\/n X —p
T = = ~t 1
(n—1)s2 S/\/ﬁ (n )
02(n—1)
Let ta satisfies
X—p
l—a=P(—te < < ta
Q ( 2—8/\/ﬁ— 2)
s — S
= P(—tea <X —-—u<ta
( s R SN RS Qﬁ)
_ S — S
= P(X —te <pu<X+te
( s ShSXH zﬁ)

= (X —te = X +ts =) is a 100(1 — @)% C.L for pu.

ex: Suppose that we have n = 10,7 = 3.22 and s = 1.17. We also have
t0.025 = 2.262. Want a 95% C.I. for L.
sol: A 95% C.I. for u is

1.17 1.17
3.22 — 2.262——,3.22 + 2.262——) = (2.34,4.10
( Vo i)~ B0
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