Mathmatical Statisticals

Chen, L.-A.

Chapter 4. Distribution of Function of Random variables

Sample space S : set of possible outcome in an experiment.

Probability set function P:

- $(1)P(A) \ge 0, \forall A \subset S.$
- (2)P(S) = 1.

$$(3)P(\bigcup_{1}^{\infty} A_i) = \sum_{1}^{\infty} P(A_i), if A_i \cap A_j = \emptyset, \forall i \neq j.$$

Random variable X:

 $X:S\to R$

Given $B \subset R, P(X \in B) = P(\{s \in S : X(s) \in B\}) = P(X^{-1}(B))$ where $X^{-1}(B) \subset S$.

X is a discrete random variable if its range

$$X(s) = \{x \in R : \exists s \in S, X(s) = x\}$$

is countable. The probability density/mass function (p.d.f) of X is defined as

$$f(x) = P(X = x), x \in R.$$

Distribution function F:

$$F(x) = P(X \le x), x \in R.$$

A r.v. is called a continuous r.v. if there exists $f(x) \ge 0$ such that

$$F(x) = \int_{-\infty}^{x} f(t)dt, x \in R.$$

where f is the p.d.f of continuous r.v. X.

Let X be a r.v. with p.d.f f(x). Let $g: R \to R$

Q: What is the p.d.f. of g(x)? and is g(x) a r.v.?(Yes)

Answer:

(a) distribution method:

Suppose that X is a continuous r.v.. Let Y = g(X)

The d.f(distribution function) of Y is

$$G(y) = P(Y \le y) = P(g(X) \le y)$$

If G is differentiable then the p.d.f. of Y = g(X) is g(y) = G'(y).

(b) mgf method :(moment generating function)

$$E[e^{tx}] = \begin{cases} \sum_{-\infty}^{\infty} e^{tx} f(x) & \text{(discrete)} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & \text{(continuous)} \end{cases}$$

Thm. m.g.f. $M_x(t)$ and its distribution (p.d.f. or d.f.) forms a 1-1 functions.

ex:

$$M_Y(t) = e^{\frac{1}{2}t} = M_{N(0,1)}(t) \Rightarrow Y \sim N(0,1)$$

Let X_1, \ldots, X_n be random variables.

If they are discrete, the joint p.d.f. of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n), \forall \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

If X_1, \ldots, X_n are continuous r.v.'s, there exists f such that

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_n} \dots \int_{-\infty}^{x_1} f(t_1, \dots, t_n) dt_1 \dots dt_n, \text{ for } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

We call f the joint p.d.f. of X_1, \ldots, X_n .

If X is continuous, then

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 and $P(X = x) = \int_{x}^{x} f(t)dt = 0, \forall x \in R.$

Marginal p.d.f's:

Discrete:

$$f_{X_i}(x) = P(X_i = x) = \sum_{x_n} \dots \sum_{x_{i+1}} \sum_{x_{i-1}} \dots \sum_{x_1} f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$$

Continuous:

$$f_{X_i}(x) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n$$

Events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Q: If $A \cap B = \emptyset$, are A and B independent?

A: In general, they are not.

Let X and Y be r.v.'s with joint p.d.f. f(x,y) and marginal p.d.f. $f_X(x)$ and $f_Y(y)$. We say that X and Y are independent if

$$f(x,y) = f_X(x)f_Y(y), \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

Random variables X and Y are identically distributed (i.d.) if marginal p.d.f.'s f and g satisfy f = g or d.f.'s F and G satisfy F = G.

We say that X and Y are \mathbf{iid} random variables if they are independent and identically distributed.

Transformation of r.v.'s (discrete case) Univariate: Y = g(X), p.d.f. of Y is

$$g(y) = P(Y = y) = P(g(x) = y) = P(\{x \in \text{Range of } X : g(x) = y\}) = \sum_{\{x : g(x) = y\}} f(x)$$

For random variables X_1, \ldots, X_n with joint p.d.f. $f(x_1, \ldots, x_n)$, define transformations

$$Y_1 = g_1(X_1, \dots, X_n), \dots, Y_m = g_m(X_1, \dots, X_n).$$

The joint p.d.f. of Y_1, \ldots, Y_m is

$$g(y_1, \dots, y_m) = P(Y_1 = y_1, \dots, Y_m = y_m)$$

$$= P(\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : g_1(x_1, \dots, x_n) = y_1, \dots, g_m(x_1, \dots, x_n) = y_m \right\})$$

$$= \sum f(x_1, \dots, x_n)$$

$$\left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : g_1(x_1, \dots, x_n) = y_1, \dots, g_m(x_1, \dots, x_n) = y_m \right\}$$

Example: joint p.d.f. of X_1, X_2, X_3 is

Space of (Y_1, Y_2) is $\{(0,0), (1,1), (2,0), (2,1), (3,0)\}$. Joint p.d.f. of Y_1 and Y_2 is

Continuous one-to-one transformations:

Let X be a continuous r.v. with joint p.d.f. f(x) and range A = X(s).

Consider Y = g(x), a differentiable function. We want p.d.f. of Y.

Thm. If g is 1-1 transformation, then the p.d.f. of Y is

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right| & y \in g(A) \\ 0 & otherwise. \end{cases}$$

Proof. The d.f. of Y is

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$

(a) If g is \nearrow , g^{-1} is also $\nearrow .(\frac{dg^{-1}}{dy} > 0)$

$$F_Y(y) = P(X \le g^{-1}(y)) = \int_{-\infty}^{g^{-1}(y)} f_X(x) dx$$

 \Rightarrow p.d.f. of Y is

$$f_Y(y) = D_y \int_{-\infty}^{g^{-1}(y)} f_X(x) dx$$
$$= f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy}$$
$$= f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$$

(b) If g is \searrow , g^{-1} is also \searrow . $\left(\frac{dg^{-1}}{dy} < 0\right)$

$$F_Y(y) = P(X \ge g^{-1}(y)) = \int_{g^{-1}(y)}^{\infty} f_X(x) dx = 1 - \int_{-\infty}^{g^{-1}(y)} f_X(x) dx$$

 \Rightarrow p.d.f. of Y is

$$f_Y(y) = D_y \left(1 - \int_{-\infty}^{g^{-1}(y)} f_X(x) dx\right)$$
$$= -f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy}$$
$$= f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|$$

Example : $X \sim U(0, 1), Y = -2 \ln(x) = g(x)$

sol: p.d.f. of X is

$$f_X(x) = \begin{cases} 1, & \text{if } 0 < x < 1 \\ 0, & \text{elsewhere.} \end{cases}$$

 $A = (0, 1), g(A) = (0, \infty),$

$$x = e^{-\frac{y}{2}} = g^{-1}(y), \frac{dx}{dy} = -\frac{1}{2}e^{-\frac{y}{2}}$$

p.d.f. of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dy}{dx} \right| = \frac{1}{2} e^{-\frac{y}{2}}, y > 0$$

$$(X \sim U(a,b) \text{ if } f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{elsewhere.} \end{cases}$$

$$\Rightarrow Y \sim \chi^2(2)$$

$$(X \sim \chi^2(r) \text{ if } f_X(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}, x > 0)$$

Continuous n-r.v.-to-m-r.v., n > m, case :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \begin{cases} Y_1 = g_1(X_1, \dots, X_n) & \begin{pmatrix} g_1 \\ \vdots \\ g_m \end{pmatrix} \\ \vdots & R^m \end{cases} \xrightarrow{Q_m} R^m$$

Q: What are the marginal p.d.f. of Y_1, \dots, Y_m

A: We need to define $Y_{m+1} = g_{m+1}(X_1, ..., X_n), ..., Y_n = g_n(X_1, ..., X_n)$

such that
$$\begin{pmatrix} g_1 \\ \vdots \\ g_n \end{pmatrix}$$
 is 1-1 from \mathbb{R}^n to \mathbb{R}^n .

Theory for change variables:

$$P\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in A\right) = \int \cdots \int f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_1 \cdots dx_n$$

Let $y_1 = g_1(x_1, \ldots, x_n), \cdots, y_n = g_n(x_1, \ldots, x_n)$ be a 1-1 function with inverse $x_1 = w_1(y_1, \ldots, y_n), \cdots, x_n = w_n(y_1, \ldots, y_n)$ and Jacobian

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

Then

$$\int \cdots \int f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_1 \cdots dx_n$$

$$= \int \cdots \int f_{X_1,\dots,X_n}(w_1(y_1,\dots,y_n),\dots,w_n(y_1,\dots,y_n)) |J| dy_1 \cdots dy_n$$

Hence, joint p.d.f. of Y_1, \dots, Y_n is

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = f_{X_1,...,X_n}(w_1,...,w_n)|J|$$

Thm. Suppose that X_1 and X_2 are two r.v.'s with continuous joint p.d.f. f_{X_1,X_2} and sample space A.

If $Y_1 = g_1(X_1, X_2)$, $Y_2 = g_2(X_1, X_2)$ forms a 1-1 transformation inverse function

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} w_1(Y_1, Y_2) \\ w_2(Y_1, Y_2) \end{pmatrix} \text{ and Jacobian } J = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{pmatrix}$$

the joint p.d.f. of Y_1, Y_2 is

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(w_1(y_1,y_2),w_2(y_1,y_2))|J|, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}(A).$$

Steps:

(a) joint p.d.f. of X_1, X_2 , space A.

(b) check if it is 1-1 transformation. Inverse function $X_1 = w_1(Y_1, Y_2), X_2 = w_2(Y_1, Y_2)$

(c) Range of $\binom{Y_1}{Y_2} = \binom{g_1}{g_2}(A)$

Example : For $X_1, X_2 \stackrel{iid}{\sim} U(0, 1)$, let $Y_1 = X_1 + X_2, Y_2 = X_1 - X_2$. Want marginal p.d.f. of Y_1, Y_2

Sol: joint p.d.f. of X_1, X_2 is

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 1 & \text{if } 0 < x_1 < 1, 0 < x_2 < 1 \\ 0 & \text{elsewhere.} \end{cases}$$

$$A = \left\{ \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} : 0 < x_1 < 1, 0 < x_2 < 1 \right\}$$

Given y_1, y_2 , solve $y_1 = x_1 + x_2, y_2 = x_1 - x_2$.

$$\Rightarrow x_1 = \frac{y_1 + y_2}{2} = w_1(y_1, y_2), x_2 = \frac{y_1 - y_2}{2} = w_2(y_1, y_2)$$

$$(1 - 1 \text{ transformation})$$

Jacobian is

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}$$

The joint p.d.f. of Y_1, Y_2 is

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(w_1,w_2)|J|, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in B$$

Marginal p.d.f. of Y_1, Y_2 are

$$f_{Y_1}(y_1) = \begin{cases} \int_{-y_1}^{y_1} \frac{1}{2} dy_2 = y_1 & , 0 < y_1 < 1 \\ \int_{y_1-2}^{2-y_1} \frac{1}{2} dy_2 = 1 - y_1 & , 1 < y_1 < 2 \\ 0 & , \text{elsewhere.} \end{cases}$$

$$f_{Y_2}(y_2) = \begin{cases} \int_{-y_2}^{2+y_2} \frac{1}{2} dy_1 = y_2 + 1 &, -1 < y_2 < 0\\ \int_{y_2}^{2-y_2} \frac{1}{2} dy_1 = 1 - y_2 &, 0 < y_2 < 1\\ 0 &, \text{elsewhere.} \end{cases}$$

Def. If a sequence of r.v.'s X_1, \ldots, X_n are independent and identically distributed (i.i.d.), then they are called a **random sample**.

If X_1, \ldots, X_n is a random sample from a distribution with p.d.f. f_0 , then the joint p.d.f. of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n) = \prod_{i=1}^n f_0(x_i), \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

Def. Any function $g(X_1, ..., X_n)$ of a random sample $X_1, ..., X_n$ which is not dependent on a parameter θ is called a **statistic**.

<u>Note</u>: If X is a random sample with p.d.f. $f(x, \theta)$, where θ is an unknown constant, then θ is called **parameter**.

For example, $N(\mu, \sigma^2)$: μ, σ^2 are parameters. Poisson(λ): λ is a parameter.

Example of statistics:

 X_1, \ldots, X_n are iid r.v.'s $\Rightarrow \overline{X}$ and S^2 are statistics.

Note: If X_1, \ldots, X_n are r.v.'s, the m.g.f of X_1, \ldots, X_n is

$$M_{X_1,\dots,X_n}(t_1,\dots,t_n) = \mathbb{E}(e^{t_1X_1+\dots+t_nX_n})$$

m.g.f

$$M_x(t) = \mathcal{E}(e^{tx}) = \int e^{tx} f(x) dx$$

$$\longrightarrow D_t M_x(t) = D_t \mathcal{E}(e^{tx}) = D_t \int e^{tx} f(x) dx = \int D_t e^{tx} f(x) dx$$

Lemma. X_1 and X_2 are independent if and only if

$$M_{X_1,X_2}(t_1,t_2) = M_{X_1}(t_1)M_{X_2}(t_2), \forall t_1,t_2.$$

Proof. \Rightarrow) If X_1, X_2 are independent,

$$\begin{split} M_{X_1,X_2}(t_1,t_2) &= \mathbf{E}(e^{t_1X_1+t_2X_2}) \\ &= \int \int e^{t_1x_1+t_2x_2} f(x_1,x_2) dx_1 dx_2 \\ &= \int_{-\infty}^{\infty} e^{t_1x_1} f_{X_1}(x_1) dx_1 \int_{-\infty}^{\infty} e^{t_2x_2} f_{X_2}(x_2) dx_2 \\ &= \mathbf{E}(e^{t_1X_1}) \mathbf{E}(e^{t_2X_2}) \\ &= M_{X_1}(t_1) M_{X_2}(t_2) \end{split}$$

 \Leftarrow

$$M_{X_1,X_2}(t_1,t_2) = \mathcal{E}(e^{t_1X_1 + t_2X_2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t_1x_1 + t_2x_2} f(x_1,x_2) dx_1 dx_2$$

$$\begin{split} M_{X_1}(t_1)M_{X_2}(t_2) &= \mathbf{E}(e^{t_1X_1})\mathbf{E}(e^{t_2X_2}) \\ &= \int_{-\infty}^{\infty} e^{t_1x_1}f_{X_1}(x_1)dx_1 \int_{-\infty}^{\infty} e^{t_2x_2}f_{X_2}(x_2)dx_2 \\ &= \int_{-\infty}^{\infty} e^{t_1x_1+t_2x_2}f(x_1,x_2)dx_1dx_2 \end{split}$$

With 1-1 correspondence between m.g.f and p.d.f, then $f(x_1, x_2) = f_1(x_1) f_2(x_2), \forall x_1, x_2 \Rightarrow X_1, X_2$ are independent.

X and Y are independent, denote by $X \coprod Y$.

$$\begin{cases} X \sim N(\mu, \sigma^2) &, M_x(t) = e^{\mu t + \frac{\sigma^2}{2}t^2}, \forall t \in R \\ X \sim \operatorname{Gamma}(\alpha, \beta) &, M_x(t) = (1 - \beta t)^{-\alpha}, t < \frac{1}{\beta} \\ X \sim b(n, p) &, M_x(t) = (1 - p + pe^t)^n, \forall t \in R \\ X \sim \operatorname{Poisson}(\lambda) &, M_x(t) = e^{\lambda(e^t - 1)}, \forall t \in R \end{cases}$$

Note:

- (a) If (X_1, \ldots, X_n) and (Y_1, \ldots, Y_m) are independent, then $g(X_1, \ldots, X_n)$ and $h(Y_1, \ldots, Y_m)$ are also independent.
- (b) If X, Y are independent, then

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)].$$

Thm. If (X_1, \ldots, X_n) is a random sample from $N(\mu, \sigma^2)$, then

$$(a)\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

 $(b)\overline{X}$ and S^2 are independent.

$$(c)\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Proof. (a) m.g.f. of \overline{X} is

$$M_{\overline{X}}(t) = E(e^{t\overline{X}}) = E(e^{t\frac{1}{n}\sum_{i=1}^{n}X_{i}})$$

$$= E(e^{\frac{t}{n}X_{1}}e^{\frac{t}{n}X_{2}}\cdots e^{\frac{t}{n}X_{n}})$$

$$= E(e^{\frac{t}{n}X_{1}})E(e^{\frac{t}{n}X_{2}})E(e^{\frac{t}{n}X_{n}})$$

$$= M_{X_{1}}(\frac{t}{n})M_{X_{2}}(\frac{t}{n})\cdots M_{X_{n}}(\frac{t}{n})$$

$$= (e^{\mu \frac{t}{n} + \frac{\sigma^{2}}{2}(\frac{t}{n})^{2}})^{n}$$

$$= e^{\mu t + \frac{\sigma^{2}/n}{2}t^{2}}$$

$$\Rightarrow \overline{X} \sim (\mu, \tfrac{\sigma^2}{n})$$

(b) First we want to show that \overline{X} and $(X_1 - \overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X})$ are

independent. Joint m.g.f. of \overline{X} and $(X_1 - \overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X})$ is

$$\begin{split} M_{\overline{X},X_{1}-\overline{X},X_{2}-\overline{X},...,X_{n}-\overline{X}}(t,t_{1},\ldots,t_{n}) \\ &= \mathbb{E}[e^{t\overline{X}+t_{1}(X_{1}-\overline{X})+\cdots+t_{n}(X_{n}-\overline{X})}] \\ &= \mathbb{E}[e^{\frac{t}{n}\sum_{i=1}^{n}X_{i}+\sum_{i=1}^{n}t_{i}X_{i}-\sum_{i=1}^{n}t_{i}\frac{\sum X_{i}}{n}}] \\ &= \mathbb{E}[e^{\sum_{i=1}^{n}(\frac{t}{n}+t_{i}-\overline{t})X_{i}}], \overline{t} = \frac{1}{n}\sum_{i=1}^{n}t_{i} \\ &= \mathbb{E}[e^{\sum_{i=1}^{n}\frac{n(t_{i}-\overline{t})+t}{n}X_{i}}] \\ &= \mathbb{E}[\prod_{i=1}^{n}e^{\frac{n(t_{i}-\overline{t})+t}{n}X_{i}}] \\ &= \prod_{i=1}^{n}e^{\mu\frac{n(t_{i}-\overline{t})+t}{n}+\frac{\sigma^{2}}{2}\frac{(n(t_{i}-\overline{t})+t)^{2}}{n^{2}}} \\ &= e^{\frac{\mu}{n}\sum_{i=1}^{n}(n(t_{i}-\overline{t})+t)+\frac{\sigma^{2}}{2n^{2}}\sum_{i=1}^{n}(n(t_{i}-\overline{t})+t)^{2}} \\ &= e^{\mu t+\frac{\sigma^{2}/n}{2}t^{2}+\mu\sum(t_{i}-\overline{t})+\frac{\sigma^{2}}{2}\sum(t_{i}-\overline{t})^{2}+\frac{\sigma^{2}}{n^{2}}nt\sum(t_{i}-\overline{t})} \\ &= e^{\mu t+\frac{\sigma^{2}/n}{2}t^{2}}e^{\frac{\sigma^{2}}{2}\sum(t_{i}-\overline{t})^{2}} \\ &= M_{\overline{X}}(t)M_{(X_{1}-\overline{X},X_{2}-\overline{X},...,X_{n}-\overline{X})}(t_{1},\ldots,t_{n}) \end{split}$$

 $\Rightarrow \overline{X}$ and $(X_1 - \overline{X}, X_2 - \overline{X}, \dots, X_n - \overline{X})$ are independent. $\Rightarrow \overline{X}$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ are independent.

(c)

$$(1) Z \sim N(0,1), \Rightarrow Z^2 \sim \chi^2(1)$$

(2)

$$X \sim \chi^2(r_1)$$
 and $Y \sim \chi^2(r_2)$ are independent. $\Rightarrow X + Y \sim \chi^2(r_1 + r_2)$

Proof. m.g.f. of X + Y is

$$M_{X+Y}(t) = E(e^{t(X+Y)}) = E(e^{tX+tY}) = E(e^{tX})E(e^{tY}) = M_X(t)M_Y(t)$$

= $(1-2t)^{-\frac{r_1}{2}}(1-2t)^{-\frac{r_2}{2}} = (1-2t)^{-\frac{r_1+r_2}{2}}$

$$\Rightarrow X + Y \sim \chi^2(r_1 + r_2)$$
(3)

$$(X_1, \dots, X_n) \stackrel{iid}{\sim} N(\mu, \sigma)$$

$$\frac{X_1 - \mu}{\sigma}, \frac{X_2 - \mu}{\sigma}, \dots, \frac{X_n - \mu}{\sigma} \stackrel{iid}{\sim} N(0, 1)$$

$$\frac{(X_1 - \mu)^2}{\sigma^2}, \frac{(X_2 - \mu)^2}{\sigma^2}, \dots, \frac{(X_n - \mu)^2}{\sigma^2} \stackrel{iid}{\sim} \chi^2(1)$$

$$\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$$

$$\frac{(n-1)s^2}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sigma^2} \sim \chi^2(n-1)$$

$$(1-2t)^{-\frac{n}{2}} = M_{\frac{\sum(X_i - \mu)^2}{\sigma^2}}(t) = \mathbf{E}(e^{t\frac{\sum(X_i - \mu)^2}{\sigma^2}})$$

$$= \mathbf{E}(e^{t\frac{\sum(X_i - \overline{X} + \overline{X} - \mu)^2}{\sigma^2}}) = \mathbf{E}(e^{t\frac{\sum(X_i - \overline{X})^2 + n(\overline{X} - \mu)^2}{\sigma^2}})$$

$$= \mathbf{E}(e^{t\frac{(n-1)s^2}{\sigma^2}} e^{t\frac{(\overline{X} - \mu)^2}{\sigma^2/n}})$$

$$= \mathbf{E}(e^{t\frac{(n-1)s^2}{\sigma^2}}) \mathbf{E}(e^{t\frac{(\overline{X} - \mu)^2}{\sigma^2/n}})$$

$$= M_{\frac{(n-1)s^2}{\sigma^2}}(t) M_{\frac{(\overline{X} - \mu)^2}{\sigma^2/n}}(t)$$

$$= M_{\frac{(n-1)s^2}{\sigma^2}}(t)(1-2t)^{-\frac{1}{2}}$$

$$\Rightarrow M_{\frac{(n-1)s^2}{\sigma^2}}(t) = (1-2t)^{-\frac{n-1}{2}} \Rightarrow \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

Chapter 3. Statistical Inference - Point Estimation

Problem in statistics:

A random variables X with p.d.f. of the form $f(x, \theta)$ where function f is known but parameter θ is unknown. We want to gain knowledge about θ . What we have for inference:

There is a random sample X_1, \ldots, X_n from $f(x, \theta)$.

Statistical inferences $\begin{cases} &\text{Point estimation: } \hat{\theta} = \hat{\theta}(X_1, \dots, X_n) \\ &\text{Interval estimation:} \\ &\text{Find statistics } T_1 = t_1(X_1, \dots, X_n), T_2 = t_2(X_1, \dots, X_n) \\ &\text{such that } 1 - \alpha = P(T_1 \leq \theta \leq T_2) \\ &\text{Hypothesis testing: } H_0 : \theta = \theta_0 \text{ or } H_0 : \theta \geq \theta_0. \\ &\text{Want to find a rule to decide if we accept or reject } H_0. \end{cases}$

Def. We call a statistic $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ an estimator of parameter θ if it is used to estimate θ . If $X_1 = x_1, \dots, X_n = x_n$ are observed, then $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ is called an **estimate** of θ .

Two problems are concerned in estimation of θ :

- (a) How can we evaluate an estimator $\hat{\theta}$ for its use in estimation of θ ? Need criterion for this estimation.
- (b) Are there general rules in deriving estimators? We will introduce two methods for deriving estimator of θ .

Def. We call an estimator θ unbiased for θ if it satisfies

$$E_{\theta}(\hat{\theta}(X_1,\ldots,X_n)) = \theta, \forall \theta.$$

$$E_{\theta}(\hat{\theta}(X_1, \dots, X_n)) = \begin{cases} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \hat{\theta}(x_1, \dots, x_n) f(x_1, \dots, x_n, \theta) dx_1 \dots dx_n \\ \int_{-\infty}^{\infty} \theta^* f_{\hat{\theta}}(\theta^*) d\theta^* \text{ where } \hat{\theta} = \hat{\theta}(X_1, \dots, X_n) \text{ is a r.v. with pdf } f_{\hat{\theta}}(\theta^*) \end{cases}$$

Def. If $E_{\theta}(\hat{\theta}(X_1, ..., X_n)) \neq \theta$ for some θ , we said that $\hat{\theta}$ is a **biased** estimator.

Example: $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, Suppose that our interest is μ, X_1 , $E_{\mu}(X_1) = \mu$, is unbiased for μ , $\frac{1}{2}(X_1 + X_2), E(\frac{X_1 + X_2}{2}) = \mu$, is unbiased for μ , $\overline{X}, E_{\mu}(\overline{X}) = \mu$, is unbiased for μ ,

▶ $a_n \xrightarrow{n \to \infty} a$, if, for $\epsilon > 0$, there exists N > 0 such that $|a_n - a| < \epsilon$ if $n \ge N$. $\{X_n\}$ is a sequence of r.v.'s. How can we define $X_n \longrightarrow X$ as $n \longrightarrow \infty$?

Def. We say that X_n converges to X, a r.v. or a constant, in probability if for $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) \longrightarrow 0$$
, as $n \longrightarrow \infty$.

In this case, we denote $X_n \stackrel{P}{\longrightarrow} X$.

Thm.

If
$$E(X_n) = a$$
 or $E(X_n) \longrightarrow a$ and $Var(X_n) \longrightarrow 0$, then $X_n \stackrel{P}{\longrightarrow} a$.

Proof.

$$E[(X_n - a)^2] = E[(X_n - E(X_n) + E(X_n) - a)^2]$$

$$= E[(X_n - E(X_n))^2] + E[(E(X_n) - a)^2] + 2E[(X_n - E(X_n))(E(X_n) - a)]$$

$$= Var(X_n) + E((X_n) - a)^2$$

Chebyshev's Inequality:

$$P(|X_n - X| \ge \epsilon) \le \frac{E(X_n - X)^2}{\epsilon^2} \text{ or } P(|X_n - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

For $\epsilon > 0$,

$$0 \le P(|X_n - a| > \epsilon) = P((X_n - a)^2 > \epsilon^2)$$

$$\le \frac{E(X_n - a)^2}{\epsilon^2} = \frac{Var(X_n) + (E(X_n) - a)^2}{\epsilon^2} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

$$\Rightarrow P(|X_n - a| > \epsilon) \longrightarrow 0, \text{ as } n \longrightarrow \infty. \Rightarrow X_n \stackrel{P}{\longrightarrow} a.$$

Thm. Weak Law of Large Numbers(WLLN)

If X_1, \ldots, X_n is a random sample with mean μ and finite variance σ^2 , then $\overline{X} \xrightarrow{P} \mu$.

Proof.

$$E(\overline{X}) = \mu, Var(\overline{X}) = \frac{\sigma^2}{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty. \Rightarrow \overline{X} \stackrel{P}{\longrightarrow} \mu.$$

Def. We sat that $\hat{\theta}$ is a **consistent** estimator of θ if $\hat{\theta} \xrightarrow{P} \theta$.

Example: X_1, \ldots, X_n is a random sample with mean μ and finite variance σ^2 . Is X_1 a consistent estimator of μ ?

 $E(X_1)=\mu$, X_1 is unbiased for μ .

Let $\epsilon > 0$,

$$P(|X_1 - \mu| > \epsilon) = 1 - P(|X_1 - \mu| \le \epsilon) = 1 - P(\mu - \epsilon \le X_1 \le \mu + \epsilon)$$
$$= 1 - \int_{\mu - \epsilon}^{\mu + \epsilon} f_X(x) dx > 0, \Rightarrow 0 \text{ as } n \longrightarrow \infty.$$

 $\Rightarrow X$ is not a consistent estimator of μ

$$E(\overline{X}) = \mu, Var(\overline{X}) = \frac{\sigma^2}{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

$$\Rightarrow \overline{X} \stackrel{P}{\longrightarrow} \mu.$$

$$\Rightarrow \overline{X} \text{ is a consistent estimator of } \mu.$$

▶ Unbiasedness and consistency are two basic conditions for good estimator.

Moments:

Let X be a random variable having a p.d.f. $f(x, \theta)$, the population k_{th} moment is defined by

$$\mathbf{E}_{\theta}(X^k) = \begin{cases} \sum_{\substack{x \\ \text{all } x}} x^k f(x, \theta) & \text{, discrete} \\ \int_{-\infty}^{\infty} x^k f(x, \theta) dx & \text{, continuous} \end{cases}$$

The sample k_{th} moment is defined by $\frac{1}{n} \sum_{i=1}^{n} X_i^k$.

 $\underline{\text{Note}}$:

$$E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{k}) = \frac{1}{n}\sum_{i=1}^{n}E_{\theta}(X^{k}) = E_{\theta}(X^{k})$$

 \Rightarrow Sample k_{th} moment is unbiased for population k_{th} moment.

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\right) = \frac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}^{k}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}^{k}) = \frac{1}{n}\operatorname{Var}(X^{k}) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

$$\Rightarrow \frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \stackrel{P}{\longrightarrow} \operatorname{E}_{\theta}(X^{k}).$$

$$\Rightarrow \frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \text{ is a consistent estimator of } \operatorname{E}_{\theta}(X^{k}).$$

Let X_1, \ldots, X_n be a random sample with mean μ and variance σ^2 . The sample variance is defined by $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ Want to show that S^2 is unbiased for σ^2 .

$$\operatorname{Var}(X) = \operatorname{E}[(X - \mu)^{2}] = \operatorname{E}[X^{2} - 2\mu X + \mu^{2}] = \operatorname{E}(X^{2}) - \mu^{2}$$

$$\Rightarrow \operatorname{E}(X^{2}) = \operatorname{Var}(X) + \mu^{2} = \operatorname{Var}(X) + (\operatorname{E}(X))^{2}$$

$$\operatorname{E}(\overline{X}) = \mu, \operatorname{Var}(\overline{X}) = \frac{\sigma^{2}}{n}$$

$$E(S^{2}) = E(\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}) = \frac{1}{n-1} E(\sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \sum_{i=1}^{n} X_{i} + n\overline{X}^{2})$$

$$= \frac{1}{n-1} E(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}) = \frac{1}{n-1} [\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})]$$

$$= \frac{1}{n-1} [n\sigma^{2} + n\mu^{2} - n(\frac{\sigma^{2}}{n} + \mu^{2})] = \frac{1}{n-1} (n-1)\sigma^{2} = \sigma^{2}$$

$$\Rightarrow S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 is unbiased for σ^2 .

$$S^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right] = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2} \right] \xrightarrow{P} \operatorname{E}(X^{2}) - \mu^{2} = \sigma^{2} + \mu^{2} - \mu^{2} = \sigma^{2}$$

$$\begin{pmatrix} X_{1}, \dots, X_{n} \text{ are iid with mean } \mu \text{ and variance } \sigma^{2} \\ X_{1}^{2}, \dots, X_{n}^{2} \text{ are iid r.v.'s with mean } \operatorname{E}(X^{2}) = \mu^{2} + \sigma^{2} \end{pmatrix}$$

$$\operatorname{By WLLN}, \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{P} \operatorname{E}(X^{2}) = \mu^{2} + \sigma^{2}$$

$$\Rightarrow s^2 \xrightarrow{P} \sigma^2$$

Def. Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f. $f(x, \theta)$

- (a) If θ is univariate, the method of moment estimator $\hat{\theta}$ solve θ for $\overline{X} = E_{\theta}(X)$
- (b) If $\theta = (\theta_1, \theta_2)$ is bivariate, the method of moment estimator $(\hat{\theta_1}, \hat{\theta_2})$ solves (θ_1, θ_2) for

$$\overline{X} = E_{\theta_1, \theta_2}(X), \frac{1}{n} \sum_{i=1}^n X_i^2 = E_{\theta_1, \theta_2}(X^2)$$

(c) If $\theta = (\theta_1, \dots, \theta_k)$ is k-variate, the method of moment estimator $(\hat{\theta}_1, \dots, \hat{\theta}_k)$ solves $\theta_1, \dots, \theta_k$ for

$$\frac{1}{n} \sum_{i=1}^{n} X_i^{j} = E_{\theta_1, \dots, \theta_k}(X^j), j = 1, \dots, k$$

Example:

- (a) $X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Bernoulli}(p)$ Let $\overline{X} = \operatorname{E}_p(X) = p$ \Rightarrow The method of moment estimator of p is $\hat{p} = \overline{X}$ By WLLN, $\hat{p} = \overline{X} \stackrel{P}{\longrightarrow} \operatorname{E}_p(X) = p \Rightarrow \hat{p}$ is consistent for p. $\operatorname{E}(\hat{p}) = \operatorname{E}(\overline{X}) = \operatorname{E}(X) = p \Rightarrow \hat{p}$ is unbiased for p.
- (b) Let X_1, \ldots, X_n be a random sample from Poisson(λ) Let $\overline{X} = E_{\lambda}(X) = \lambda$ \Rightarrow The method of moment estimator of λ is $\hat{\lambda} = \overline{X}$ $E(\hat{\lambda}) = E(\overline{X}) = \lambda \Rightarrow \hat{\lambda}$ is unbiased for λ . $\hat{\lambda} = \overline{X} \xrightarrow{P} E(X) = \lambda \Rightarrow \hat{\lambda}$ is consistent for λ .
- (c) Let X_1,\ldots,X_n be a random sample with mean μ and variance σ^2 . $\theta = (\mu,\sigma^2)$ Let $\overline{X} = \mathcal{E}_{\mu,\sigma^2}(X) = \mu$ $\frac{1}{n}\sum_{i=1}^n X_i^2 = \mathcal{E}_{\mu,\sigma^2}(X^2) = \sigma^2 + \mu^2$ \Rightarrow Method of moment estimator are $\hat{\mu} = \overline{X}$,

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

$$\overline{X} \text{ is unbiased and consistent estimator for } \mu.$$

$$E(\hat{\sigma}^2) = E(\frac{1}{n} \sum (X_i - \overline{X})^2) = \frac{n-1}{n} E(\frac{1}{n-1} \sum (X_i - \overline{X})^2) = \frac{n-1}{n} \sigma^2 \neq \sigma^2$$

$$\Rightarrow \hat{\sigma}^2 \text{ is not unbiased for } \sigma^2$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 \xrightarrow{p} E(X^2) - \mu^2 = \sigma^2$$

$$\Rightarrow \hat{\sigma}^2 \text{ is consistent for } \sigma^2.$$

Maximum Likelihood Estimator:

Let X_1, \ldots, X_n be a random sample with p.d.f. $f(x, \theta)$. The joint p.d.f. of X_1, \ldots, X_n is

$$f(x_1, ..., x_n, \theta) = \prod_{i=1}^n f(x_i, \theta), x_i \in R, i = 1, ..., n$$

Let Θ be the space of possible values of θ . We call Θ the **parameter space**.

Def. The likelihood function of a random sample is defined as its joint p.d.f. as

$$L(\theta) = L(\theta, x_1, \dots, x_n) = f(x_1, \dots, x_n, \theta), \theta \in \Theta.$$

which is considered as a function of θ .

For (x_1, \ldots, x_n) fixed, the value $L(\theta, x_1, \ldots, x_n)$ is called the likelihood at θ .

Given observation x_1, \ldots, x_n , the likelihood $L(\theta, x_1, \ldots, x_n)$ is considered as the probability that $X_1 = x_1, \ldots, X_n = x_n$ occurs when θ is true.

Def. Let $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ be any value of θ that maximizes $L(\theta, x_1, \dots, x_n)$. Then we call $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ the **maximum likelihood estimator** (m.l.e) of θ . When $X_1 = x_1, \dots, X_n = x_n$ is observed, we call $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ the maximum likelihood estimate of θ .

Note:

(a) Why m.l.e? When $L(\theta_1, x_1, \dots, x_n) \geq L(\theta_2, x_1, \dots, x_n)$, we are more confident to believe $\theta = \theta_1$ than to believe $\theta = \theta_2$

(b) How to derive m.l.e? $\frac{\partial \ln x}{\partial x} = \frac{1}{x} > 0 \Rightarrow \ln x \text{ is } \nearrow \text{ in } x$ $\Rightarrow \text{If } L(\theta_1) \geq L(\theta_2), \text{ then } \ln L(\theta_1) \geq \ln L(\theta_2)$ If $\hat{\theta}$ is the m.l.e., then $L(\hat{\theta}, x_1, \dots, x_n) = \max_{\theta \in \Theta} L(\theta, x_1, \dots, x_n)$ and $\ln L(\hat{\theta}, x_1, \dots, x_n) = \max_{\theta \in \Theta} \ln L(\theta, x_1, \dots, x_n)$ Two cases to solve m.l.e.: $(b.1) \frac{\partial \ln L(\theta)}{\partial \theta} = 0$ $(b.2) L(\theta) \text{ is monotone.} \text{ Solve } \max_{\theta \in \Theta} L(\theta, x_1, \dots, x_n) \text{ from monotone property.}$

Order statistics:

Let (X_1, \ldots, X_n) be a random sample with d.f. F and p.d.f. f. Let (Y_1, \ldots, Y_n) be a permutation (X_1, \ldots, X_n) such that $Y_1 \leq Y_2 \leq \cdots Y_n$. Then we call (Y_1, \ldots, Y_n) the **order statistic** of (X_1, \ldots, X_n) where Y_1 is the first (smallest) order statistic, Y_2 is the second order statistic,..., Y_n is the largest order statistic.

If (X_1, \ldots, X_n) are independent, then

$$P(X_{1} \in A_{1}, X_{2} \in A_{2}, \dots, X_{n} \in A_{n}) = \int_{A_{n}} \dots \int_{A_{1}} f(x_{1}, \dots, x_{n}) dx_{1} \dots dx_{n}$$

$$= \int_{A_{n}} f_{n}(x_{n}) dx_{n} \dots \int_{A_{1}} f_{1}(x_{1}) dx_{1}$$

$$= P(X_{n} \in A_{n}) \dots P(X_{1} \in A_{1})$$

Thm. Let $(X_1, ..., X_n)$ be a random sample from a "continuous distribution" with p.d.f. f(x) and d.f F(x). Then the p.d.f. of $Y_n = \max\{X_1, ..., X_n\}$ is

$$g_n(y) = n(F(y))^{n-1} f(y)$$

and the p.d.f. of $Y_1 = \min\{X_1, ..., X_n\}$ is

$$g_1(y) = n(1 - F(y))^{n-1} f(y)$$

Proof. This is a $\mathbb{R}^n \to \mathbb{R}$ transformation. Distribution function of Y_n is

$$G_n(y) = P(Y_n \le y) = P(\max\{X_1, \dots, X_n\} \le y) = P(X_1 \le y, \dots, X_n \le y)$$

= $P(X_1 \le y) P(X_2 \le y) \dots P(X_n \le y) = (F(y))^n$

 \Rightarrow p.d.f. of Y_n is $g_n(y) = D_y(F(y))^n = n(F(y))^{n-1}f(y)$ Distribution function of Y_1 is

$$G_1(y) = P(Y_1 \le y) = P(\min\{X_1, \dots, X_n\} \le y) = 1 - P(\min\{X_1, \dots, X_n\} > y)$$

= 1 - P(X_1 > y, X_2 > y, \dots, X_n > y) = 1 - P(X_1 > y)P(X_2 > y)\dots P(X_n > y)
= 1 - (1 - F(y))^n

$$\Rightarrow$$
 p.d.f. of Y_1 is $g_1(y) = D_y(1 - (1 - F(y))^n) = n(1 - F(y))^{n-1}f(y)$

Example: Let (X_1, \ldots, X_n) be a random sample from $U(0, \theta)$. Find m.l.e. of θ . Is it unbiased and consistent? sol: The p.d.f. of X is

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \le x \le \theta \\ 0 & \text{elsewhere.} \end{cases}$$

Consider the indicator function

$$I_{(a,b)}(x) = \begin{cases} 1 & \text{if } a \le x \le b \\ 0 & \text{elsewhere.} \end{cases}$$

Then $f(x, \theta) = \frac{1}{\theta} I_{[0,\theta]}(x)$. The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^{n} I_{[0,\theta]}(x_i)$$

Let $Y_n = \max\{X_1, \dots, X_n\}$

Then $\prod_{i=1}^{n} I_{[0,\theta]}(x_i) = 1 \Leftrightarrow 0 \leq x_i \leq \theta$, for all $i = 1, \ldots, n \Leftrightarrow 0 \leq y_n \leq \theta$ We then have

$$L(\theta) = \frac{1}{\theta^n} I_{[0,\theta]}(y_n) = \frac{1}{\theta^n} I_{[y_n,\infty]}(\theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \ge y_n \\ 0 & \text{if } \theta < y_n \end{cases}$$

 $L(\theta)$ is maximized when $\theta = y_n$. Then m.l.e. of θ is $\hat{\theta} = Y_n$. The d.f. of x is

$$F(x) = P(X \le x) = \int_0^x \frac{1}{\theta} dt = \frac{x}{\theta}, 0 \le x \le \theta$$

The p.d.f. of Y is

$$g_n(y) = n\left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = n\frac{y^{n-1}}{\theta^n}, 0 \le y \le \theta$$

 $\mathrm{E}(Y_n) = \int_0^\theta y n^{\frac{y^{n-1}}{\theta^n}} dy = \frac{n}{n+1} \theta \neq \theta \Rightarrow \mathrm{m.l.e.} \ \hat{\theta} = Y_n \text{ is not unbiased.}$ However, $\mathrm{E}(Y_n) = \frac{n}{n+1} \theta \to \theta \text{ as } n \to \infty, \text{ m.l.e. } \hat{\theta} \text{ is asymptotically unbiased.}$

$$\mathrm{E}(Y_n^2) = \int_0^\theta y^2 n \frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+2} \theta^2$$

$$\mathrm{Var}(Y_n) = \mathrm{E}(Y_n^2) - (\mathrm{E}Y_n)^2 = \frac{n}{n+2} \theta^2 - (\frac{n}{n+1})^2 \theta^2 \longrightarrow \theta^2 - \theta^2 = 0 \text{ as } n \longrightarrow \infty.$$

 $\Rightarrow Y_n \stackrel{P}{\longrightarrow} \theta \Rightarrow$ m.l.e. $\hat{\theta} = Y_n$ is consistent for θ .

Is there unbiased estimator for θ ?

$$E(\frac{n+1}{n}Y_n) = \frac{n+1}{n}E(Y_n) = \frac{n+1}{n}\frac{n}{n+1}\theta = \theta$$

 $\Rightarrow \frac{n+1}{n} Y_n$ is unbiased for θ .

Example:

(a) $Y \sim b(n, p)$

The likelihood function is

$$L(p) = f_Y(y,p) = \binom{n}{y} p^y (1-p)^{n-y}$$

$$\ln L(p) = \ln \binom{n}{y} + y \ln p + (n-y) \ln (1-p)$$

$$\frac{\partial \ln L(p)}{\partial p} = \frac{y}{p} - \frac{n-y}{1-p} = 0 \Leftrightarrow \frac{y}{p} = \frac{n-y}{1-p} \Leftrightarrow y(1-p) = p(n-y) \Leftrightarrow y = np$$

$$\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n}$$

$$\text{E}(\hat{p}) = \frac{1}{n} \text{E}(Y) = p \Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \text{ is unbiased.}$$

$$\text{Var}(\hat{p}) = \frac{1}{n^2} \text{Var}(Y) = \frac{1}{n} p(1-p) \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

$$\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \text{ is consistent for p.}$$

(b) X_1, \ldots, X_n are a random sample from $N(\mu, \sigma^2)$. Want m.l.e.'s of μ and σ^2

The likelihood function is

$$L(\mu, \sigma^2) = \prod_{i=1}^{\infty} \frac{1}{\sqrt{2\pi} (\sigma^2)^{\frac{1}{2}}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = (2\pi)^{-\frac{n}{2}} (\sigma^2)^{-\frac{n}{2}} e^{-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}}$$

$$\ln L(\mu, \sigma^2) = (-\frac{n}{2}) \ln (2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = 0 \Rightarrow \hat{\mu} = \overline{X}$$

$$\frac{\partial \ln L(\hat{\mu}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \overline{x})^2 = 0 \Rightarrow \hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

$$E(\hat{\mu}) = E(\overline{X}) = \mu \text{ (unbiased)}, Var(\hat{\mu}) = Var(\overline{X}) = \frac{\sigma^2}{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

$$\Rightarrow \text{ m.l.e. } \hat{\mu} \text{ is consistent for } \mu.$$

$$E(\hat{\sigma}^2) = E(\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2) = \frac{n-1}{n} \sigma^2 \neq \sigma^2 \text{ (biased)}.$$

$$E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2 \longrightarrow \sigma^2 \text{ as } n \longrightarrow \infty \Rightarrow \hat{\sigma}^2 \text{ is asymptotically unbiased}.$$

$$\operatorname{Var}(\hat{\sigma}^2) = \operatorname{Var}(\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2) = \frac{1}{n^2} \operatorname{Var}(\sigma^2 \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sigma^2})$$
$$= \frac{\sigma^4}{n^2} \operatorname{Var}(\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\sigma^2}) = \frac{2(n-1)}{n^2} \sigma^4 \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

 \Rightarrow m.l.e. $\hat{\sigma}^2$ is consistent for σ^2 .

Suppose that we have m.l.e. $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ for parameter θ and our interest is a new parameter $\tau(\theta)$, a function of θ .

What is the m.l.e. of $\tau(\theta)$?

The space of $\tau(\theta)$ is $T = \{\tau : \exists \theta \in \Theta \text{ s.t } \tau = \tau(\theta)\}$

Thm. If $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$ is the m.l.e. of θ and $\tau(\theta)$ is a 1-1 function of θ , then m.l.e. of $\tau(\theta)$ is $\tau(\hat{\theta})$

Proof. The likelihood function for θ is $L(\theta, x_1, \ldots, x_n)$. Then the likelihood function for $\tau(\theta)$ can be derived as follows:

$$L(\theta, x_1, \dots, x_n) = L(\tau^{-1}(\tau(\theta)), x_1, \dots, x_n)$$
$$= M(\tau(\theta), x_1, \dots, x_n)$$
$$= M(\tau, x_1, \dots, x_n), \tau \in T$$

$$M(\tau(\hat{\theta}), x_1, \dots, x_n) = L(\tau^{-1}(\tau(\hat{\theta}), x_1, \dots, x_n))$$

$$= L(\hat{\theta}, x_1, \dots, x_n)$$

$$\geq L(\theta, x_1, \dots, x_n), \forall \theta \in \Theta$$

$$= L(\tau^{-1}(\tau(\theta)), x_1, \dots, x_n)$$

$$= M(\tau(\theta), x_1, \dots, x_n), \forall \theta \in \Theta$$

$$= M(\tau, x_1, \dots, x_n), \tau \in T$$

 $\Rightarrow \tau(\hat{\theta})$ is m.l.e. of $\tau(\theta)$.

This is the invariance property of m.l.e.

Example:

(1)If
$$\underline{Y} \sim b(n, p)$$
, m.l.e of p is $\hat{p} = \frac{Y}{n}$

$$\underline{\tau(p) \quad \text{m.l.e of } \tau(p)}$$

$$p^2 \qquad \widehat{p^2} = (\frac{Y}{n})^2$$

$$\sqrt{p} \qquad \widehat{\sqrt{p}} = \sqrt{\frac{Y}{n}} \qquad p(1-p) \text{ is not a 1-1 function of } p.$$

$$e^p \qquad \widehat{e^p} = e^{\frac{Y}{n}}$$

$$e^{-p} \qquad \widehat{e^{-p}} = e^{-\frac{Y}{n}}$$

(2)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$
, m.l.e.'s of (μ, σ^2) is $(\overline{X}, \frac{1}{n} \sum (X_i - \overline{X})^2)$.
m.l.e.'s of (μ, σ) is $(\overline{X}, \sqrt{\frac{1}{n} \sum (X_i - \overline{X})^2})$ (: $\sigma \in (0, \infty)$: $\sigma^2 \longrightarrow \sigma$ is 1-1)

You can also solve

$$\frac{\partial \ln L(\mu, \sigma^2, x_1, \dots, x_n)}{\partial \mu} = 0$$

$$\frac{\partial \ln L(\mu, \sigma^2, x_1, \dots, x_n)}{\partial \sigma} = 0 \text{ for } \mu, \sigma$$

 (μ^2, σ) is not a 1-1 function of (μ, σ^2) . $(\because \mu \in (-\infty, \infty) \therefore \mu \longrightarrow \mu^2 \text{ isn't 1-1})$

Best estimator:

Def. An unbiased estimator $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ is called a uniformly minimum variance unbiased estimator (UMVUE) or best estimator if for any unbiased estimator $\hat{\theta}^*$, we have

$$Var_{\theta} \hat{\theta} < Var_{\theta} \hat{\theta}^*, \text{ for } \theta \in \Theta$$

 $(\hat{\theta} \text{ is uniformly better than } \hat{\theta^*} \text{ in variance. })$

There are several ways in deriving UMVUE of θ . Cramer-Rao lower bound for variance of unbiased estimator : Regularity conditions :

- (a) Parameter space Θ is an open interval. $(a, \infty), (a, b), (b, \infty)$, a,b are constants not depending on θ .
- (b) Set $\{x: f(x,\theta)=0\}$ is independent of θ .

(c)
$$\int \frac{\partial f(x,\theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int f(x,\theta) dx = 0$$

(d) If $T = t(x_1, \ldots, x_n)$ is an unbiased estimator, then

$$\int t \frac{\partial f(x,\theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int t f(x,\theta) dx$$

Thm. Cramer-Rao (C-R)

Suppose that the regularity conditions hold.

If $\hat{\tau}(\theta) = t(X_1, \dots, X_n)$ is unbiased for $\tau(\theta)$, then

$$Var_{\theta} \hat{\tau}(\theta) \ge \frac{(\tau'(\theta))^2}{nE_{\theta} \left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta} \right)^2 \right]} = \frac{(\tau'(\theta))^2}{-nE_{\theta} \left[\left(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2} \right) \right]} \text{ for } \theta \in \Theta$$

Proof. Consider only the continuous distribution.

$$E\left[\frac{\partial \ln f(x,\theta)}{\partial \theta}\right] = \int_{-\infty}^{\infty} \frac{\partial \ln f(x,\theta)}{\partial \theta} f(x,\theta) dx = \int_{-\infty}^{\infty} \frac{\partial f(x,\theta)}{\partial \theta} dx$$
$$= \frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} f(x,\theta) dx = 0$$

$$\tau(\theta) = \mathcal{E}_{\theta}\hat{\tau}(\theta) = \mathcal{E}_{\theta}(t(x_1, \dots, x_n)) = \int \dots \int t(x_1, \dots, x_n) \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i$$

Taking derivatives both sides.

$$\tau'(\theta) = \frac{\partial}{\partial \theta} \int \cdots \int t(x_1, \dots, x_n) \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i - \tau(\theta) \frac{\partial}{\partial \theta} \int \cdots \int \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i$$

$$= \int \cdots \int t(x_1, \dots, x_n) \frac{\partial}{\partial \theta} \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i - \int \cdots \int \tau(\theta) \frac{\partial}{\partial \theta} \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i$$

$$= \int \cdots \int (t(x_1, \dots, x_n) - \tau(\theta)) (\frac{\partial}{\partial \theta} \prod_{i=1}^n f(x_i, \theta)) \prod_{i=1}^n dx_i$$

Now,

$$\frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_{i}, \theta) = \frac{\partial}{\partial \theta} [f(x_{1}, \theta)f(x_{2}, \theta) \cdots f(x_{n}, \theta)]$$

$$= \left(\frac{\partial}{\partial \theta} f(x_{1}, \theta)\right) \prod_{i \neq 1} f(x_{i}, \theta) + \cdots + \left(\frac{\partial}{\partial \theta} f(x_{n}, \theta)\right) \prod_{i \neq n} f(x_{i}, \theta)$$

$$= \sum_{j=1}^{n} \frac{\partial}{\partial \theta} f(x_{j}, \theta) \prod_{i \neq j} f(x_{i}, \theta)$$

$$= \sum_{j=1}^{n} \frac{\partial \ln f(x_{j}, \theta)}{\partial \theta} f(x_{j}, \theta) \prod_{i \neq j} f(x_{i}, \theta)$$

$$= \sum_{j=1}^{n} \frac{\partial \ln f(x_{j}, \theta)}{\partial \theta} \prod_{j=1}^{n} f(x_{i}, \theta)$$

Cauchy-Swartz Inequality

$$[E(XY)]^2 \le E(X^2)E(Y^2)$$

Then

$$\tau'(\theta) = \int \cdots \int (t(x_1, \dots, x_n) - \tau(\theta)) \left(\sum_{j=1}^n \frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right) \prod_{i=1}^n f(x_i, \theta) \prod_{i=1}^n dx_i$$

$$= E[(t(x_1, \dots, x_n) - \tau(\theta)) \sum_{j=1}^n \frac{\partial \ln f(x_j, \theta)}{\partial \theta}]$$

$$(\tau'(\theta))^2 \le E[(t(x_1, \dots, x_n) - \tau(\theta))^2] E[\left(\sum_{j=1}^n \frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2]$$

$$\Rightarrow Var(\hat{\tau}(\theta)) \ge \frac{(\tau'(\theta))^2}{E[\left(\sum_{j=1}^n \frac{\partial \ln f(x_j, \theta)}{\partial \theta}\right)^2]}$$

Since

$$E\left[\left(\sum_{j=1}^{n} \frac{\partial \ln f(x_{j}, \theta)}{\partial \theta}\right)^{2}\right] = \sum_{j=1}^{n} E\left(\frac{\partial \ln f(x_{j}, \theta)}{\partial \theta}\right)^{2} + \sum_{i \neq j} E\left(\frac{\partial \ln f(x_{j}, \theta)}{\partial \theta}\right) \frac{\partial \ln f(x_{i}, \theta)}{\partial \theta}$$

$$= \sum_{j=1}^{n} E\left(\frac{\partial \ln f(x_{j}, \theta)}{\partial \theta}\right)^{2}$$

$$= n E\left(\frac{\partial \ln f(x_{j}, \theta)}{\partial \theta}\right)^{2}$$

Then, we have

$$\operatorname{Var}_{\theta} \hat{\tau}(\theta) \ge \frac{(\tau'(\theta))^2}{n \operatorname{E}_{\theta} \left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta} \right)^2 \right]}$$

You may further check that

$$E_{\theta}(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2}) = -E_{\theta}(\frac{\partial \ln f(x,\theta)}{\partial \theta})^2$$

Thm. If there is an unbiased estimator $\hat{\tau}(\theta)$ with variance achieving the Cramer-Rao lower bound $\frac{(\tau'(\theta))^2}{-nE_{\theta}\left[\left(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta 2}\right)\right]}$, then $\hat{\tau}(\theta)$ is a UMVUE of $\tau(\theta)$.

Note:

If $\tau(\theta) = \theta$, then any unbiased estimator $\hat{\theta}$ satisfies

$$\operatorname{Var}_{\theta}(\hat{\theta}) \ge \frac{(\tau'(\theta))^2}{-n\operatorname{E}_{\theta}(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2})}$$

Example:

(a)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda), E(X) = \lambda, \text{Var}(X) = \lambda.$$

MLE $\hat{\lambda} = \overline{X}, E(\hat{\lambda}) = \lambda, \text{Var}(\hat{\lambda}) = \frac{\lambda}{n}.$

p.d.f. $f(x, \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, \ldots$

$$\Rightarrow \ln f(x, \lambda) = x \ln \lambda - \lambda - \ln x!$$

$$\Rightarrow \frac{\partial}{\partial \lambda} \ln f(x, \lambda) = \frac{x}{\lambda} - 1$$

$$\Rightarrow \frac{\partial^2}{\partial \lambda^2} \ln f(x, \lambda) = -\frac{x}{\lambda^2}$$

$$E(\frac{\partial^2}{\partial \lambda^2} \ln f(x, \lambda)) = E(-\frac{x}{\lambda^2}) = -\frac{E(X)}{\lambda^2} = -\frac{1}{\lambda}$$

Cramer-Rao lower bound is

$$\frac{1}{-n(-\frac{1}{\lambda})} = \frac{\lambda}{n} = \operatorname{Var}(\hat{\lambda})$$

 \Rightarrow MLE $\hat{\lambda} = \overline{X}$ is the UMVUE of λ .

(b)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p), E(X) = p, Var(X) = p(1-p).$$
Want UMVUE of p .

p.d.f $f(x,p) = p^x (1-p)^{1-x}$

$$\Rightarrow \ln f(x,p) = x \ln p + (1-x) \ln(1-p)$$

$$\frac{\partial}{\partial p} \ln f(x,p) = \frac{x}{p} - \frac{1-x}{1-p}$$

$$\frac{\partial^2}{\partial p^2} \ln f(x,p) = -\frac{x}{p^2} + \frac{1-x}{(1-p)^2}$$

$$E(\frac{\partial^2}{\partial p^2} \ln f(X,p)) = E(-\frac{X}{p^2} + \frac{1-X}{(1-p)^2}) = -\frac{1}{p} + \frac{1}{1-p} = -\frac{1}{p(1-p)}$$

C-R lower bound for p is

$$\frac{1}{-n(-\frac{1}{p(1-p)})} = \frac{p(1-p)}{n}$$

m.l.e. of p is $\hat{p} = \overline{X}$ $\mathrm{E}(\hat{p}) = \mathrm{E}(\overline{X}) = p, \mathrm{Var}(\hat{p}) = \mathrm{Var}(\overline{X}) = \frac{p(1-p)}{n} = \mathrm{C-R}$ lower bound. \Rightarrow MLE \hat{p} is the UMVUE of p.

Chapter 4. Continue to Point Estimation-UMVUE

Sufficient Statistic:

A,B are two events. The conditional probability of A given B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, A \subset S.$$

 $P(\cdot|B)$ is a probability set function with domain of subsets of sample space S.

Let X,Y be two r.v's with joint p.d.f f(x,y) and marginal p.d.f's $f_X(x)$ and $f_Y(y)$. The conditional p.d.f of Y given X = x is

$$f(y|x) = \frac{f(x,y)}{f_X(x)}, y \in R$$

Function f(y|x) is a p.d.f satisfying $\int_{-\infty}^{\infty} f(y|x)dy = 1$

In estimation of parameter θ , we have a random sample X_1, \ldots, X_n from p.d.f $f(x, \theta)$. The information we have about θ is contained in X_1, \ldots, X_n .

Let $U = u(X_1, ..., X_n)$ be a statistic having p.d.f $f_U(u, \theta)$ The conditional p.d.f $X_1, ..., X_n$ given U = u is

$$f(x_1, \dots, x_n | u) = \frac{f(x_1, \dots, x_n, \theta)}{f_U(u, \theta)}, \{(x_1, \dots, x_n) : u(x_1, \dots, x_n) = u\}$$

Function $f(x_1, ..., x_n | u)$ is a joint p.d.f with $\int_{u(x_1, ..., x_n) = u} \cdots \int f(x_1, ..., x_n | u) dx_1 \cdots dx_n = 1$

Let X be r.v. and U = u(X)

$$f(x|U=u) = \frac{f(x,u)}{f_U(u)} = \begin{cases} \frac{f_X(x)}{f_U(u)} & \text{if } u(X) = u\\ \frac{0}{f_U(u)} = 0 & \text{if } u(X) \neq u \end{cases}$$

If, for any u, conditional p.d.f $f(x_1, \ldots, x_n, \theta|u)$ is unrelated to parameter θ , then the random sample X_1, \ldots, X_n contains no information about θ when U = u is observed. This says that U contains exactly the same amount of information about θ as X_1, \ldots, X_n .

Def. Let X_1, \ldots, X_n be a random sample from a distribution with $p.d.f f(x, \theta), \theta \in \Theta$. We call a statistic $U = u(X_1, \ldots, X_n)$ a **sufficient statistic** if, for any value U = u, the conditional $p.d.f f(x_1, \ldots, x_n|u)$ and its domain all not

depend on parameter θ .

Let $U = (X_1, \dots, X_n)$. Then

$$f(x_1, \dots, x_n, \theta | u = (x_1^*, x_2^*, \dots, x_n^*)) = \begin{cases} \frac{f(x_1, \dots, x_n, \theta)}{f(x_1^*, x_2^*, \dots, x_n^*, \theta)} & \text{if } x_1 = x_1^*, x_2 = x_2^*, \dots, x_n = x_n^* \\ 0 & \text{if } x_i \neq x_i^* \text{ for some } i's. \end{cases}$$

Then (X_1, \ldots, X_n) itself is a sufficient statistic of θ .

Q: Why sufficiency?

A: We want a statistic with dimension as small as possible and contains information about θ the same amount as X_1, \ldots, X_n does.

Def. If $U = u(X_1, ..., X_n)$ is a sufficient statistic with smallest dimension, it is called the **minimal sufficient statistic**.

Example:

(a) Let (X_1, \ldots, X_n) be a random sample from a continuous distribution with p.d.f $f(x, \theta)$. Consider the order statistic $Y_1 = \min\{X_1, \ldots, X_n\}, \ldots, Y_n = \max\{X_1, \ldots, X_n\}$. If $Y_1 = y_1, \ldots, Y_n = y_n$ are observed, sample X_1, \ldots, X_n have equal chance to have values in

$$\{(x_1, \ldots, x_n) : (x_1, \ldots, x_n) \text{ is a permutation of } (y_1, \ldots, y_n)\}.$$

Then the conditional joint p.d.f of X_1, \ldots, X_n given $Y_1 = y_1, \ldots, Y_n = y_n$ is

$$f(x_1, \dots, x_n, \theta | y_1, \dots, y_n) = \begin{cases} \frac{1}{n!} & \text{if } x_1, \dots, x_n \text{ is a permutation of } y_1, \dots, y_n. \\ 0 & \text{otherwise.} \end{cases}$$

Then order statistic (Y_1, \ldots, Y_n) is also a sufficient statistic of θ . Order statistic is not a good sufficient statistic since it has dimension n.

(b)Let X_1, \ldots, X_n be a random sample from Bernoulli distribution. The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}, x_i = 0, 1, i = 1, \dots, n.$$

Consider the statistic $Y = \sum_{i=1}^{n} X_i$ which has binomial distribution b(n, p) with p.d.f

$$f_Y(y,p) = \binom{n}{y} p^y (1-p)^{n-y}, y = 0, 1, \dots, n$$

If Y = y, the space of (X_1, \ldots, X_n) is $\{(x_1, \ldots, x_n) : \sum_{i=1}^n x_i = y\}$ The conditional p.d.f of X_1, \ldots, X_n given Y = y is

$$f(x_1, \dots, x_n, p|y) = \begin{cases} \frac{\sum_{i=1}^{n} x_i (1-p)^{n-\sum_{i=1}^{n} x_i}}{\binom{n}{y} p^y (1-p)^{n-y}} = \frac{p^y (1-p)^{n-y}}{\binom{n}{y} p^y (1-p)^{n-y}} = \frac{1}{\binom{n}{y}} = \frac{1}{\binom{n}{y}} = \frac{1}{\binom{n}{y}} & \text{if } \sum_{i=1}^{n} x_i = y \\ 0 & \text{if } \sum_{i=1}^{n} x_i \neq y \end{cases}$$

which is independent of p.

Hence, $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic of p and is a minimal sufficient statistic.

(c)Let X_1, \ldots, X_n be a random sample from uniform distribution $U(0, \theta)$. Want to show that the largest order statistic $Y_n = \max\{X_1, \ldots, X_n\}$ is a sufficient statistic.

The joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 < x_i < \theta)$$
$$= \begin{cases} \frac{1}{\theta^n} & \text{if } 0 < x_i < \theta, i = 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

The p.d.f of Y_n is

$$f_{Y_n}(y,\theta) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta$$

When $Y_n = y$ is given, X_1, \ldots, X_n be values with $0 < x_i \le y, i = 1, \ldots, n$

The conditional p.d.f of X_1, \ldots, X_n given $Y_n = y$ is

$$f(x_1, ..., x_n | y) = \frac{f(x_1, ..., x_n, \theta)}{f_{Y_n}(y, \theta)} = \begin{cases} \frac{\frac{1}{\theta^n}}{n^{\frac{y^{n-1}}{\theta^n}}} = \frac{1}{ny^{n-1}} & 0 < x_i \le y, i = 1, ..., n \\ 0 & \text{otherwise.} \end{cases}$$

 \Rightarrow independent of θ .

So, $Y_n = \max\{X_1, \dots, X_n\}$ is a sufficient statistic of θ .

Q:

- (a) If U is a sufficient statistic, are U+5, U^2 , $\cos(U)$ all sufficient for θ ?
- (b) Is there easier way in finding sufficient statistic?

 $T = t(X_1, \ldots, X_n)$ is sufficient for θ if conditional p.d.f $f(x_1, \ldots, x_n, \theta|t)$ is indep. of θ .

Independence:

1.function $f(x_1, \ldots, x_n, \theta|t)$ not depend on θ .

2.domain of X_1, \ldots, X_n not depend on θ .

Thm. Factorization Theorem.

Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f $f(x, \theta)$. A statistic $U = u(X_1, \ldots, X_n)$ is sufficient for θ iff there exists functions $K_1, K_2 \geq 0$ such that the joint p.d.f of X_1, \ldots, X_n may be formulated as $f(x_1, \ldots, x_n, \theta) = K_1(u(X_1, \ldots, X_n), \theta)K_2(x_1, \ldots, x_n)$ where K_2 is not a function of θ .

Proof. Consider only the continuous r.v's.

 \Rightarrow) If U is sufficient for θ , then

$$f(x_1, \dots, x_n, \theta | u) = \frac{f(x_1, \dots, x_n, \theta)}{f_U(u, \theta)} \text{ is not a function of } \theta$$

$$\Rightarrow f(x_1, \dots, x_n, \theta) = f_U(u(X_1, \dots, X_n), \theta) f(x_1, \dots, x_n | u)$$

$$= K_1(u(X_1, \dots, X_n), \theta) K_2(x_1, \dots, x_n)$$

 \Leftarrow) Suppose that $f(x_1,\ldots,x_n,\theta)=K_1(u(X_1,\ldots,X_n),\theta)K_2(x_1,\ldots,x_n)$ Let $Y_1=u_1(X_1,\ldots,X_n), Y_2=u_2(X_1,\ldots,X_n),\ldots,Y_n=u_n(X_1,\ldots,X_n)$ be a 1-1 function with inverse functions $x_1=w_1(y_1,\ldots,y_n),x_2=w_2(y_1,\ldots,y_n),\ldots,x_n=w_n(y_1,\ldots,y_n)$ and Jacobian

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$
 (not depend on θ .)

The joint p.d.f of Y_1, \ldots, Y_n is

$$f_{Y_1,\dots,Y_n}(y_1,\dots,y_n,\theta) = f(w_1(y_1,\dots,y_n),\dots,w_n(y_1,\dots,y_n),\theta)|J|$$

= $K_1(y_1,\theta)K_2(w_1(y_1,\dots,y_n),\dots,w_n(y_1,\dots,y_n),\theta)|J|$

The marginal p.d.f of $U = Y_1$ is

$$f_U(y_1, \theta) = K_1(y_1, \theta) \underbrace{\int \cdots \int K_2(w_1(y_1, \dots, y_n), \dots, w_n(y_1, \dots, y_n)) |J| dy_2 \cdots dy_n}_{\text{not depend on } \theta.}$$

Then the conditional p.d.f of X_1, \ldots, X_n given U = u is

$$f(x_1, ..., x_n, \theta | u) = \frac{f(x_1, ..., x_n, \theta)}{f_U(u, \theta)}$$

$$= \frac{K_2(x_1, ..., x_n)}{\int ... \int K_2(w_1(y_1, ..., y_n), ..., w_n(y_1, ..., y_n), \theta) |J| dy_2 ... dy_n}$$

which is independent of θ .

This indicates that U is sufficient for θ .

Example:

(a) X_1, \ldots, X_n is a random sample from Poisson(λ). Want sufficient statistic for λ .

Joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \lambda) = \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{\sum x_i} e^{-n\lambda}}{\prod_{i=1}^n x_i!} = \lambda^{\sum x_i} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!}$$
$$= K_1(\sum_{i=1}^n x_i, \lambda) K_2(x_1, \dots, x_n)$$

 $\Rightarrow \sum_{i=1}^{n} X_i$ is sufficient for λ .

We also have

$$f(x_1, \dots, x_n, \lambda) = \lambda^{n\overline{x}} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!} = K_1(\overline{x}, \lambda) K_2(x_1, \dots, x_n)$$

$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 is sufficient for λ .

We also have

$$f(x_1, \dots, x_n, \lambda) = \lambda^{n(\overline{x}^2)^{\frac{1}{2}}} e^{-n\lambda} \frac{1}{\prod_{i=1}^n x_i!} = K_1(\overline{x}^2, \lambda) K_2(x_1, \dots, x_n)$$

 $\Rightarrow \overline{X}^2$ is sufficient for λ .

(b)Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. Want sufficient statistic for (μ, σ^2) .

Joint p.d.f of X_1, \ldots, X_n is

$$f(x_1, \dots, x_n, \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{\frac{n}{2}} (\sigma^2)^{\frac{n}{2}}} e^{-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}}$$

$$\sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n (x_i - \overline{x} + \overline{x} - \mu)^2 = \sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2 = (n-1)s^2 + n(\overline{x} - \mu)^2$$

$$(s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2)$$

$$f(x_1, \dots, x_n, \mu, \sigma^2) = \frac{1}{(2\pi)^{\frac{n}{2}} (\sigma^2)^{\frac{n}{2}}} e^{-\frac{(n-1)s^2 + n(\overline{x} - \mu)^2}{2\sigma^2}} \cdot 1 = K_1(\overline{x}, s^2, \mu, \sigma^2) K_2(x_1, \dots, x_n)$$

$$\Rightarrow (\overline{X}, s^2) \text{ is sufficient for } (\mu, \sigma^2).$$

What is useful with a sufficient statistic for point estimation? Review: X, Y r.v.'s with join p.d.f f(x, y). Conditional p.d.f

$$f(y|x) = \frac{f(x,y)}{f_X(x)} \Rightarrow f(x,y) = f(y|x)f_X(x)$$
$$f(x|y) = \frac{f(x,y)}{f_Y(y)} \Rightarrow f(x,y) = f(x|y)f_Y(y)$$

Conditional expectation of Y given X = x is

$$E(Y|x) = \int_{-\infty}^{\infty} y f(y|x) dy$$

The random conditional expectation E(Y|X) is function E(Y|x) with x replaced by X.

Conditional variance of Y given X = x is

$$Var(Y|x) = E[(Y - E(Y|x))^{2}|x] = E(Y^{2}|x) - (E(Y|x))^{2}$$

The conditional variance Var(Y|X) is Var(Y|x) replacing x by X.

Thm. Let Y and X be two r.v.'s.

(a) E[E(Y|x)] = E(Y)

(b)
$$Var(Y) = E(Var(Y|x)) + Var(E(Y|x))$$

Proof. (a)

$$E[E(Y|x)] = \int_{-\infty}^{\infty} E(Y|x) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(y|x) dy f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} y (\int_{-\infty}^{\infty} f(x, y) dx) dy$$

$$= \int_{-\infty}^{\infty} y f_Y(y) dy$$

$$= E(Y)$$

(b)

$$\begin{aligned} \operatorname{Var}(Y|x) &= \operatorname{E}(Y^{2}|x) - (\operatorname{E}(Y|x))^{2} \\ \Rightarrow \operatorname{E}(\operatorname{Var}(Y|x)) &= \operatorname{E}[\operatorname{E}(Y^{2}|x)] - \operatorname{E}[(\operatorname{E}(Y|x))^{2}] = \operatorname{E}(Y^{2}) - \operatorname{E}[(\operatorname{E}(Y|x))^{2}] \\ \operatorname{Also,} \operatorname{Var}(\operatorname{E}(Y|x) &= \operatorname{E}[(\operatorname{E}(Y|x))^{2}] - \operatorname{E}[(\operatorname{E}(Y|x))]^{2} \\ &= \operatorname{E}[(\operatorname{E}(Y|x))^{2}] - (\operatorname{E}(Y))^{2} \\ \Rightarrow \operatorname{E}(\operatorname{Var}(Y|x)) + \operatorname{Var}(\operatorname{E}(Y|x) = \operatorname{E}(Y^{2}) - (\operatorname{E}(Y))^{2} = \operatorname{Var}(Y) \end{aligned}$$

Now, we comeback to the estimation of parameter function $\tau(\theta)$. We have a random sample X_1, \ldots, X_n from $f(x, \theta)$.

Lemma. Let $\hat{\tau}(X_1, \dots, X_n)$ be an unbiased estimator of $\tau(\theta)$ and $U = u(X_1, \dots, X_n)$ is a statistic. Then

$$(a)E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$$
 is unbiased for $\tau(\theta)$
 $(b)Var_{\theta}(E[\hat{\tau}(X_1,\ldots,X_n)|U]) \leq Var_{\theta}(\hat{\tau}(X_1,\ldots,X_n))$

Proof. (a)

$$E_{\theta}[E(\hat{\tau}(X_1,\ldots,X_n)|U)] = E_{\theta}(\hat{\tau}(X_1,\ldots,X_n)) = \tau(\theta), \forall \theta \in \Theta.$$

Then $E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$ is unbiased for $\tau(\theta)$. (b)

$$\operatorname{Var}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)) = \operatorname{E}_{\theta}[\operatorname{Var}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)] + \operatorname{Var}_{\theta}[\operatorname{E}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)]$$

$$\geq \operatorname{Var}_{\theta}[\operatorname{E}_{\theta}(\hat{\tau}(X_1,\ldots,X_n)|U)], \forall \theta \in \Theta.$$

Conclusions:

- (a) For any estimator $\hat{\tau}(X_1, \ldots, X_n)$ which is unbiased for $\tau(\theta)$, and any statistic U, $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|U]$ is unbiased for $\tau(\theta)$ and with variance smaller than or equal to $\hat{\tau}(X_1, \ldots, X_n)$.
- (b) However, $E_{\theta}[\hat{\tau}(X_1,\ldots,X_n)|U]$ may not be a statistic. If it is not, it cannot be an estimator of $\tau(\theta)$.
- (c) If U is a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is independent of θ , then $\mathrm{E}_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is independent of θ . So, $\mathrm{E}_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|U]$ is an unbiased estimator.

If U is not a sufficient statistic, $f(x_1, \ldots, x_n, \theta|u)$ is not only a function of u but also a function of θ , then $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is a function of u and θ . And $E_{\theta}[\hat{\tau}(X_1, \ldots, X_n)|u]$ is not a statistic.

Thm. Rao-Blackwell

If $\hat{\tau}(X_1, \dots, X_n)$ is unbiased for $\tau(\theta)$ and U is a sufficient statistic, then $(a)E_{\theta}[\hat{\tau}(X_1, \dots, X_n)|U]$ is a statistic. $(b)E_{\theta}[\hat{\tau}(X_1, \dots, X_n)|U]$ is unbiased for $\tau(\theta)$. $(c)Var_{\theta}(E[\hat{\tau}(X_1, \dots, X_n)|U]) \leq Var_{\theta}(\hat{\tau}(X_1, \dots, X_n)), \forall \theta \in \Theta$.

If $\hat{\tau}(\theta)$ is an unbiased estimator for $\tau(\theta)$ and U_1, U_2, \ldots are sufficient statistics, then we can improve $\hat{\tau}(\theta)$ with the following fact:

$$\operatorname{Var}_{\theta}(\operatorname{E}[\hat{\tau}(\theta)|U_{1}]) \leq \operatorname{Var}_{\theta}\hat{\tau}(\theta)$$

$$\operatorname{Var}_{\theta}\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2}) \leq \operatorname{Var}_{\theta}\operatorname{E}(\hat{\tau}(\theta)|U_{1})$$

$$\operatorname{Var}_{\theta}\operatorname{E}[\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2})|U_{3}] \leq \operatorname{Var}_{\theta}\operatorname{E}(\operatorname{E}(\hat{\tau}(\theta)|U_{1})|U_{2})$$

$$\vdots$$

Will this process ends with Cramer-Rao lower bound? This can be solved with "complete statistic".

Note: Let U be a statistic and h is a function.

(a) If
$$h(U) = 0$$
 then $E_{\theta}(h(U)) = E_{\theta}(0) = 0, \forall \theta \in \Theta$.

(b) If $P_{\theta}(h(U) = 0) = 1, \forall \theta \in \Theta.h(U)$ has a p.d.f

$$f_{h(U)}(h) = \begin{cases} 1, & \text{if } h = 0 \\ 0, & \text{otherwise.} \end{cases}$$
 Then $E_{\theta}(h(U)) = \sum_{\text{all } h} h f_{h(U)}(h) = 0$

Def. X_1, \ldots, X_n is random sample from $f(x, \theta)$. A statistic $U = u(X_1, \ldots, X_n)$ is a complete statistic if for any function h(U) such that $E_{\theta}(h(U)) = 0, \forall \theta \in \Theta$, then $P_{\theta}(h(U)) = 0 = 1$, for $\theta \in \Theta$.

Q : For any statistic U, how can we verify if it is complete or not complete ? A :

- (1) To prove completeness, you need to show that for any function h(U) with $0 = E_{\theta}(h(U)), \forall \theta \in \Theta$.the following $1 = P_{\theta}(h(U) = 0), \forall \theta \in \Theta$ hold.
- (2) To prove in-completeness, you need only to find one function h(U) that satisfies $E_{\theta}(h(U)) = 0, \forall \theta \in \Theta$ and $P_{\theta}(h(U) = 0) < 1$, for some $\theta \in \Theta$.

Examples:

(a) $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Bernoulli}(p)$ Find a complete statistic and in-complete statistic ? sol: (a.1) We show that $Y = \sum_{i=1}^n X_i$ is a complete statistic. $Y \sim b(n,p)$. Suppose that function h(Y) satisfies $0 = \mathbf{E}_p h(Y), \forall 0$ Now,

$$0 = \mathcal{E}_{p}h(Y) = \sum_{y=0}^{n} h(y) \binom{n}{y} p^{y} (1-p)^{n-y}$$

$$= (1-p)^{n} \sum_{y=0}^{n} h(y) \binom{n}{y} (\frac{p}{1-p})^{y}, \forall 0
$$\Leftrightarrow 0 = \sum_{y=0}^{n} h(y) \binom{n}{y} (\frac{p}{1-p})^{y}, \forall 0
$$(\text{Let } \theta = \frac{p}{1-p}, 0
$$\Leftrightarrow 0 = \sum_{y=0}^{n} h(y) \binom{n}{y} \theta^{y}, 0 < \theta < \infty$$$$$$$$

An order n+1 polynomial equation cannot have infinite solutions except that coefficients are zero's.

$$\Rightarrow h(y) \binom{n}{y} = 0, y = 0, \dots, n \text{ for } 0 < \theta < \infty$$

$$\Rightarrow h(y) = 0, y = 0, \dots, n \text{ for } 0
$$\Rightarrow 1 \ge P_p(h(Y) = 0) \ge P_p(Y = 0, \dots, n) = 1$$

$$\Rightarrow Y = \sum_{i=1}^n X_i \text{ is complete}$$$$

(a.2) We show that $Z = X_1 - X_2$ is not complete.

$$E_p Z = E_p (X_1 - X_2) = E_p X_1 - E_p X_2 = p - p = 0, \forall 0$$

$$P_p(Z = 0) = P_p(X_1 - X_2 = 0) = P_p(X_1 = X_2 = 0 \text{ or } X_1 = X_2 = 1)$$

= $P_p(X_1 = X_2 = 0) + P_p(X_1 = X_2 = 1)$
= $(1 - p)^2 + p^2 < 1 \text{ for } 0 < p < 1.$

 $\Rightarrow Z = X_1 - X_2$ is not complete.

(b)Let (X_1, \ldots, X_n) be a random sample from $U(0, \theta)$. We have to show that $Y_n = \max\{X_1, \ldots, X_n\}$ is a sufficient statistic. Here we use Factorization theorem to prove it again.

$$f(x_1, \dots, x_n, \theta) = \prod_{i=1}^n \frac{1}{\theta} I(0 < x_i < \theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 < x_i < \theta, i = 1, \dots, n)$$
$$= \frac{1}{\theta^n} I(0 < y_n < \theta) \cdot 1$$

 $\Rightarrow Y_n$ is sufficient for θ

Now, we prove it complete.

The p.d.f of Y_n is

$$f_{Y_n}(y) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = \frac{n}{\theta^n} y^{n-1}, 0 < y < \theta$$

Suppose that $h(Y_n)$ satisfies $0 = \mathbb{E}_{\theta} h(Y_n), \forall 0 < \theta < \infty$

$$0 = \mathcal{E}_{\theta} h(Y_n) = \int_0^{\theta} h(y) \frac{n}{\theta^n} y^{n-1} dy = \frac{n}{\theta^n} \int_0^{\theta} h(y) y^{n-1} dy$$
$$\Leftrightarrow 0 = \int_0^{\theta} h(y) y^{n-1} dy, \forall \theta > 0$$

Taking differentiation both sides with θ .

$$\Leftrightarrow 0 = h(\theta)\theta^{n-1}, \forall \theta > 0$$

$$\Leftrightarrow 0 = h(y), 0 < y < \theta, \forall \theta > 0$$

$$\Leftrightarrow P_{\theta}(h(Y_n) = 0) = P_{\theta}(0 < Y_n < \theta) = 1, \forall \theta > 0$$

$$\Rightarrow Y_n = \max\{X_1, \dots, X_n\}$$
 is complete.

Def. If the p.d.f of r.v. X can be formulated as

$$f(x,\theta) = e^{a(x)b(\theta) + c(\theta) + d(x)}, l < x < q$$

where l and q do not depend on θ , then we say that f belongs to an exponential family.

Thm. Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$ which belongs to an exponential family as

$$f(x,\theta) = e^{a(x)b(\theta) + c(\theta) + d(x)}, l < x < q$$

Then $\sum_{i=1}^{n} a(X_i)$ is a complete and sufficient statistic.

Note: We say that X = Y if P(X = Y) = 1.

Thm. Lehmann-Scheffe

Let X_1, \ldots, X_n be a random sample from $f(x, \theta)$. Suppose that $U = u(X_1, \ldots, X_n)$ is a complete and sufficient statistic. If $\hat{\tau} = t(U)$ is unbiased for $\tau(\theta)$, then $\hat{\tau}$ is the unique function of U unbiased for $\tau(\theta)$ and is a UMVUE of $\tau(\theta)$. (Unbiased function of complete and sufficient statistic is UMVUE.)

Proof. If $\hat{\tau}^* = t^*(U)$ is also unbiased for $\tau(\theta)$, then

$$E_{\theta}(\hat{\tau} - \hat{\tau}^*) = E_{\theta}(\hat{\tau}) - E_{\theta}(\hat{\tau}^*) = \tau(\theta) - \tau(\theta) = 0, \forall \theta \in \Theta.$$

$$\Rightarrow 1 = P_{\theta}(\hat{\tau} - \hat{\tau}^*) = 0 = P(\hat{\tau} = \hat{\tau}^*), \forall \theta \in \Theta.$$

 $\Rightarrow \hat{\tau}^* = \hat{\tau}$, unbiased function of *U* is unique.

If T is any unbiased estimator of $\tau(\theta)$ then Rao-Blackwell theorem gives:

(a) E(T|U) is unbiased estimator of $\tau(\theta)$.

By uniqueness, $E(T|U) = \hat{\tau}$ with probability 1.

(b) $\operatorname{Var}_{\theta}(\hat{\tau}) = \operatorname{Var}_{\theta}(E(T|U)) \leq \operatorname{Var}_{\theta}(T), \forall \theta \in \Theta.$

This holds for every unbiased estimator T.

Then $\hat{\tau}$ is UMVUE of $\tau(\theta)$

Two ways in constructing UMVUE based on a complete and sufficient statistic U:

- (a) If T is unbiased for $\tau(\theta)$, then E(T|U) is the UMVUE of $\tau(\theta)$. This is easy to define but difficult to transform it in a simple form.
- (b) If there is a constant such that $E(U) = c \cdot \theta$, then $T = \frac{1}{c}U$ is the UMVUE of θ .

Example:

(a) Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$.

Want UMVUE of θ .

sol: $Y_n = \max\{X_1, \dots, X_n\}$ is a complete and sufficient statistic.

The p.d.f of Y_n is

$$f_{Y_n}(y,\theta) = n(\frac{y}{\theta})^{n-1} \frac{1}{\theta} = n \frac{y^{n-1}}{\theta^n}, 0 < y < \theta$$

$$E(Y_n) = \int_0^\theta y n \frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+1} \theta.$$

We then have $E(\frac{n+1}{n}Y_n) = \frac{n+1}{n}E(Y_n) = \theta$. So, $\frac{n+1}{n}Y_n$ is the UMVUE of θ .

(b) Let X_1, \ldots, X_n be a random sample from Bernoulli(p).

Want UMVUE of θ .

sol: The p.d.f is

$$f(x,p) = p^x (1-p)^{1-x} = (1-p)(\frac{p}{1-p})^x = e^{x \ln(\frac{p}{1-p}) + \ln(1-p)}$$

 $\Rightarrow \sum_{i=1}^{n} X_i$ is complete and sufficient.

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = np$$

$$\Rightarrow \hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$
 is UMVUE of p .

(c)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$$
.
Want UMVUE of μ .

sol: The p.d.f of X is

$$f(x,\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x^2-2\mu x + \mu^2)}{2}} = e^{\mu x - \frac{x^2}{2} - \frac{\mu^2}{2} - \ln\sqrt{2\pi}}$$

 $\Rightarrow \sum_{i=1}^{n} X_i$ is complete and sufficient.

$$E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = n\mu$$

$$\Rightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} \text{ is UMVUE of } \mu.$$

Since X_1 is unbiased, we see that $\mathrm{E}(X_1|\sum_{i=1}^n X_i) = \overline{X}$

(d)
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Possion}(\lambda)$$
.
Want UMVUE of $e^{-\lambda}$.

sol: The p.d.f of X is

$$f(x,\lambda) = \frac{1}{x!} \lambda^x e^{-\lambda} = e^{x \ln \lambda - \lambda - \ln x!}$$

$$\Rightarrow \sum_{i=1}^{n} X_i$$
 is complete and sufficient.

$$E(I(X_1 = 0)) = P(X_1 = 0) = f(0, \lambda) = e^{-\lambda}$$
 where $I(X_1 = 0)$ is an indicator function.

$$\Rightarrow I(X_1 = 0)$$
 is unbiased for $e^{-\lambda}$

$$\Rightarrow$$
 E $(I(X_1 = 0) | \sum_{i=1}^{n} X_i)$ is UMVUE of $e^{-\lambda}$.

Chapter 5. Confidence Interval

Let Z be the r.v. with standard normal distribution N(0,1)We can find z_{α} and $z_{\frac{\alpha}{2}}$ that satisfy

$$\alpha = P(Z \le -z_{\alpha}) = P(Z \ge z_{\alpha}) \text{ and } 1 - \alpha = P(-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}).$$

A table of $z_{\frac{\alpha}{2}}$ is the following :

$1-\alpha$	$z_{rac{lpha}{2}}$
0.8	$1.28 (z_{0.1})$
0.9	$1.645 (z_{0.05})$
0.95	$1.96 (z_{0.025})$
0.99	$2.58 (z_{0.005})$
0.9973	$3(z_{0.00135})$

Def. Suppose that we have a random sample from $f(x,\theta)$. For $0 < \alpha < 1$, if there exists two statistics $T_1 = t_1(X_1, \ldots, X_n)$ and $T_2 = t_2(X_1, \ldots, X_n)$ satisfying

$$1 - \alpha = P(T_1 \le \theta \le T_2)$$

We call the random interval (T_1, T_2) a $100(1-\alpha)\%$ confidence interval of parameter θ . If $X_1 = x_1, \ldots, X_n = x_n$ is observed, we also call $(t_1(X_1, \ldots, X_n), t_2(X_1, \ldots, X_n))$ a $100(1-\alpha)\%$ confidence interval(C.I.) for θ

Constructing C.I. by pivotal quantity:

Def. A function of random sample and parameter, $Q = q(X_1, ..., X_n, \theta)$, is called a pivotal quantity if its distribution is independent of θ

With a pivotal quantity $q(X_1, \ldots, X_n, \theta)$, there exists a, b such that

$$1 - \alpha = P(a \le q(X_1, \dots, X_n, \theta) \le b), \forall \theta \in \Theta.$$

The interest of pivotal quantity is that there exists statistics $T_1 = t_1(X_1, \dots, X_n)$ and $T_2 = t_2(X_1, \dots, X_n)$ with the following 1-1 transformation

$$a \leq q(X_1, \dots, X_n, \theta) \leq b \text{ iff } T_1 \leq \theta \leq T_2$$

Then we have $1 - \alpha = P(T_1 \le \theta \le T_2)$ and (T_1, T_2) is a $100(1 - \alpha)\%$ C.I. for θ

Confidence Interval for Normal mean:

Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$. We consider the C.I. of

parameter μ .

(I) $\sigma = \sigma_0$ is known

$$\overline{X} \sim N(\mu, \frac{\sigma_0^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1)$$

$$\begin{aligned} 1 - \alpha &= P(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}), Z \sim N(0, 1) \\ &= P(-z_{\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu}{\sigma_0 / \sqrt{n}} \leq z_{\frac{\alpha}{2}}) \\ &= P(-z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \leq \overline{X} - \mu \leq z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) \\ &= P(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \leq \mu \leq \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) \end{aligned}$$

$$\Rightarrow (\overline{X} - z_{\frac{\alpha}{2}\frac{\sigma_0}{\sqrt{n}}}, \overline{X} + z_{\frac{\alpha}{2}\frac{\sigma_0}{\sqrt{n}}})$$
 is a $100(1-\alpha)\%$ C.I. for μ .

ex:
$$n = 40, \sigma_0 = \sqrt{10}, \overline{x} = 7.164 (X_1, \dots, X_{40} \stackrel{iid}{\sim} N(\mu, 10).)$$

Want a 80% C.I. for μ .

sol: A 80% C.I. for μ . is

$$(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) = (7.164 - 1.28 \frac{\sqrt{10}}{\sqrt{40}}, 7.164 + 1.28 \frac{\sqrt{10}}{\sqrt{40}})$$

$$= (6.523, 7.805)$$

$$P(\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}} \le \mu \le \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma_0}{\sqrt{n}}) = 1 - \alpha = 0.8$$

$$P(6.523 \le \mu \le 7.805) = 1 \text{ or } 0$$

(II) σ is unknown.

Def. If $Z \sim N(0,1)$ and $\chi^2(r)$ are independent, we call the distribution of the r.v.

$$T = \frac{Z}{\sqrt{\frac{\chi^2(r)}{r}}}$$

a t-distribution with r degrees of freedom.

The p.d.f of t-distribution is

$$f_T(t) = \frac{\Gamma(\frac{r+1}{2})}{\Gamma(\frac{r}{2})} \frac{1}{\sqrt{r\pi}(1 + \frac{t^2}{r})^{\frac{r+1}{2}}}, -\infty < t < \infty$$

$$f_T(-t) = f_T(t)$$

 \therefore t-distribution is symmetric at 0.

Now $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. We have

$$\left\{ \begin{array}{l} \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \end{array} \right. indep. \Rightarrow \left\{ \begin{array}{l} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \\ \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \end{array} \right. indep.$$

$$T = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)s^2}{\sigma^2(n-1)}}} = \frac{\overline{X} - \mu}{s / \sqrt{n}} \sim t(n-1)$$

Let $t_{\frac{\alpha}{2}}$ satisfies

$$\begin{aligned} 1 - \alpha &= P(-t_{\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{s/\sqrt{n}} \le t_{\frac{\alpha}{2}}) \\ &= P(-t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \overline{X} - \mu \le t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}) \\ &= P(\overline{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \overline{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}) \end{aligned}$$

$$\Rightarrow (\overline{X} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}})$$
 is a $100(1 - \alpha)\%$ C.I. for μ .

ex: Suppose that we have $n=10,\overline{x}=3.22$ and s=1.17. We also have $t_{0.025}=2.262.$ Want a 95% C.I. for $\mu.$

sol: A 95% C.I. for μ is

$$(3.22 - 2.262 \frac{1.17}{\sqrt{10}}, 3.22 + 2.262 \frac{1.17}{\sqrt{10}}) = (2.34, 4.10)$$