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Identically distributed summands 27-1

• Central limit theorem: The sum of many independent random variables

will be approximately normally distributed, if each summand has high proba-

bility of being small.

Theorem 27.1 (Lindeberg-Lévy theorem) Suppose that {Xn}∞n=1 is an

independent sequence of random variables having the same distribution with mean

c and finite positive variance σ2. Then

Sn − nc

σ
√
n

⇒ N,

where N is standard normal distributed, and Sn = X1 + · · · +Xn.



Idea behind the proof 27-2

Proof:

• Without loss of generality, we can assume that Xn has zero-mean and unit

variance.

• The characteristic function of Sn/
√
n is then given by:

E
[
eitSn/

√
n
]

= E
[
eit(X1+···+Xn)/

√
n
]

= En
[
eitX/

√
n
]

= ϕn
X

(
t√
n

)
.

• By the continuity theorem,

Theorem 26.3 (Continuity theorem)

Xn ⇒ X if, and only if ϕXn(t) → ϕX(t) for every t ∈ �.
we need to show that

lim
n→∞ϕn

X

(
t√
n

)
= e−t2/2,

or equivalently,

lim
n→∞n log

[
ϕX

(
t√
n

)]
= −t2

2
.



Idea behind the proof 27-3

Lemma If E[|Xk|] < ∞, then

ϕ(k)(0) = ikE[Xk].

• By noting that ϕX(0) = 1, ϕ′
X(0) = 0 and ϕ′′

X(0) = −1,

lim
n→∞

n logϕX(t/
√
n) = lim

s→0

logϕX(ts)

s2
(s = 1/

√
n)

= lim
s→0

t
ϕ′
X(ts)

ϕX(ts)

2s
(L’Hospital’s Rule)

= lim
s→0

t2
(
ϕ′′
X(ts)ϕX(ts)− [ϕ′(ts)]2

ϕ2
X(ts)

)
2

= −t2

2
.

�



Generalization of Theorem 27.1 27-4

• Theorem 27.1 requires the distribution of each Xn being identical.

• Can we relax this requirement for the central limit theorem to hold?

Yes, but different proof technique must be developed.



Illustration of idea behind alternative proof 27-5

Lemma If X has a moment of order n, then∣∣∣∣∣ϕ(t)−
n∑

k=0

(it)k

k!
E[Xk]

∣∣∣∣∣ ≤ E

[
min

{ |tX|n+1

(n + 1)!
,
2|tX|n
n!

}]

≤ min

{|t|n+1E[|X|n+1]

(n + 1)!
,
2|t|nE[|X|n]

n!

}
.

(Notably, this inequality is valid even if E[|X|n+1] = ∞.

Suppose that E[|X|3] < ∞. (The assumption is simply made for showing the idea

behind an alternative proof).

With E[X ] = 0 and E[X2] = 1,∣∣∣∣ϕX

(
t√
n

)
−
(
1− t2

2n

)∣∣∣∣ ≤ E

[
min

{|tX|3
6n3/2

,
t2

n
X2

}]
≤ |t|3

n3/2

E[|X|3]
6



Illustration of idea behind alternative proof 27-6

Lemma 1 Let z1, . . . , zm and w1, . . . , wm be complex numbers of modulus at

most 1; then

|z1 × z2 × · · · × zm − w1 × w2 × · · · × wm| ≤
m∑
k=1

|zk − wk|.

Proof: As

z1 × z2 × · · · × zm − w1 × w2 × · · · × wm

= z1 × z2 × · · · × zm − w1 × z2 × · · · × zm + w1 × z2 × · · · × zm − w1 × w2 × · · · × wm

= (z1 − w1)(z2 × · · · × zm) + w1(z2 × · · · × zm − w2 × · · · × wm),

we obtain:

|z1 × z2 × · · · × zm − w1 × w2 × · · · × wm|
= |(z1 − w1)(z2 × · · · × zm) + w1(z2 × · · · × zm − w2 × · · · × wm)|
≤ |(z1 − w1)(z2 × · · · × zm)| + |w1(z2 × · · · × zm − w2 × · · · × wm)|
≤ |z1 − w1| + |z2 × · · · × zm − w2 × · · · × wm| .

The lemma therefore can be proved by induction. �



Illustration of idea behind alternative proof 27-7

With the lemma and considering those n satisfying n ≥ t2/4,∣∣∣∣ϕn
X

(
t√
n

)
−
(
1− t2

2n

)n∣∣∣∣ ≤ n

∣∣∣∣ϕX

(
t√
n

)
−
(
1− t2

2n

)∣∣∣∣
≤ n× |t|3

n3/2

E[|X|3]
6

=
|t|3√
n

E[|X|3]
6

n→∞−→ 0.

The central limit statement can then be validated by:(
1 +

−t2/2

n

)n

→ e−t2/2.



Exemplified application of central limit theorem 27-8

Example 27.2 Suppose one wants to estimate the parameter α of an exponential

distribution on the basis of independent samples X1, . . . , Xn.

By law of large numbers,

X̄n =
1

n
(X1 + · · · +Xn) converges to mean

1

α
with probabiity 1.

As the variance of exponential distribution is 1/α2, Lindeberg-Lévy theorem gives

that
X1 +X2 + · · · +Xn − n/α√

n/α
= α

√
n
(
X̄n − 1/α

)⇒ N.

Equivalently,

lim
n→∞Pr

[
α
√
n

(
X̄n − 1

α

)
≤ x

]
= Φ(x),

where Φ(·) represents the standard normal cdf.

Roughly speaking, X̄n is approximately Gaussian distributed with mean 1/α and

variance 1/(α2n). Notably, this statement exactly indicates that

lim
n→∞Pr

[
X̄n − (1/α)

1/(α
√
n)

≤ x

]
= Φ(x)



Exemplified application of central limit theorem 27-9

Theorem 25.6 (Skorohod’s theorem) Suppose µn and µ are probability

measures on (�,B), and µn ⇒ µ. Then there exist random variables Yn and Y

such that:

1. they are both defined on common probability space (Ω,F , P );

2. Pr[Yn ≤ y] = µn(−∞, y] for every y;

3. Pr[Y ≤ y] = µ(−∞, y] for every y;

4. limn→∞ Yn(ω) = Y (ω) for every ω ∈ Ω.

By Skorohod’s Theorem, there exist Ȳn : Ω → � and Y : Ω → � such that

lim
n→∞

α
√
n
(
Ȳn(ω)− 1/α

)
= Y (ω) for every ω ∈ Ω,

and Ȳn and Y have the same distributions as X̄n and N , respectively.

As P
({

ω ∈ Ω : limn→∞ Ȳn(ω) = 1/α
})

= 1,

√
n

α

(
1

Ȳn(ω)
− α

)
=

−α
√
n
(
Ȳn(ω)− α−1

)
αȲn(ω)

n→∞−→ −Y (ω)

α · (1/α) = −Y (ω),

where −Y is also standard normal distributed.



Exemplified application of central limit theorem 27-10

This concludes to √
n

α

(
1

X̄n
− α

)
⇒ N.

In other words, 1/X̄n is approximately Gaussian distributed with mean α and

variance α2/n.



Lindeberg Theorem 27-11

Definition A triangular array of random variables is

X1,1 · · · X1,r1

X2,1 X2,2 · · · X2,r2−1 X2,r2

X3,1 X3,2 X3,3 · · · X3,r3−2 X3,r3−1 X3,r3
...

where the probability space, on which each sequence Xn,1, . . . , Xn,rn is commonly

defined, may change (since we do not care about the dependence across sequences.)

• A sequence of random variables is just a special case of a triangular array of

random variables with rn = n and Xn,k = Xk.

Lindeberg’s condition For an array of independent zero-mean random variables

Xn,1, . . . , Xn,rn,

lim
n→∞

rn∑
k=1

1

s2n

∫
[|x|≥εsn]

x2dFXn,k
(x) = lim

n→∞

rn∑
k=1

1

s2n
E
[
X2

n,kI[|Xn,k|≥εsn]

]
= 0,

where s2n =
∑rn

k=1E
[
X2

n,k

]
.



Lindeberg Theorem 27-12

Theorem 27.2 (Lindeberg theorem) For an array of independent zero-mean

random variables Xn,1, . . . , Xn,rn, if Lindeberg’s condition holds for all positive ε,

then
Sn

sn
⇒ N,

where Sn = Xn,1 + · · · +Xn,rn.

Discussions

• Theorem 27.1 (Lindeberg-Lévy theorem) is a special case of Theorem 27.2.

• Specifically, (i) rn = n, (ii)Xn,k = Xk, (iii) finite variance, and (iv) identically

distributed assumption give:

lim
n→∞

n∑
k=1

1

nσ2
E
[
X2

kI[|Xk|≥εσ
√
n]

]
= lim

n→∞
1

σ2
E
[
X2

1I[|X1|≥εσ
√
n]

]
= 0,

where σ2 = E
[
X2

1

]
.



Lindeberg Theorem 27-13

Proof:

• Without loss of generality, assume sn = 1 (since we can replace each Xn,k by

Xn,k/sn).

Hence, Lindeberg’s condition is reduced to:

lim
n→∞

rn∑
k=1

∫
[|x|≥ε]

x2dFXn,k
(x) = lim

n→∞

rn∑
k=1

E
[
X2

n,kI[|Xn,k|≥ε]

]
= 0.

• Since E[Xn,k] = 0,∣∣∣∣ϕXn,k
(t)−

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣ ≤ E
[
min

{|tXn,k|3, |tXn,k|2
}]

< ∞.

Lemma If X has a moment of order n, then∣∣∣∣∣ϕ(t)−
n∑

k=0

(it)k

k!
E[Xk]

∣∣∣∣∣ ≤ E

[
min

{ |tX|n+1

(n + 1)!
,
2|tX|n
n!

}]
(

≤ E
[
min

{|tX|n+1, |tX|n}] for n ≥ 2

)
.
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• Observe that:

E
[
min

{|tXn,k|3, |tXn,k|2
}]

=

∫
[|x|<ε]

min
{|tx|3, |tx|2} dFXn,k

(x)

+

∫
[|x|≥ε]

min
{|tx|3, |tx|2} dFXn,k

(x)

≤
∫
[|x|<ε]

|tx|3dFXn,k
(x) +

∫
[|x|≥ε]

|tx|2dFXn,k
(x)

≤ |tε|
∫
[|x|<ε]

|tx|2dFXn,k
(x) +

∫
[|x|≥ε]

|tx|2dFXn,k
(x)

≤ ε|t|3E[X2
n,k] + t2

∫
[|x|≥ε]

x2dFXn,k
(x),

which implies that:

rn∑
k=1

∣∣∣∣ϕXn,k
(t)−

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣ ≤ ε|t|3
rn∑
k=1

E[X2
n,k] + t2

rn∑
k=1

∫
[|x|≥ε]

x2dFXn,k
(x)

= ε|t|3 + t2
rn∑
k=1

∫
[|x|≥ε]

x2dFXn,k
(x).
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As ε can be made arbitrarily small,

lim
n→∞

rn∑
k=1

∣∣∣∣ϕXn,k
(t)−

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣ = 0.

• By∣∣∣∣∣
rn∏
k=1

ϕXn,k
(t)−

rn∏
k=1

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣∣ ≤
rn∑
k=1

∣∣∣∣ϕXn,k
(t)−

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣ ,
we get:

lim
n→∞

∣∣∣∣∣
rn∏
k=1

ϕXn,k
(t)−

rn∏
k=1

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣∣ = 0.

(Hint: Is this correct? See the end of the proof!)

It remains to show that

lim
n→∞

rn∏
k=1

(
1− 1

2
t2E[X2

n,k]

)
= e−t2/2.
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• ∣∣∣∣∣e−t2/2 −
rn∏
k=1

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣∣ =

∣∣∣∣∣
rn∏
k=1

e−t2E[X2
n,k]/2 −

rn∏
k=1

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣∣
≤

rn∑
k=1

∣∣∣∣e−t2E[X2
n,k]/2 −

(
1− 1

2
t2E[X2

n,k]

)∣∣∣∣
For each complex z,

|ez − 1− z| ≤ |z|2
∞∑
k=2

|z|k−2

k!
≤ |z|2

∞∑
k=2

|z|k−2

(k − 2)!
= |z|2e|z|.

≤
rn∑
k=1

1

4
t4E2[X2

n,k]e
t2E[X2

n,k]/2 (Take z = −1

2
t2E[X2

n,k])

≤ 1

4
t4et

2/2
rn∑
k=1

E2[X2
n,k] (by E[X2

n,k] ≤ s2n = 1)

≤ 1

4
t4et

2/2

(
max

1≤k≤rn
E[X2

n,k]

) rn∑
k=1

E[X2
n,k]

=
1

4
t4et

2/2

(
max

1≤k≤rn
E[X2

n,k]

)
.
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• Finally,

E[X2
n,k] ≤ ε2 +

∫
[|x|2≥ε2]

x2dFXn,k
(x),

which implies that

max
1≤k≤rn

E[X2
n,k] ≤ ε2 + max

1≤k≤rn

∫
[|x|≥ε]

x2dFXn,k
(x)

≤ ε2 +
∑

1≤k≤rn

∫
[|x|≥ε]

x2dFXn,k
(x).

The proof is then completed by taking arbitrarily small ε and Lindeberg’s

condition. �

(
1− 1

2
t2E[X2

n,k]
)
is a complex number of modulus at most 1 for t2 ≤ 4/E[X2

n,k] ↑ ∞.

Converse to Lindeberg theorem

• Give an array of independent zero-mean random variables Xn,1, . . . , Xn,rn.

If Sn/sn ⇒ N , then Lindeberg’s condition holds, provided that

max
1≤k≤rn

E[X2
n,k]/s

2
n → 0.
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• Without the extra condition of

max
1≤k≤rn

E[X2
n,k]/s

2
n → 0,

the converse of Lindeberg theorem may not be valid.

Counterexample Let Xn,k be Gaussian distributed with mean 0 and vari-

ance 1 for 1 ≤ k < rn = n, and Xn,n be Gaussian distributed with mean 0

and variance (n− 1).

Thus,

s2n =

n∑
k=1

E[X2
n,k] = (n− 1) + (n− 1) = 2(n− 1).



Lindeberg Theorem 27-19

Then Sn/sn = (Xn,1+Xn,2+ · · ·+Xn,n)/sn is Gaussian distributed with mean

0 and variance 1, but

n∑
k=1

1

s2n

∫
[|x|≥εsn]

x2dFXn,k
(x) ≥ 1

s2n

∫
[|x|≥εsn]

x2dFXn,n(x)

=
1

s2n

∫
[|x|≥εsn]

x2
1√

2π(n− 1)
e−x2/(2(n−1))dx

=
1

2(n− 1)

∫
[|y|≥ε

√
2(n−1)/

√
n−1]

(n− 1)y2
1√
2π

e−y2/2dy,

where x =
√
n− 1y

=
1

2

∫
[|y|≥ε

√
2]

y2
1√
2π

e−y2/2dy,

and hence Lindeberg’s condition fails.

Notably,

max
1≤k≤n

E[X2
n,k]

s2n
= max

1≤k≤n

(n− 1)

2(n− 1)
=

1

2

does not converge to zero.



Goncharov’s theorem 27-20

Observation If Xn,k is uniformly bounded for each n and k, and sn → ∞ as

n → ∞, then Lindeberg’s condition holds.

Proof: Let M be the bound for Xn,k, namely Pr[|Xn,k| ≤ M ] = 1 for each

k and n. Then for any ε > 0, εsn will ultimately exceed M , and therefore∫
[|x|≥εsn]

x2dFXn,k
(x) = 0 for every n and k, which implies

lim
n→∞

rn∑
k=1

1

s2n

∫
[|x|≥εsn]

x2dFXn,k
(x) = 0.

�



Goncharov’s theorem 27-21

Example 27.3 Let Pr[Yn,k = 1] =
1

k
and Pr[Yn,k = 0] = 1− 1

k
.

Let Xn,k = Yn,k − E[Yn,k] = Yn,k − 1

k
for 1 ≤ k ≤ n.

Then E[Xn,k] = 0, E[X2
n,k] =

k − 1

k2
, and s2n =

n∑
k=1

k − 1

k2

Since |Xn,k| is bounded by 1 with probability 1, and s2n
n→∞−→ ∞, Lindeberg’s con-

dition holds.

The Lindeberg theorem thus concludes:

Xn,1 + · · · +Xn,n

sn
=

Yn,1 + · · · + Yn,n −
∑n

k=1(1/k)√∑n
k=1(1/k)−

∑n
k=1(1/k

2)
⇒ N.
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Goncharov’s theorem:

Yn,1 + · · · + Yn,n − log(n)√
log(n)

⇒ N.

Theorem 25.4 If Xn ⇒ X and Xn − Yn ⇒ 0, then Yn ⇒ X .

Proof: Goncharov’s theorem can be easily proved by:(
Yn,1 + · · · + Yn,n −

∑n
k=1(1/k)√∑n

k=1(1/k)−
∑n

k=1(1/k
2)

)
⇒ N.

and(
Yn,1 + · · · + Yn,n −

∑n
k=1(1/k)√∑n

k=1(1/k)−
∑n

k=1(1/k
2)

)
−
(
Yn,1 + · · · + Yn,n − log(n)√

log(n)

)
⇒ 0.

�



Lyapounov’s condition 27-23

Discussions

• Lindeberg’s condition is quite satisfiable in the sense that it is the sufficient

and necessary condition for normalized row sum of independent array ran-

dom variables to converge to standard normal, provided that the variances are

uniformly and asymptotically negligible.

• It however may not be easy to examine the validity of Lindeberg’s condition.

• A useful sufficiency for Lindeberg’s condition to hold is Lyapounov’s condition,

which is often easier to verify than Lindeberg’s condition (since only moments

are involved in the computation).

Lyapounov’s condition Fix an array of independent zero-mean random vari-

ables Xn,1, . . . , Xn,rn. For some δ > 0,

lim
n→∞

rn∑
k=1

1

s2+δ
n

E
[|Xn,k|2+δ

]
= 0,

where s2n =
∑rn

k=1E
[
X2

n,k

]
.
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Observation Lyapounov’s condition implies Lindeberg’s condition.

Proof:

rn∑
k=1

1

s2n

∫
[|x|≥εsn]

x2dFXn,k
(x) ≤

rn∑
k=1

1

s2n

∫
[|x|≥εsn]

x2
( |x|δ
(εsn)δ

)
dFXn,k

(x)

=
1

εδ

rn∑
k=1

1

s2+δ
n

∫
[|x|≥εsn]

|x|2+δdFXn,k
(x)

≤ 1

εδ

rn∑
k=1

1

s2+δ
n

∫
�
|x|2+δdFXn,k

(x).

�

Theorem 27.3 For an array of independent zero-mean random variables

Xn,1, . . . , Xn,rn, if Lyapounov’s condition holds for some positive δ, then

Sn

sn
⇒ N,

where Sn = Xn,1 + · · · +Xn,rn.
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Example 27.4 The Lyapounov’s condition is always valid for i.i.d. sequence with

bounded (2 + δ)th absolute moment.

Proof:

lim
n→∞

rn∑
k=1

1

s2+δ
n

E
[|Xn,k|2+δ

]
= lim

n→∞
rnE

[|X1|2+δ
]

r
1+δ/2
n E1+δ/2[X2

1 ]

=
E
[|X1|2+δ

]
E1+δ/2[X2

1 ]
lim
n→∞ r−δ/2

n

= 0

�



Problem of coupon collector 27-26

Example 27.5 (Problem of coupon collector) A coupon collector has to

collect rn distinct coupons to exchange for some free gift.

Each purchase will give him one coupon, randomly and with replacement.

The statistical behavior of this collection can be described as follows.

• Coupons are drawn from a coupon population of size n, randomly and with

replacement, until the number of distinct coupons that have been collected is

rn, where 1 ≤ rn ≤ n.

• Let Sn be the number of purchases required for this collection.

• Assume that rn/n → ρ > 0.

What is the approximation distribution of (Sn − E[Sn])/
√

Var[Sn]?

We can also apply this problem to, for example, that rn out of n pieces need to be

collected in order to recover the original information.
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Solution:

• If (k−1) distinct coupons have thus far been collected, the number of purchases

until the next distinct one enters is distributed as Xk, where

Pr[Xk = j] = (1− pk)
j−1 pk for j = 1, 2, 3, . . . .

where pk =
n− (k − 1)

n
= 1− k − 1

n
.

(Notably, we wish to see any one of the remaining n − (k − 1) coupons to

appear.)

• Sn = X1 +X2 + · · · +Xrn

• E[Xk] =
1

pk
and Var[Xk] =

1− pk
p2k

.
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• Hence,

n

∫ rn/n−1/n

−1/n

1

1− x
dx ≤ E[Sn] =

rn∑
k=1

1

pk
=

rn∑
k=1

1

1− k−1
n

≤ n

∫ rn/n

0

1

1− x
dx,

which implies that

lim
n→∞

E[Sn]

n log[1/(1− ρ)]
= 1.

•
Var[Sn] =

rn∑
k=1

Var[Xk] =

rn∑
k=1

1− pk
p2k

=

rn∑
k=1

k−1
n(

1− k−1
n

)2 ,
which implies that

lim
n→∞

Var[Sn]

n
∫ ρ

0 x/(1− x)2dx
= lim

n→∞
Var[Sn]

n[ρ/(1− ρ) + log(1− ρ)]
= 1.
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• Therefore, since Lyapounov’s’s condition holds for δ = 2, i.e.,

lim
n→∞

rn∑
k=1

1

s4n
E
[|Xk − E[Xk]|4

] ≤ lim
n→∞

rn∑
k=1

1

s4n
E
[|Xk|4

]

= lim
n→∞

1

s4n

rn∑
k=1

(2− pk)(12− 12pk + p2k)

p4k

≤ lim
n→∞

1

s4n

rn∑
k=1

24

p4k

= lim
n→∞

1

s4n

rn∑
k=1

24

p4k

≤ lim
n→∞

24n

s4n

∫ rn/n

0

1

(1− x)4
dx = 0,

we obtain:
Sn − n log[1/(1− ρ)]√
n[ρ/(1− ρ) + log(1− ρ)]

⇒ N.

�
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Counterexample Lindeberg’s condition does not necessarily imply Lyapounov’s

condition.

Consider a sequence of random variables that are independent, and each has density

function

f(x) =
c

x3(log(x))2
for x ≥ e ≈ 2.71828 . . . ,

where c = e−2 − 2
∫∞
2 t−1e−tdt ≈ 0.0375343 . . .

It can be verified that the i.i.d. sequence has finite marginal second moment∫ ∞

e

c

x(log(x))2
dx =

∫ ∞

1

c

u2
du = c ; (u = log(x))

hence, Lindeberg’s condition holds.

However,

E[|X1|2+δ] =

∫ ∞

e

c

x1−δ(log(x))2
dx = c

∫ ∞

1

eδu

u2
du = ∞,

where u = log(x). Accordingly, Lyapounov’s condition does not hold!
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• Can we extend the central limit theorem to sequence of dependent variables?

Definition (α-mixing) A sequence of random variables is said to be α-mixing, if

there exists a non-negative sequence α1, α2, α3, . . . such that

lim
n→∞αn = 0

and

sup
k≥1

sup
H⊂Bk∧G⊂B∞

∣∣∣∣Pr [(Xk
1 ∈ H) ∧ (X∞

n+k ∈ G)]−Pr
[
Xk

1 ∈ H]Pr [X∞
n+k ∈ G]

∣∣∣∣ ≤ αn.

• Operational meaning: By α-mixing, we mean that Xk
1 = (X1, X2, · · · , Xk)

and X∞
n+k = (Xn+k,Xn+k+1, · · · ) are approximately independent, when n is

large.

• An independent sequence is α-mixing with αk = 0 for all k = 1, 2, 3, . . ..
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Definition A sequence of random variables is said to be m-dependent, if

(Xi, . . . , Xi+k) and (Xi+k+n, . . . , Xi+k+n+	)

are independent whenever n > m.

• An independent sequence is 0-dependent.

• A m-dependent sequence is α-mixing with αn = 0 for n > m.

Example 27.7 Let Y1, Y2, . . . be i.i.d. sequence.

Define Xn = f(Yn, Yn+1, . . . , Yn+m) for a real Borel-measurable function on �m+1.

Then X1, X2, . . . is stationary and m-dependent.
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Example 27.6 Let Y1, Y2, . . . be a first-order finite-state Markov chain with pos-

itive transition probabilities.

Suppose the initial probability equals the one that makes Y1, Y2, . . . stationary.

Then

Pr[Y1 = i1, . . . , Yk = ik, Yk+n = j0, . . . , Yk+n+	 = j	]

=
(
pi1pi1i2 · · · pik−1ik

)
p
(n)
ikj0

(
pj0j1 · · · pj�−1j�

)
,

where pij = PYn|Yn−1
(j|i) and p

(k)
ij = PYn|Yn−k

(j|i).
Also,

Pr[Y1 = i1, . . . , Yk = ik] Pr[Yk+n = j0, . . . , Yk+n+	 = j	]

=
(
pi1pi1i2 · · · pik−1ik

)
pj0
(
pj0j1 · · · pj�−1j�

)
.



α-mixing and m-dependent 27-34

Theorem 8.9 There exists a stationary distribution {πi} for a finite-state, ir-

reducible, aperiodic, first-order Markov chain such that∣∣∣p(n)ij − πj

∣∣∣ ≤ Aρn,

where A ≥ 0 and 0 ≤ ρ < 1.

A first-order Markov chain is aperiodic, if the greatest common divisor of the

integers in the set {n ∈ N : p
(n)
jj > 0} is 1 for every j.

A Markov chain is irreducible, if for every i and j, p
(n)
ij > 0 for some n.



α-mixing and m-dependent 27-35

∣∣∣∣Pr [(Y k
1 ∈ H) ∧ (Y n+k+	

n+k ∈ G)]− Pr
[
Y k
1 ∈ H]Pr [Y n+k+	

n+k ∈ G] ∣∣∣∣
=

∣∣∣∣∑
ik1∈H

∑
j�0∈G

(
Pr[Y1 = i1, . . . , Yk = ik, Yk+n = j0, . . . , Yk+n+	 = j	]

−Pr[Y1 = i1, . . . , Yk = ik] Pr[Yk+n = j0, . . . , Yk+n+	 = j	]

)∣∣∣∣
=

∣∣∣∣∑
ik1∈H

∑
j�0∈G

(
pi1pi1i2 · · · pik−1ik

) (
p
(n)
ikj0

− pj0

) (
pj0j1 · · · pj�−1j�

) ∣∣∣∣
≤
∑
ik1∈H

∑
j�0∈G

(
pi1pi1i2 · · · pik−1ik

) ∣∣∣∣p(n)ikj0
− pj0

∣∣∣∣ (pj0j1 · · · pj�−1j�

)

≤ Aρn
∑
ik1∈H

∑
j�0∈G

(
pi1pi1i2 · · · pik−1ik

) (
pj0j1 · · · pj�−1j�

)

≤ Aρn
∑
ik1∈Yk

∑
j�0∈Y�+1

(
pi1pi1i2 · · · pik−1ik

) (
pj0j1 · · · pj�−1j�

)

= Aρn
∑
j0∈Y

1 = A|Y|ρn,

for some A ≥ 0 and 0 ≤ ρ < 1.
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Since the upper bound is independent of k ≥ 1, 	 ≥ 0, H ∈ �k and G ∈ �	+1, we

obtain that Y1, Y2, . . . is α-mixing with αn = A|Y|ρn. �

Hence, a finite-state, irreducible, aperiodic, first-order Markov chain is α-mixing

with exponentially decaying αn.
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Theorem 27.4 Suppose that X1, X2, . . . is zero-mean, stationary and α-mixing

with αn = O(n−5) as n → ∞.

Assume that E[X12
n ] < ∞. Then

1.
1

n
Var[Sn]

n→∞−→ σ2 = E[X2
1 ] + 2

∞∑
k=1

E[X1X1+k].

2.
Sn

σ
√
n
⇒ N.

(
Sn√
Var[Sn]

⇒ N.

)

Proof: No proof is provided. �
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Example 27.8 Let Y1, Y2, . . . be a first-order finite-state Markov chain with pos-

itive transition probabilities.

Suppose the initial probability equals the one that makes Y1, Y2, . . . stationary.

Example 27.6 already proves that Y1, Y2, . . . is α-mixing with αn = A|Y|ρn.
Thus, X1 = Y1 − E[Y1], X2 = Y2 − E[Y2], . . . is also α-mixing with αn = A|Y|ρn.
Furthermore, the finite state assumption indicates that all moments of Xn are

bounded.

Accordingly, Theorem 27.4 holds, namely,

X1 + · · · +Xn√
Var[X1 + · · · +Xn]

⇒ N.
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More specifically, let

Yn ∈ {−1,+1}
and

PYn|Yn−1
(+1| − 1) = PYn|Yn−1

(−1| + 1) = ε.

Since the probability transition matrix can be expressed as:[
1− ε ε

ε 1− ε

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
1 0

0 1− 2ε

] [ 1√
2
− 1√

2
1√
2

1√
2

]T
,

we have:[
1− ε ε

ε 1− ε

]n
=

[
1√
2
− 1√

2
1√
2

1√
2

][
1 0

0 (1− 2ε)n

][ 1√
2
− 1√

2
1√
2

1√
2

]T
=

[
1
2 +

1
2(1− 2ε)n 1

2 − 1
2(1− 2ε)n

1
2 − 1

2(1− 2ε)n 1
2 +

1
2(1− 2ε)n

]
,

and Y1, Y2, . . . are α-mixing with αn = 2(1/2)|1− 2ε|n = |1− 2ε|n.
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Theorem 27.4 then gives that:

Var[Y1 + · · · + Yn]

n
n→∞−→ E[Y 2

1 ] + 2
∞∑
k=1

E[Y1Y1+k]

=
∑

y1∈{−1,1}
y21PY1(y1)

+2

∞∑
k=1

∑
y1∈{−1,1}

∑
y1+k∈{−1,1}

y1y1+kPY1+k|Y1(y1+k|y1)PY1(y1)

= 1 + 2

∞∑
k=1

∑
y1∈{−1,1}

∑
y2∈{−1,1}

1

2
y1y1+kPY1+k|Y1(y1+k|y1)

= 1 + 2
∞∑
k=1

(1− 2ε)k =
1

ε
− 1,

and
Y1 + · · · + Yn√

n
(
1
ε − 1

) ⇒ N.

�


