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Definition (characteristic function) The characteristic function of a ran-

dom variable X is defined for real t by:

ϕ(t) =

∫ ∞

−∞
eitxdFX(x) =

∫ ∞

−∞
cos(tx)dFX(x) + i

∫ ∞

−∞
sin(tx)dFX(x).

• The characteristic function ϕ(t) =M(it), whereM(t) is the moment generat-

ing function of random variable X .

• The characteristic function is the (inverse) Fourier transform of distribution

function.

• The characteristic function always exist, because distribution function is always

integrable.

• It is named the characteristic function since it completely characterizes the

distribution.
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Fundamental properties of characteristic functions

• The characteristic function of sum of two independent random variables is the

product of individual characteristic functions.

• The characteristic function uniquely determines distribution function.

• From the pointwise convergence of characteristic function follows the in-

distribution convergence of random variables.
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• ϕ(0) = 1.

• |ϕ(t)| ≤ 1 for all t ∈ �.
• ϕ(t) is uniformly continuous.

Definition (uniform continuity) A function f(t) is uniformly con-

tinuous in A, if for any δ > 0, there exists h > 0 such that

sup
{(x,y)∈A2 : |x−y|≤h}

|f(x)− f(y)| < δ.
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Proof:

|ϕ(t + h)− ϕ(t)| =

∣∣∣∣
∫ ∞

−∞
ei(t+h)xdFX(x)−

∫ ∞

−∞
eitxdFX(x)

∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
(eihx − 1)eitxdFX(x)

∣∣∣∣
≤
∫ ∞

−∞

∣∣(eihx − 1)
∣∣ · ∣∣eitx∣∣ dFX(x)

=

∫ ∞

−∞

∣∣(eihx − 1)
∣∣ dFX(x),(

=

∫ ∞

−∞

√
(cos(hx)− 1)2 + sin2(hx)dFX(x)

=

∫ ∞

−∞

√
2− 2 cos(hx)dFX(x)

=

∫ ∞

−∞
2 |sin(hx/2)| dFX(x)

= 2E [|sin(hX/2)|]
)

where the bound is independent of t. �.
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Theorem (Taylor’s formula with remainder) Assume that f(·) has a

continuous derivative of order n + 1 in some open interval containing a. Then

f(x) =

n∑
k=0

f (k)(a)

k!
(x− a)k +

1

n!

∫ x

a

(x− t)nf (n+1)(t)dt.

By the Taylor’s formula with remainder about x = 0,

eix =
n∑
k=0

(eix)(k)
∣∣
x=0

k!
xk +

1

n!

∫ x

0

(x− t)n(eit)(n+1)dt

=
n∑
k=0

ik

k!
xk +

1

n!

∫ x

0

(x− t)n
(
in+1eit

)
dt

=

n∑
k=0

(ix)k

k!
+
in+1

n!

∫ x

0

(x− t)neitdt.
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Integration by part for the below expression yields that:∫ x

0

(x− t)n−1eitdt = −(x− t)n

n
eit
∣∣∣∣
x

0

+

∫ x

0

(x− t)n

n

(
ieit
)
dt

=
xn

n
+
i

n

∫ x

0

(x− t)neitdt

=

∫ x

0

(x− t)n−1dt +
i

n

∫ x

0

(x− t)neitdt,

which implies that:∫ x

0

(x− t)n−1(eit − 1)dt =
i

n

∫ x

0

(x− t)neitdt,

This summarizes to:

eix −
n∑
k=0

(ix)k

k!
=



in+1

n!

∫ x

0

(x− t)neitdt

in

(n− 1)!

∫ x

0

(x− t)n−1(eit − 1)dt
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Therefore, for x ≥ 0,

∣∣∣∣∣eix −
n∑
k=0

(ix)k

k!

∣∣∣∣∣ =




∣∣∣∣in+1

n!

∫ x

0

(x− t)neitdt

∣∣∣∣∣∣∣∣ in

(n− 1)!

∫ x

0

(x− t)n−1(eit − 1)dt

∣∣∣∣
≤




1

n!

∫ x

0

|(x− t)n| · ∣∣eit∣∣ dt
1

(n− 1)!

∫ x

0

∣∣(x− t)n−1
∣∣ · ∣∣(eit − 1)

∣∣ dt

≤




1

n!

∫ x

0

(x− t)n dt

2

(n− 1)!

∫ x

0

(x− t)n−1 dt

, (since |eit − 1| ≤ |eit| + 1 = 2)

=




xn+1

(n + 1)!
2xn

n!
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and for x < 0,

∣∣∣∣∣eix −
n∑
k=0

(ix)k

k!

∣∣∣∣∣ =




∣∣∣∣in+1

n!

∫ x

0

(x− t)neitdt

∣∣∣∣∣∣∣∣ in

(n− 1)!

∫ x

0

(x− t)n−1(eit − 1)dt

∣∣∣∣

≤




1

n!

∫ 0

x

|(x− t)n| · ∣∣eit∣∣ dt
1

(n− 1)!

∫ 0

x

∣∣(x− t)n−1
∣∣ · ∣∣(eit − 1)

∣∣ dt

≤




1

n!

∫ 0

x

(t− x)n dt

2

(n− 1)!

∫ 0

x

(t− x)n−1 dt

, (since |eit − 1| ≤ |eit| + 1 = 2)

=




(−x)n+1

(n + 1)!

2(−x)n
n!
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So to speak, ∣∣∣∣∣eix −
n∑
k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

{ |x|n+1

(n + 1)!
,
2|x|n
n!

}
.

Lemma If X has a moment of order n, then∣∣∣∣∣ϕ(t)−
n∑
k=0

(it)k

k!
E[Xk]

∣∣∣∣∣ ≤ E

[
min

{ |tX|n+1

(n + 1)!
,
2|tX|n
n!

}]

(if the moment of order (n + 1) also exists) ≤ min

{|t|n+1E[|X|n+1]

(n + 1)!
,
2|t|nE[|X|n]

n!

}
.

Proof:∣∣∣∣∣ϕ(t)−
n∑
k=0

(it)k

k!
E[Xk]

∣∣∣∣∣ =

∣∣∣∣∣
∫
�
eitxdFX(x)−

n∑
k=0

(it)k

k!

∫
�
xkdFX(x)

∣∣∣∣∣
≤
∫
�

∣∣∣∣∣eitx −
n∑
k=0

(itx)k

k!

∣∣∣∣∣ dFX(x).
�
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• Concern: When does the characteristic function have Taylor expansion?

Corollary If for any t,

lim
n→∞

|t|nE[|X|n]
n!

= 0,

then

ϕ(t) =

∞∑
k=0

(it)k

k!
E[Xk].

Theorem If

E[e|t||X|] =
∞∑
k=0

|t|k
k!
E[|X|k] <∞,

then

ϕ(t) =
∞∑
k=0

(it)k

k!
E[Xk].
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Corollary If for some t0 �= 0,

ϕ(t0) =
∞∑
k=0

(it0)
k

k!
E[Xk],

then

1. for every −|t0| ≤ t ≤ |t0|,

ϕ(t) =
∞∑
k=0

(it)k

k!
E[Xk].

2. ϕ(k)(0) = ikE[Xk] for every k = 0, 1, 2, . . ..

• Property 2, as a direct consequence of Property 1, is an analogous property to

the moment generating function.

• However, moments can be determined by the characteristic function in a much

weaker sense! (Notably, unlike the moment generation function which may

have an unbounded jump at the origin, the characteristic function is uniformly

continuous.)
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Lemma If E[|Xk|] <∞, then

ϕ(k)(0) = ikE[Xk].

Proof:

1. k = 1:∣∣∣∣ϕ(t + h)− ϕ(t)

h
− E[iXeitX ]

∣∣∣∣ =

∣∣∣∣E
[
1

h
ei(t+h)X − 1

h
eitX − iXeitX

]∣∣∣∣
=

∣∣∣∣E
[
eitX

(eihX − 1− ihX)

h

]∣∣∣∣
≤ E

[∣∣eitX∣∣ · ∣∣∣∣eihX − 1− ihX

h

∣∣∣∣
]

≤ E

[
min{(1/2)|hX|2, 2|hX|}

h

]
= E

[
min{(1/2)h|X|2, 2|X|}] .

By bounded convergence theorem, i) min{(1/2)h|X|2, 2|X|} ≤ 2|X|, ii) |X| is
integrable, and iii) limh↓0min{(1/2)h|x|2, 2|x|} = 0 almost everywhere jointly

imply

lim
h↓0

E
[
min{(1/2)h|X|2, 2|X|}] = E

[
lim
h↓0

min{(1/2)h|X|2, 2|X|}] = 0.
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Theorem (bounded convergence theorem) If (i) |fn| ≤ g almost every-

where, (ii) g is integrable, and (iii) fn → f almost everywhere,

then f is integrable and limn→∞
∫
fndµ =

∫
fdµ.

Hence, we obtain:

ϕ′(t) = lim
h↓0

ϕ(t + h)− ϕ(t)

h
= E[(iX)eitX ],

and

ϕ′(0) = E[iX ].



Taylor expansion for characteristic functions 26-14

2. k = 2:∣∣∣∣ϕ′(t + h)− ϕ′(t)
h

− E[(iX)2eitX ]

∣∣∣∣ =

∣∣∣∣E[(iX)ei(t+h)X ]− E[(iX)eitX ]

h
− E[(iX)2eitX ]

∣∣∣∣
=

∣∣∣∣E
[
(iX)eitX

eihX − 1− ihX

h

]∣∣∣∣
≤ E

[
|X| · ∣∣eitX∣∣ · ∣∣∣∣eihX − 1− ihX

h

∣∣∣∣
]

≤ E
[
min{(1/2)h|X|3, 2|X|2}] ,

which again gives by bounded convergence theorem that

ϕ(2)(t) = E[(iX)2eitX ],

and

ϕ(2)(0) = E[(iX)2].

3. Induction: The lemma can be proved by repeating the above process by in-

duction (proving that the lemma holds for k = n + 1 under the premise that

the lemma is valid for k = n). �
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• The above lemma does not imply that the derivatives of ϕ(t) always exist. On

the contrary, ϕ(t) may be non-differentiable even if it is uniformly continuous.

• The above lemma actually tells us that the more moments X has, the more

derivatives ϕ has.

• Brainstorming: Can this property be applied to Fourier Transform pair?

Certainly, if the function is integrable.

• Brainstorming: In concept, the tail (rate-of-decaying) behavior of the dis-

tribution determines the smoothness (order of differentiability) of ϕ.
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Theorem 26.1 (Riemann-Lebesgue theorem) If X has a density, then

ϕX(t)
|t|→∞−→ 0.

Every Lebesgue integrable function can be approximated by Riemann integrable

functions of two kinds.

Theorem 17.1 Suppose that
∫
� |f(x)|dx < ∞ (which indicates its Lebesgue

integrability) and ε > 0 fixed.

1. There exists a step function g(x) =
∑k

i=1 xiI(ai,bi](x) (which indicates its

Riemann integrability), where each ai and bi are finite real numbers, such that∫
�
|f(x)− g(x)|dx < ε.

2. There exists a continuous integrable h with bounded support (namely, which

indicates its Riemann integrability) such that∫
�
|f(x)− h(x)|dx < ε.

Notably, a bounded measurable function is Riemann integrable on [a, b] if

it is continuous in [a, b].
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Proof: From Theorem 17.1, there is a step function g(x) =
∑k

j=1 xjI(aj ,bj ](x) such

that ∫
�
|f(x)− g(x)|dx < ε,

where f(x) is the density of X , and satisfies
∫
� f(x)dx = 1 <∞. Therefore,∣∣∣∣

∫
�
f(x)eitxdx−

∫
�
g(x)eitxdx

∣∣∣∣ =

∣∣∣∣
∫
�
(f(x)− g(x)) eitxdx

∣∣∣∣
≤
∫
�
|f(x)− g(x)| dx < ε.

The proof is completed by noting that ε is arbitrary and∫
�
g(x)eitxdx =

∫
�


 k∑

j=1

xjI(aj ,bj ](x)


 eitxdx

=

k∑
j=1

xj

∫ bj

aj

eitxdx

=

k∑
j=1

xj

(
eitbj − eitaj

it

)
|t|→∞−→ 0.

�
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• The characteristic function of sum of independent random variables is the prod-

uct of individual characteristic functions.

• The characteristic function of−X is the complex conjugate of the characteristic

function of X .
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• How to prove that “The characteristic function uniquely determines the pro-

bability distribution.”

• This is the task of Uniqueness Theorem.

• Please again think of the counterpart theorem for Fourier trans-

formation.

• Also, remember that the cdf of a random variable is sufficient to define its

statistic properties.
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Example 18.4 Prove S(T ) =

∫ T

0

sin(x)

x
dx

T→∞−→ π

2
.

Proof:∫ T

0

sin(x)

x
dx =

∫ T

0

sin(x)

[∫ ∞

0

e−uxdu
]
dx

=

∫ ∞

0

[∫ T

0

e−ux sin(x)dx
]
du (By Fubini’s theorem)

=

∫ ∞

0

1

1 + u2
[
1− e−uT (u sin(T ) + cos(T ))

]
du

=

∫ ∞

0

1

1 + u2
du−

∫ ∞

0

e−uT

1 + u2
(u sin(T ) + cos(T ))du

= tan−1(u)
∣∣∞
0
−
∫ ∞

0

e−uT√
1 + u2

cos(T − φu)du, where cos(φu) = 1/
√
1 + u2

=
π

2
−
∫ ∞

0

e−uT√
1 + u2

cos(T − φu)du.
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Finally,∣∣∣∣
∫ ∞

0

e−uT√
1 + u2

cos(T − φu)du

∣∣∣∣ ≤
∫ ∞

0

e−uT
1√

1 + u2
|cos(T − φu)| du

≤
∫ ∞

0

e−uTdu, because 1 ≥ 1√
1 + u2

for u ≥ 0

=
1

T
T→∞−→ 0.

�

Theorem (Fubini’s theorem) Suppose X and Y can be expressed as X =

∪∞
i=1Ui and Y = ∪∞

i=1Vi for some {Ui}∞i=1 and {Vi}∞i=1 with µ(Ui) < ∞ and

ν(Vi) <∞. Then, if either∫
X

(∫
Y
|f(x, y)|ν(dy)

)
µ(dx) <∞

or ∫
Y

(∫
X
|f(x, y)|µ(dx)

)
ν(dy) <∞,∫

X

(∫
Y
f(x, y)ν(dy)

)
µ(dx) =

∫
Y

(∫
X
f(x, y)µ(dx)

)
ν(dy).
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Checking:∫ T

0

∫ ∞

0

∣∣sin(x)e−ux∣∣ du dx =

∫ T

0

| sin(x)|
x

dx ≤ S(π) +
|T − π|
π

< ∞.
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In fact, 0 ≤ S(T ) ≤ S(π).
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Observation

∫ T

−T

eitx

it
dt = 2 sgn(x)S(T |x|), where sgn (x) =




1, if x > 0;

0, if x = 0;

−1, if x < 0.

Proof: ∫ T

−T

eitx

it
dt =

∫ 0

−T

eitx

it
dt +

∫ T

0

eitx

it
dt

=

∫ T

0

−e−itx
it

dt +

∫ T

0

eitx

it
dt

=

∫ T

0

eitx − e−itx

it
dt = 2

∫ T

0

sin(tx)

t
dt

= 2 sgn(x)

∫ T

0

sin (t|x|)
t

dt,

= 2 sgn(x)

∫ T |x|

0

sin (t′)
t′

dt′ = 2 sgn(x)S(T |x|).
�

• Actually, when x = 0, a rigorous statement should be

∫ T

−T

1

it
dt = indeterminable.
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Theorem 26.2 (uniqueness theorem) For any a and b with Pr[X = a] =

Pr[X = b] = 0 and a < b,

Pr[a < X ≤ b] = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt,

where ϕX(t) is the characteristic function of random variable X .

Proof:

• Let IT denote the quantity inside the limit, namely,

IT =
1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt

=
1

2π

∫ T

−T

e−ita − e−itb

it

(∫ ∞

−∞
eitxdFX(x)

)
dt

=
1

2π

∫ ∞

−∞

(∫ T

−T

eit(x−a) − eit(x−b)

it
dt

)
dFX(x)

=
1

π

∫ ∞

−∞

[
sgn(x− a)S(T |x− a|)− sgn(x− b)S(T |x− b|)]dFX(x).

• The absolute value of the above integrand, namely
[
sgn(x− a)S(T |x− a|)−

sgn(x− b)S(T |x− b|)], is bounded above by 2S(π), which is integrable with
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respect to measure dFX(x).

Hence, by bounded convergence theorem,

lim
T→∞

IT =
1

π

∫ ∞

−∞
lim
T→∞

[
sgn(x− a)S(T |x− a|)− sgn(x− b)S(T |x− b|)]dFX(x)

=
1

π

∫ ∞

−∞
ψa,b(x)dFX(x),
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where

ψa,b(x) = lim
T→∞

[sgn(x− a)S(T |x− a|)− sgn(x− b)S(T |x− b|)]

= lim
T→∞




S(T |x− b|)− S(T |x− a|), for x < a;

S(T |x− b|), for x = a; indeterminable!

S(T |x− a|) + S(T |x− b|), for a < x < b;

S(T |x− a|), for x = b; indeterminable!

S(T |x− a|)− S(T |x− b|), for x > b

=




0, for x < a;
π

2
, for x = a; indeterminable!

π, for a < x < b;
π

2
, for x = b; indeterminable!

0, for x > b.

Consequently,

lim
T→∞

IT =
1

π

∫ ∞

−∞
ψa,b(x)dFX(x)

=
1

2
Pr[X = a] + Pr[a < X < b] +

1

2
Pr[X = b].
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The proof is completed by noting that Pr[X = a] = Pr[X = b] = 0. �

Remarks:

• We can tell more from the proof (than from the statement of the theorem).

• For example,

Theorem If
∫∞
−∞ |ϕX(t)|dt <∞, then no point mass exists.

I.e., Pr[X = a] = 0 for every a ∈ �.
Proof:
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|eix − 1| ≤ min

{
1

1!
|x|, 1

0!
2|x|0

}

|eix − (1 + ix)| ≤ min

{
1

2!
|x|2, 1

1!
2|x|
}

∣∣∣∣eix −
(
1 + ix +

1

2
(ix)2

)∣∣∣∣ ≤ min

{
1

3!
|x|3, 1

2!
2|x|2

}
...

1

2
Pr[X = a] + Pr[a < X < b] +

1

2
Pr[X = b] = lim

T→∞
1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt

≤ lim sup
T→∞

1

2π

∫ T

−T

∣∣∣∣e−ita − e−itb

it

∣∣∣∣ |ϕX(t)| dt
≤ 1

2π

∫ ∞

−∞

∣∣∣∣eit(b−a) − 1

t(b− a)

∣∣∣∣ |b− a| |ϕX(t)| dt

≤ |b− a|
2π

∫ ∞

−∞
|ϕX(t)| dt.

Thus, when taking a = b, we immediately obtain Pr[X = a] ≤ 0. �
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• Another example of “We can tell more from the proof.” is:

Theorem If
∫∞
−∞ |ϕX(t)|dt < ∞, then the random variable X has density

f , and its density (can be made to) satisfies:

1. fX(x) =
1

2π

∫ ∞

−∞
ϕX(t)e

−itxdt;

2. fX(x) = F ′
X(x) for every x ∈ �;

3. fX(x) is uniformly continuous for x ∈ �.
Proof: First, from Slide 26-28, we know that random variable X has no point

mass. Then, by Theorem 26.2, we have that for every x (as Pr[X = x] = 0

and Pr[X = x + h] = 0)

FX(x + h)− FX(x)

h
= lim

T→∞
1

2π

∫ ∞

−∞
I[−T,T ]

e−itx − e−it(x+h)

ith
ϕX(t)dt.

As ∣∣∣∣I[−T,T ]e−itx − e−it(x+h)

ith
ϕX(t)

∣∣∣∣ ≤
∣∣∣∣eith − 1

th

∣∣∣∣ |ϕX(t)| ≤ |ϕX(t)|,
which is integrable with respect to Lebesgue measure, dominated convergence
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theorem implies that

FX(x + h)− FX(x)

h
=

1

2π

∫ ∞

−∞

e−itx − e−it(x+h)

ith
ϕX(t)dt.

Using dominated convergence theorem again with respect to h yields:

lim
h→0

FX(x + h)− FX(x)

h
=

1

2π

∫ ∞

−∞
lim
h→0

e−itx − e−it(x+h)

ith
ϕX(t)dt

=
1

2π

∫ ∞

−∞
ϕX(t)

−1

it

(
lim
h→0

e−it(x+h) − e−itx

h

)
dt

=
1

2π

∫ ∞

−∞
ϕX(t)e

−itxdt.

We can similarly show that:

lim
h→0

FX(x)− FX(x− h)

h
=

1

2π

∫ ∞

−∞
ϕX(t)e

−itxdt.

Accordingly,

F ′
X(x) =

1

2π

∫ ∞

−∞
ϕX(t)e

−itxdt.
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• Claim: F ′
X(x) is uniformly continuous in x ∈ �.

Proof:

|F ′
X(x + h)− F ′

X(x)| =
1

2π

∣∣∣∣
∫ ∞

−∞
ϕX(t)e

it(x+h)dt−
∫ ∞

−∞
ϕX(t)e

itxdt

∣∣∣∣
=

1

2π

∣∣∣∣
∫ ∞

−∞
ϕX(t)e

itx(eiht − 1)dt

∣∣∣∣
≤ 1

2π

∫ ∞

−∞
|ϕX(t)|

∣∣eitx∣∣ ∣∣eiht − 1
∣∣ dt

=

∫∞
−∞ |ϕX(t)|dt

2π

∫ ∞

−∞

∣∣eiht − 1
∣∣ fU(t)dt

where fU(t) = |ϕX(t)|
/∫ ∞

−∞
|ϕX(t)|dt

=
1

π

(∫ ∞

−∞
|ϕX(t)|dt

)
E[| sin(hU/2)|],

where the upper bound is independent of x. �
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• The proof is then completed by quoting the following theorem. In other words,

since F ′ satisfies that ∫ b

a

F ′(x)dx = F (b)− F (a)

for every a, b ∈ �, it is surely a density of X . �

Theorem (See Page 224 in Section 17) If F is a function with continuous deriva-

tive F ′, then ∫ b

a

F ′(x)dx = F (b)− F (a).

• Note that the density is not unique. Any function g satisfying∫ b

a

g(x)dx = F (b)− F (a)

for every a, b ∈ � is a density of X .
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Summary of properties of cdf F

• F is differentiable almost everywhere.

Theorem (H. L. Royden, Real Analysis, 3rd edition, pp. 100,

1988) Let g be an increasing real-valued function on the interval [a, b].

Then, g is differentiable almost everywhere. The derivative g′ is measur-

able, and ∫ b

a

g′(x)dx ≤ g(b)− g(a).

By this theorem, together with the fact that the number of intervals that

F is increasing is countable, cdf F is almost everywhere differentiable.

• F is not necessarily differentiable on every x.

• F may not have density.
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• If F has density f , then F ′ = f almost everywhere.

• If F has continuous density f , then F ′ = f everywhere.

By definition of density,

1

h

∫ x+h

x

f(x)dx =
F (x + h)− F (x)

h
.

This can be used to show the above two statements.

• If F ′ is continuous, then F ′ (can be made to) be the density of F .

Remarks

• The tail behavior of the characteristic function determines the smoothness

of fX .

• The tail behavior of the density (i.e., fX) determines the smoothness of ϕX .
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• Standard normal:



fX(x) =

1√
2π
e−x

2/2 for −∞ < x <∞.

ϕX(t) = e−t
2/2.

First, ∫ ∞

−∞
|ϕX(t)|dt =

∫ ∞

−∞
e−t

2/2dt =
√
2π <∞.

Hence, fX(x) can be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and is also uniformly

continuous.

As ϕX(t) decays exponentially fast at |t| → ∞, fX(x) has all orders of deriva-

tive and is very, very smooth in its shape.
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Furthermore,

|t|nE[|X|n]
n!

=

|t|n2
n/2Γ((n + 1)/2)√

π

n!

=




|t|2j−12j(j − 1)!

(2j − 1)!
√
2π

for n = 2j − 1 odd;

|t|2j2jΓ((2j + 1)/2)

(2j)!
√
π

for n = 2j even

≤ max

{
1

|t|, 1
}
(2|t|2)j
j!

respectively for n = 2j − 1 odd and n = 2j even

≤ max

{
1

|t|, 1
}(

2e|t|2
j

)j
since j! > (j/e)j

n→∞−→ 0

Stirling’s approximation

√
2nπ

(n
e

)n
< n! <

√
2nπ

(n
e

)n(
1 +

1

12n− 1

)
.

Gamma function Γ(x + 1) = x · Γ(x) for x > 0 and Γ(1/2) =
√
π.
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implies that

ϕX(t) =
∞∑
k=0

(it)k

k!
E[Xk]

=
∞∑
k=0

(it)k

k!

(
2(k−2)/2(1 + (−1)k)Γ((k + 1)/2)√

π

)

=
∞∑
j=0

(−1)j

(2j)!

(
2jΓ((2j + 1)/2)√

π

)
t2j (Take k = 2j)

=
∞∑
j=0

1

j!

(
−t

2

2

)j (
= e−t

2/2

)
.
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• Uniform:



fX(x) = 1 for 0 < x < 1.

ϕX(t) =
eit − 1

it
.

First, ∫ ∞

−∞
|ϕX(t)|dt =

∫ ∞

−∞

| sin(t/2)|
|t/2| dt = 4

∫ ∞

0

| sin(s)|
s

ds = ∞.

Hence, fX(x) cannot be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and is not uni-

formly continuous as it has jumps at x = 0 and x = 1.

In addition,

lim
n→∞

|t|nE[|X|n]
n!

= lim
n→∞

|t|n(1/(n + 1))

n!
= lim

n→∞
|t|n

(n + 1)!
= 0

implies that

ϕX(t) =

∞∑
k=0

(it)k

k!
E[Xk]

=
∞∑
k=0

(it)k

k!

(
1

k + 1

)

=
1

it

∞∑
k=0

(it)k+1

(k + 1)!

(
=
eit − 1

it

)
.
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• Exponential:



fX(x) = e−x for 0 < x <∞.

ϕX(t) =
1

1− it
.

First, ∫ ∞

−∞

∣∣∣∣ 1

1− it

∣∣∣∣ dt =

∫ ∞

−∞

1√
1 + t2

dt = 2

∫ ∞

0

1√
1 + t2

dt = ∞.

Hence, fX(x) cannot be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and is not uni-

formly continuous as it has a jump at x = 0.

In addition, for |t| < 1,

lim
n→∞

|t|nE[|X|n]
n!

= lim
n→∞

|t|nn!
n!

= lim
n→∞ |t|n = 0

(
E[e|tX|] =

∫ ∞

0

e|t|xe−xdx =

∫ ∞

0

e−(1−|t|)xdx =
1

1− |t| <∞
)

implies that for |t| < 1,

ϕX(t) =
∞∑
k=0

(it)k

k!
E[Xk] =

∞∑
k=0

(it)k

k!
(k!) =

∞∑
k=0

(it)k =
1

1− it
.
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• Double exponential (Bilateral exponential):



fX(x) =

1

2
e−|x| for −∞ < x <∞.

ϕX(t) =
1

1 + t2
.

First, ∫ ∞

−∞

∣∣∣∣ 1

1 + t2

∣∣∣∣ dt = π <∞.

Hence, fX(x) can be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and also is uniformly

continuous.

But it is not differentiable at x = 0. (Check “tail” of ϕ(t)!)

In addition, for |t| < 1,

lim
n→∞

|t|nE[|X|n]
n!

= lim
n→∞

|t|n(n!)
n!

= lim
n→∞ |t|n = 0

(
E[e|tX|] =

∫ ∞

−∞
e|t||x|

1

2
e−|x|dx =

∫ ∞

0

e−(1−|t|)xdx =
1

1− |t| <∞
)

implies that for |t| < 1,

ϕX(t) =
∞∑
k=0

(it)k

k!
E[Xk] =

∞∑
k=0

(it)k

k!

(
1

2
(1 + (−1)k)k!

)
=

∞∑
j=0

(it)2j =
1

1 + t2
.
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• Cauchy:


 fX(x) =

1

π(1 + x2)
for −∞ < x <∞.

ϕX(t) = e−|t|.
First, ∫ ∞

−∞

∣∣∣e−|t|
∣∣∣ dt = 2 <∞.

Hence, fX(x) can be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and is uniformly

continuous and differentiable (for ϕX(t) decays very fast at |t| → ∞ and hence

fX(x) is very smooth).

In addition,

lim
n→∞

|t|nE[|X|n]
n!

=

{∞, for |t| > 0;

indeterminate, for |t| = 0, (due to the indeterminate of 0×∞)

and ϕX(t) exhibits no Taylor-expansion expression (at the origin).
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• Triangular:



fX(x) = 1− |x| for − 1 < x < 1.

ϕX(t) = 2

(
1− cos(t)

t2

)
.

Notably, ∫ ∞

−∞
2

∣∣∣∣1− cos(t)

t2

∣∣∣∣ dt = 2π <∞.

Hence, fX(x) can be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and also is uniformly

continuous.

But it is not differentiable at x = −1, 0, 1. (Check “tail” of ϕ(t)!)

In addition,

lim
n→∞

|t|nE[|X|n]
n!

= lim
n→∞

|t|n(2/[(n + 2)(n + 1)])

n!
= lim

n→∞
2|t|n

(n + 2)!
= 0

implies that

ϕX(t) =
∞∑
k=0

(it)k

k!
E[Xk] =

∞∑
k=0

(it)k

k!

(
1 + (−1)k

(k + 1)(k + 2)

)
= 2

∞∑
j=0

(−)j(t2)j

(2j + 2)!
= 2

1− cos(t)

t2
.
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• No name:


 fX(x) =

1

π

(
1− cos(x)

x2

)
for −∞ < x <∞.

ϕX(t) = (1− |t|)I(−1,1)(t).
Notably, ∫ ∞

−∞

∣∣(1− |t|)I(−1,1)(t)
∣∣ dt = 1 <∞.

Hence, fX(x) can be recovered from 1
2π

∫∞
−∞ ϕX(t)e

−itxdt, and also is uniformly

continuous and differentiable (for ϕX(t) decays very, very fast at |t| → ∞, and

hence fX(x) has all orders of derivatives and is very, very smooth).

In addition, E[|X|n] = ∞ for n ≥ 3; hence,

lim
n→∞

|t|nE[|X|n]
n!

=

{∞, for |t| > 0;

indeterminate, for |t| = 0,

and ϕX(t) exhibits no Taylor-expansion expression.
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Theorem 26.3 (Continuity theorem)

Xn ⇒ X if, and only if, ϕXn(t) → ϕX(t) for every t ∈ �.

Proof:

1. Xn ⇒ X implies ϕXn(t)
n→∞−→ ϕX(t) .

Theorem 25.8 (A rephrased version) The following two conditions are

equivalent.

• Fn ⇒ F ;

• lim
n→∞

∫
�
f(x)dFn(x) =

∫
�
f(x)dF (x) for every bounded, continuous real

function f .

From Theorem 25.8, Xn ⇒ X implies that

lim
n→∞

∫
�
cos(tx)dFXn(x) =

∫
�
cos(tx)dFX(x)

and

lim
n→∞

∫
�
sin(tx)dFXn(x) =

∫
�
sin(tx)dFX(x).

These two jointly give that ϕXn(t)
n→∞−→ ϕX(t).
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2. ϕXn(t)
n→∞−→ ϕX(t) implies Xn ⇒ X .

We will first show that ϕXn(t)
n→∞−→ ϕX(t) implies {Xn}n≥1 (or equivalently,

{Fn}n≥1}) is tight. Then, by Helly’s Theorem, there exists a subsequence

{Xnk}k≥1 such that Xnk ⇒ Y , where Y is a random variable with legitimate

cdf FY (·).
Theorem 25.9 (Helly’s theorem) For every sequence {Fn}∞n=1 of distri-

bution functions, there exists a subsequence {Fnk}∞k=1 and a non-decreasing,

right-continuous function F (not necessarily a cdf) such that

lim
k→∞

Fnk(x) = F (x)

for every continuous points of F .

Theorem 25.10 (rephrased version) Tightness of {Fnk}∞k=1 is a nec-

essary and sufficient condition for the limit F (·) in Helly’s theorem to be a

cdf.

Definition (tightness) A sequence of cdf’s is said to be tight if for any

ε > 0, there exist x and y such that

Fn(x) < ε and Fn(y) > 1− ε for all sufficiently large n.
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By Fubini’s theorem,

1

u

∫ u

−u
(1− ϕXn(t)) dt =

1

u

∫ u

−u

(∫ ∞

−∞
(1− eitx)dFn(x)

)
dt

=
1

u

∫ ∞

−∞

(∫ u

−u
(1− eitx)dt

)
dFn(x)

= 2

∫ ∞

−∞

(
1− sin(ux)

ux

)
dFn(x)

(This shows that 1
u

∫ u
−u (1− ϕXn(t)) dt is a non-negative

real number.)

≥ 2

∫
[|x|≥2/u]

(
1− sin(ux)

ux

)
dFn(x) (since 1− sin(ux)

ux
≥ 0)

≥ 2

∫
[|x|≥2/u]

(
1− 1

|ux|
)
dFn(x)

≥
∫
[|x|≥2/u]

dFn(x)

= Pr

[
|Xn| ≥ 2

u

]
.
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Checking for Fubini’s theorem:∫ u

−u

∫ ∞

−∞
|1− eitx| dFn(x) dt ≤

∫ u

−u
2 dt = 4u <∞.

With the above inequality, we next prove that the sequence of probability

measures {FXn}∞n=1 is tight.

Fix an ε > 0. Since ϕX(t) is (uniformly) continuous and ϕX(0) = 1, there

exists u (small enough) such that

1

u

∫ u

−u
(1− ϕX(t))dt <

ε

2
.

Continuity at t = 0 means that for ε/4 > 0, there exists u > 0 such that

|1− ϕX(t)| < ε/4 for −u ≤ t ≤ u.

By bounded convergence theorem,

1

u

∫ u

−u
(1− ϕXn(t))dt

n→∞−→ 1

u

∫ u

−u
(1− ϕX(t))dt.
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Hence, there exists N0 such that for n > N0,

1

u

∫ u

−u
(1− ϕXn(t))dt < ε,

which by the previously obtained inequality confirms that

Pr

[
|Xn| > 2

u

]
< ε for all n ≥ N0,

namely, {FXn}∞n=1 is tight.

Now suppose that Xnk ⇒ Y for some Y . Then, by the first part of the proof,

we obtain that for every t,

ϕXnk
(t)

k→∞−→ ϕY (t).

However, we are given that for every t,

ϕXnk
(t)

k→∞−→ ϕX(t).

These two limits should coincide in every t, i.e., ϕX(t) = ϕY (t).

We can then infer by the Uniqueness Theorem that Xnk ⇒ X .
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Theorem 26.2 (uniqueness theorem) For any a and b with Pr[X =

a] = Pr[X = b] = 0 and a < b,

Pr[a < X ≤ b] = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt,

where ϕX(t) is the characteristic function of random variable X .

In fact, we know by ϕXn(t)
n→∞−→ ϕX(t) and the Uniqueness Theorem that for

every subsequence {nj}j≥1 satisfying that {Xnj}j≥1 converges in distribution

to some limiting random variable, this limiting random variable should be X .

Finally, we will prove Xn ⇒ X by contradiction.

Suppose Xn does not converge in distribution to X . Then, there exists x with

Pr[X = x] = 0 such that

Pr[Xn ≤ x] �→ Pr[X ≤ x],

which implies the existence of subsequence {nj}j≥1 such that

lim inf
j→∞

∣∣Pr[Xnj ≤ x]− Pr[X ≤ x]
∣∣ > 0.
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However, for this {Xnj}j≥1, we can find a further subsequence such that

Xnjk
⇒ X . This contradicts to

lim inf
j→∞

∣∣Pr[Xnj ≤ x]− Pr[X ≤ x]
∣∣ > 0.

We therefore obtain the desired contradiction. �



Continuity theorem 26-52

• The next two corollaries can be proved similarly using the above proof.

• But their statements could be more useful in applications.

Corollary 1 Suppose a sequence of characteristic functions {ϕn(t)}∞n=1 has limits

in every t, namely limn→∞ ϕn(t) exists for every t.

Define

g(t) = lim
n→∞ϕn(t).

Then if g(t) is continuous at t = 0, then there exists a probability measure µ such

that

µn ⇒ µ, and µ has characteristic function g

where µn is the probability measure corresponding to characteristic function ϕn(·).
Proof: Notably, in the second part of the proof (i.e, the proof of the tightness of

{µn}∞n=1), the only condition required is that g(t) (i.e., ϕX(t) in the previous proof)

is continuous at t = 0 and g(0) = 1. So the same proof can be used to show this

corollary. �
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• In the proof, the continuity of g was used to establish tightness. Hence,

if {FXn}∞n=1 is assumed tight in the first place, then the corollary apparently

holds.

Corollary 2 Suppose a sequence of characteristic functions {ϕn(t)}∞n=1 has limits

in every t, namely limt→∞ ϕn(t) exists for every t.

Define

g(t) = lim
t→∞ϕXn(t).

Then if {µn}∞n=1 is tight, then there exists a probability measure µ such that

µn ⇒ µ, and µ has characteristic function g

where µn is the probability measure corresponding to characteristic function ϕn(·).

Observation If {Xn}∞n=1 is uniformly bounded, then {FXn}∞n=1 is tight.
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Example 26.2 Let Xn be uniformly distributed over (−n, n).

Then ϕXn(t) =

∫ n

−n
eitx

1

2n
dx =

sin(nt)

nt
.

Hence, the limit of ϕXn(t) exists, and is equal to:

g(t) = lim
n→∞ϕXn(t) = lim

n→∞
sin(nt)

nt
=

{
0, if t �= 0;

lim
n→∞ lim

t→0
cos(nt), if t = 0 =

{
0, if t �= 0;

1, if t = 0

In this example, {FXn}∞n=1 is not tight,

and as expected, g(·) is not continuous at t = 0.

Notably, the probability measures ofXn’s converges vaguely to “all-zero measure.”

Actually, g(t) cannot be obtained by integrating eitx with respect to the true all-

zero-measure for x ∈ �, but a (bizarre) measure that is zero everywhere and

integrates to 1 over the entire range. Hence, I put double quotation mark here to

indicate it is not the usual all-zero measure.
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Theorem Suppose the support of the distribution of random variable X is con-

tained in [0, 2π].

Then

Pr[a < X ≤ b] = lim
m→∞

∫ b

a

σm(t)dt,

if Pr[X = a] = Pr[X = b] = 0 and 0 < a < b < 2π,

where

σm(t) =
1

2πm

∫ 2π

0

sin2[m(x− t)/2]

sin2[(x− t)/2]
dFX(x).

Proof: By Fubini’s theorem,∫ b

a

σm(t)dt =

∫ b

a

(
1

2πm

∫ 2π

0

sin2[m(x− t)/2]

sin2[(x− t)/2]
dFX(x)

)
dt

=

∫ 2π

0

1

2πm

(∫ b

a

sin2[m(x− t)/2]

sin2[(x− t)/2]
dt

)
dFX(x)

=

∫ 2π

0

1

2πm

(∫ b

a

sin2[m(t− x)/2]

sin2[(t− x)/2]
dt

)
dFX(x)

=

∫ 2π

0

1

2πm

(∫ b−x

a−x

sin2(ms/2)

sin2(s/2)
ds

)
dFX(x).
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By dominated convergence theorem, for any δ ∈ (0, 2π),

lim
m→∞

1

2πm

∫
δ<|s|<2π

sin2(ms/2)

sin2(s/2)
ds =

∫
δ<|s|<2π

1

2π sin2(s/2)

(
lim
m→∞

sin2(ms/2)

m

)
ds = 0.

It can be shown (cf. the next slide) that for integer m,

1

2πm

∫ π

−π

sin2(ms/2)

sin2(s/2)
ds =

1

2πm

∫ π

−π

(
m−1∑
	=0

	∑
k=−	

eisk

)
ds =

1

2πm

m−1∑
	=0

	∑
k=−	

∫ π

−π
eiskds

=
1

2πm

m−1∑
	=0

	∑
k=−	

2 sin(kπ)

k
=

1

m

m−1∑
	=0

	∑
k=−	

sin(kπ)

kπ
= 1 (because

sin(kπ)

kπ
= 0 except k = 0)

Hence,
1

2πm

∫
|s|≤δ

sin2(ms/2)

sin2(s/2)
ds

m→∞−→ 1,

which implies that (note: −2π < a− x < b− x < 2π)

lim
m→∞

1

2πm

(∫ b−x

a−x

sin2(ms/2)

sin2(s/2)
ds

)
=




0, if a− x > 0;

1, if a− x < 0 < b− x;

0, if b− x < 0

=

{
0, if x < a or x > b;

1, if a < x < b.
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m−1∑
	=0

	∑
k=−	

eisk =
m−1∑
	=0

e−is	(1− eis(2	+1))

1− eis

=
1

1− eis

(
m−1∑
	=0

e−is	 −
m−1∑
	=0

eis(	+1)

)

=
1

1− eis

(
1− e−ism

1− e−is
− eis(1− eism)

1− eis

)

=
1

1− eis

(
e−is(m−1)(1− eism)

1− eis
− eis(1− eism)

1− eis

)

=
e−ism(1− eism)2

eis(1− eis)2
=

sin2(ms/2)

sin2(s/2)
.

As Pr[X = a] = Pr[X = b] = 0, we obtain from dominated convergence theorem that

lim
m→∞

∫ b

a

σm(t)dt =

∫ 2π

0

(
lim
m→∞

1

2πm

∫ b−x

a−x

sin2(ms/2)

sin2(s/2)
ds

)
dFX(x) = Pr[a < X < b].

�
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Discussions:

• By following from the previous theorem, the Fourier coefficients are defined by:

cm =

∫ 2π

0

eimxdFX(x) for m = 0,±1,±2, · · · .

• {cm}m=0,±1,±2,... can be viewed as the values of the characteristic function

for integer arguments.

In other words,

cm = ϕX(m),

where

ϕX(t) =

∫ 2π

0

eitxdFX(x).

• Notably,

σm(t) =
1

2πm

∫ 2π

0

sin2[m(x− t)/2]

sin2[(x− t)/2]
dFX(x)

=
1

2πm

∫ 2π

0

m−1∑
	=0

	∑
k=−	

ei(x−t)kdFX(x) =
1

2πm

m−1∑
	=0

	∑
k=−	

cke
−itk.
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• Hence, the distribution of a random variable with support contained in [0, 2π]

can be uniquely determined by the samples of ϕX(t), namely {ϕX(m)}m=0,±1,±2,....

– Trivial Extension: The distribution of a random variable with bounded

support can be uniquely determined by the samples of its characteristic

function (if with a properly selected sampling period).

– A drawback of using samples to determine the distribution with bounded

support is that the probability masses at two end points are undetermined.

In other words, using the above theorem as an example, we can have two

distinct distributions with equal positive Pr[X = 0]+Pr[X = 2π] > 0, but

their “samples” are identical.

Example Pr[X = 0] = Pr[Y = 2π] = 1.

Then

ϕX(t) = E[eitX ] = 1 and ϕY (t) = E[eitY ] = ei2πt.

However, for every integer m,

1 = ϕX(m) = ϕY (m) = ei2πm = 1.

Observation Distributions with the same Pr[X = 0] + Pr[X = 2π] are

indistinguishable using the approach of Fourier series.
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Corollary Suppose the support of the distribution of random variable X is con-

tained in [0, 2π]. Then for 0 < a < b < 2π,

1

2
Pr[X = a] + Pr[a < X < b] +

1

2
Pr[X = b] = lim

m→∞

∫ b

a

σm(t)dt.

Proof: Since sin2(ms/2)/sin2(s/2) is a bounded even function,

1

2πm

∫ 0

−π

sin2(ms/2)

sin2(s/2)
ds =

1

2πm

∫ π

0

sin2(ms/2)

sin2(s/2)
ds.

Hence,
1

2πm

∫ 0

−π

sin2(ms/2)

sin2(s/2)
ds =

1

2πm

∫ π

0

sin2(ms/2)

sin2(s/2)
ds =

1

2
,
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which implies that

lim
m→∞

1

2πm

(∫ b−x

a−x

sin2(ms/2)

sin2(s/2)
ds

)
=




0, if a− x > 0;
1
2, if a− x = 0;

1, if a− x < 0 < b− x;
1
2, if b− x = 0;

0, if b− x < 0

=




0, if x < a or x > b;
1
2, if x = a or x = b;

1, if a < x < b.

Accordingly, the corollary holds. �

Theorem Suppose {Xn}∞n=1 have supports in [0, 2π], and suppose themth Fourier

coefficient cm(n) of Xn converges to cm. Then

Xn ⇒ X,

where X is the distribution determined through {cm}m integer.

The distribution of X is unique except possiblely in the way the mass on {0, 2π}
is split on the points of 0 and 2π.

Proof: Note that a sequence of random variables is tight, if their supports are

uniformly bounded. �



Uniformly distributed modulo 1 26-62

Give a sequence of real numbers x1, x2, x3, . . ..

Let the probability measure µn put masses 1/n at points 2π (xk − 
xk�).
Let the probability measure µ be uniformly distributed over (0, 2π].

Hence,

cm(n) =

∫ 2π

0

eimxµn(dx) =
1

n

n∑
k=1

ei2πm(xk−
xk�),

and

cm =

∫ 2π

0

eimxµ(dx) =
1

2π

∫ 2π

0

eimxdx =

{
1, if m = 0;

0, if m �= 0.

Therefore, µn ⇒ µ, if

for m �= 0,
1

n

n∑
k=1

ei2πm(xk−
xk�) n→∞−→ 0.

This is named Weyl’s criterion.
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Now if xk = kθ, where θ is irrational, then ei2πmθ �= 1 for m �= 0, and

1

n

n∑
k=1

ei2πm(xk−
xk�) =
1

n

n∑
k=1

ei2πm(kθ−
kθ�)

=
1

n

n∑
k=1

ei2πmkθ

=
1

n
ei2πmθ

1− ei2πmθn

1− ei2πmθ

=
1

n
ei2πmθ

eiπmθn(e−iπmθn − eiπmθn)

eiπmθ(e−iπmθ − eiπmθ)

= eiπmθ(n+1) sin(πmθn)

n sin(πmθ)
n→∞−→ 0.

�
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• Question: Is (inverse) Fourier transform always continuous, just like the

characteristic function?

Answer: No. Think of the (inverse) Fourier transform of sin(x)/x.

∫ ∞

−∞

sin(x)

x
eitxdx =




0, if |t| > 1;

π

2
, if |t| = 1;

π, if |t| < 1.

If
∫∞
−∞ |f(x)|dx < ∞, then the (inverse) Fourier transform is uniformly con-

tinuous.∣∣∣∣
∫ ∞

−∞
ei(t+h)xf(x)dx−

∫ ∞

−∞
eitxf(x)dx

∣∣∣∣ =

∣∣∣∣
∫ ∞

−∞
(eihx − 1)eitxf(x)dx

∣∣∣∣
≤
∫ ∞

−∞

∣∣(eihx − 1)
∣∣ · ∣∣eitx∣∣ · |f(x)|dx

=

∫ ∞

−∞

∣∣(eihx − 1)
∣∣ |f(x)|dx

=

(∫ ∞

−∞
|f(x)|dx

)∫ ∞

−∞

∣∣(eihx − 1)
∣∣ dF (x),

where dF (x) = |f(x)|dx/ (∫∞
−∞ |f(x)|dx).
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• Question: Does (inverse) Fourier transform has Taylor expansion?

Answer: This section learns us that if

1. lim
n→∞

|t|n ∫� |x|n|f(x)|dx
n!

= 0, or

2.

∫
�
e|t||x||f(x)|dx <∞,

then Fourier transform has Taylor expansion at t = 0.

We also learn that even if Fourier transform does not equal its infinite Taylor

sum, we can still express it in partial Taylor sum up to order n, if∫
�
|x|n|f(x)|dx <∞.
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• Question: Does (inverse) Fourier transform has derivatives?

Answer: If ∫
�
|x|n|f(x)|dx <∞,

then Fourier transform has the kth derivatives at t = 0 for all k ≤ n.

More can be established through the lessen from this section!


