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Convergence of distributions 25-1

Definition (convergence in distribution)Distribution function Fn(·) is said
to converge weakly to distribution function F , if

lim
n→∞Fn(x) = F (x),

for every continuity point x of F (·).

In notations, we write Fn ⇒ F .

Why does the definition only require convergence at continuity point?

Answer: If not, there will be quite a few distributions do not converge (in distri-

bution).
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Example 14.4 Let X1, X2, . . . be i.i.d. with

Pr[Xn = 1] = Pr[Xn = −1] =
1

2
.

Then

F(X1+···+Xn)/n(x) ⇒ ∆(x) =

{
0, if x < 0;

1, if x ≥ 0.
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Definition (vague convergence) A sequence of measures {µn}∞n=1 is said to

converge vaguely to measure µ, if

µn(a, b] → µ(a, b],

for every finite interval for which µ{a} = µ{b} = 0.

In notations, we write µn
v−→ µ.

Observation If µn and µ are both probability measure,

then µn
v−→ µ is equivalent to Fn ⇒ F ,

where Fn(x) = µn(−∞, x] and F (x) = µ(−∞, x].

Example 25.1 (converge vaguely �⇒ converge in distribution)

Fn(x) = I[n,∞).

Then Fn
v−→ F ≡ 0

but we cannot write Fn ⇒ F , since lim
x↑∞

F (x) = 0.
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The condition “for every finite interval for which µ{a} = µ{b} = 0” is essential for

vague convergence.

Example 25.3

µn places mass 1/n at each point k/n for k = 0, 1, . . . , n− 1.

Then Fn(x) = µn(−∞, x] =




0, if x < 0;

nx� + 1

n
, if 0 ≤ x < 1;

1, if x ≥ 1.
Accordingly,

Fn(x) ⇒ F (x) =




0, if x < 0;

x, if 0 ≤ x < 1;

1, if x ≥ 1.

So µn ⇒ µ, where µ is Lebesgue measure confined in [0, 1).

Let Q be the set of all rational numbers.

Then µn(Q) = 1 for every n.

But µ(Q) = 0.

However, this does not violate µn ⇒ µ.
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Theorem 23.2 Zn,1, Zn,2, . . . , Zn,rn are independent random variables.

Pr[Zn,k = 1] = pn,k and Pr[Zn,k = 0] = 1− pn,k.

Then

(i) lim
n→∞

rn∑
k=1

pn,k = λ > 0

(ii) lim
n→∞ max

1≤k≤rn
pn,k = 0


 ⇒ Pr

[
rn∑
k=1

Zn,k = i

]
→ e−λλ

i

i!
for i = 0, 1, 2, . . . .

and

(i) lim
n→∞

rn∑
k=1

pn,k = 0

(ii) lim
n→∞ max

1≤k≤rn
pn,k = 0


 ⇒ Pr

[
rn∑
k=1

Zn,k = i

]
→

{
1, if i = 0;

0, if i = 1, 2, . . .

If rn = n, then Theorem 23.2 reduces to Poisson approximation to the

binomial.
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Example 25.2 (Poisson approximation to the binomial)

Take pn,k = λ/n.

µn{k} =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

for 0 ≤ k ≤ n.

Then

µn ⇒ Poisson(λ).

Example 25.4 µn{xn} = 1 and µ{x} = 1.

Then

µn ⇒ µ if, and only if xn
n→∞−→ x.

If xn > x for every n, then (at the discontinuity point x of F (·))
Fn(x) = 0 for every n, but F (x) = 1.
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Fix a sequence of real numbers x1, x2, . . ..

Define a counting probability measure as:

µn(A) =
number of “(xn − 
xn�) ∈ A” in x1, . . . , xn

n
.

(If xi − 
xi� = xj − 
xj� ∈ A for some i �= j, then their probability masses add to µn(A).)

Definition (Uniformly distributed modulo 1 for a deterministic se-

quence) If µn, defined above, satisfies µn ⇒ µ, where µ is a Lebesgue measure

restricted to the unit interval, then x1, x2, . . . is said to uniformly distributed

modulo 1.

Theorem 25.1 For any irrational number θ,

θ, 2θ, 3θ, 4θ, . . . ,

is uniformly distributed modulo 1.

Proof: Will be given in Section 26. �

• It forms the basis for numerically generating a Lebesgue measure restricted to

the unit interval.
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Definition Let random variables Xn and X have distributions Fn(·) and F (·),
respectively. Then Xn is said to converge in distribution or converge in law to

X , if

Fn ⇒ F,

or equivalently,

lim
n→∞Pr[Xn ≤ x] = Pr[X ≤ x]

for every x such that Pr[X = x] = 0.
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Example 25.5 (also, Example 14.1) Let X1, X2, . . . be i.i.d. with

Pr[Xn ≥ x] =

{
e−αx, if x ≥ 0;

1, for x < 0.

Then

Pr

[
max{X1, X2, . . . , Xn} − 1

α
log(n) ≤ x

]
= Pr

[(
X1 ≤ x +

1

α
log(n)

)
∧ · · · ∧

(
Xn ≤ x +

1

α
log(n)

)]

=

{ (
1− e−(αx+log(n))

)n
, if αx ≥ − log(n);

0, if αx < − log(n)

=




(
1− e−αx

n

)n

, if αx ≥ − log(n);

0, if αx < − log(n)
n→∞−→ e−e−αx

= Pr[X ≤ x] for all x ∈ �.

max{X1, X2, . . . , Xn} − 1

α
log(n) ⇒ X.
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Theorem Xn
p−→ X implies Xn ⇒ X .

Proof: Xn
p−→ X means that

lim
n→∞Pr[|Xn −X| > ε] = 0 for any positive ε.

Observe that

Pr[A ≤ a]− Pr[|A− B| > b] ≤ Pr [(A ≤ a) ∧ (|A− B| > b)c ]

= Pr [(A ≤ a) ∧ (|A− B| ≤ b)]

= Pr [(A + b ≤ a + b) ∧ (A− b ≤ B ≤ A + b)]

≤ Pr [B ≤ a + b].

Pr[X ≤ x− ε]− Pr[|Xn −X| > ε] ≤ Pr [Xn ≤ (x− ε) + ε] = Pr[Xn ≤ x],

and

Pr[Xn ≤ x]− Pr[|Xn −X| > ε] ≤ Pr[X ≤ x + ε].

Hence,

Pr[X ≤ x− ε]− Pr[|Xn −X| > ε] ≤ Pr [Xn ≤ x] ≤ Pr[X ≤ x + ε] + Pr[|Xn −X| > ε],
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which implies that

Pr[X ≤ x− ε] ≤ lim inf
n→∞ Pr[Xn ≤ x] ≤ lim sup

n→∞
Pr[Xn ≤ x] ≤ Pr[X ≤ x + ε].

Consequently, for every continuous point of Pr[X ≤ x] (i.e., limε↓0 Pr[X ≤ x+ε] =

limε↓0 Pr[X ≤ x− ε]),

lim
n→∞

Pr[Xn ≤ x] = Pr[X ≤ x].

�

• Xn ⇒ X does not necessarily imply Xn
p−→ X .
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Counterexample X ⊥⊥ Y and

Pr[X = 0] = Pr[X = 1] = Pr[Y = 0] = Pr[Y = 1] =
1

2
.

Let Xn = Y for each n.

Then apparently, Xn ⇒ X .

However, for 0 < ε < 1,

Pr[|Xn −X| > ε] = Pr[|Y −X| > ε]

= Pr[X = 0 ∧ Y = 1] + Pr[X = 1 ∧ Y = 0]

= Pr[X = 0] Pr[Y = 1] + Pr[X = 1] Pr[Y = 0]

=
1

2
× 1

2
+

1

2
× 1

2
=

1

2
.

From the above, you may already get that it is really easy to construct a coun-

terexample for Xn ⇒ X implying Xn
p−→ X . So a general condition under which

Xn ⇒ X implies Xn
p−→ X may be hard to create!
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Another note for counterexample construction for Xn ⇒ X implying Xn
p−→ X is

that:

• Xn
p−→ X requires that X1, X2, X3, . . . must be random variables defined on

the same probability space. (We need to know the joint distribution of Xn

and X in order to examine Pr[|Xn −X| > ε]; so Xn and X must be defined

over the same probability space.)

• But Xn ⇒ X allows X1, X2, X3, . . . to be defined over distinct probability

space. (We only examine whether FXn converges to FX for every continuous

points of FX . No joint distribution of Xn and X is required!)

There is however an exception:

Theorem Suppose Pr[X = a] = 1 and X1, X2, . . . are random variables defined

over the same probability space. Then

Xn
p−→ X if, and only if, Xn ⇒ X.

• Notably, since X is a degenerated random variable, Xn
p−→ X means that for

some a,

lim
n→∞

Pr[|Xn − a| ≥ ε] = 0 for any ε > 0.
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The validity of above inequality does not require X1, X2, . . . to be defined over

the same probability space.

So we can rewrite the above theorem as:

Theorem Suppose Pr[X = a] = 1. Then

lim
n→∞Pr[|Xn − a| ≥ ε] = 0 for any ε > 0 if, and only if, Xn ⇒ X.
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Theorem Xn ⇒ X and δn
n→∞−→ 0 jointly imply that δnXn ⇒ 0.

Proof:

• For any η > 0 given, choose x > 0 such that

Pr[|X| ≥ x] < η and Pr[X = ±x] = 0.

Imagine that “η small” implies “x large” for general X .

In case X is a degenerated random variable with Pr[X = x0] = 1, any x > x0
will give Pr[|X| ≥ x] = 0 < η.

• For any ε > 0 given, choose N0 such that

δn <
ε

x
for n ≥ N0.

• Since Pr[X = ±x] = 0 and Xn ⇒ X ,

|Pr[|Xn| ≥ x]− Pr[|X| ≥ x]| n→∞−→ 0.

Therefore, there exists N1 such that for n > N1,

|Pr[|Xn| ≥ x]− Pr[|X| ≥ x]| < η.
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• Then for n > max{N0, N1},
Pr [|δnXn| ≥ ε] = Pr [|δn| · |Xn| ≥ ε] ≤ Pr

[ε
x
|Xn| ≥ ε

]
= Pr [|Xn| ≥ x]

≤ Pr[|X| ≥ x] + η < 2η.

Hence,

lim sup
n→∞

Pr [|δnXn| ≥ ε] < 2η.

• As η can be chosen arbitrarily small, independent of ε,

lim sup
n→∞

Pr [|δnXn| ≥ ε] = 0.

�
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Theorem 25.4 If Xn ⇒ X and Xn − Yn ⇒ 0, then Yn ⇒ X .

Proof: For any x and arbitrarily small (but carefully chosen) ε > 0 (such that

Pr[X = y′] = Pr[X = y′′] = 0), let y′ = x− ε and y′′ = x + ε. Observe that

Pr[Xn ≤ y′]− Pr[|Xn − Yn| > ε] ≤
(
Pr [Yn ≤ y′ + ε] =

)
Pr[Yn ≤ x],

and

Pr[Yn ≤ x]− Pr[|Xn − Yn| > ε] ≤
(
Pr[Xn ≤ x + ε] =

)
Pr[Xn ≤ y′′].

Hence,

Pr[Xn ≤ y′]−Pr[|Xn−Yn| > ε] ≤ Pr[Yn ≤ x] ≤ Pr[Xn ≤ y′′]+Pr[|Xn−Yn| > ε],

which implies that

Pr[X ≤ x− ε] ≤ lim inf
n→∞ Pr[Yn ≤ x] ≤ lim sup

n→∞
Pr[Yn ≤ x] ≤ Pr[X ≤ x + ε].

Hence, the desired Yn ⇒ X is obtained. �
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Theorem 25.5 If

1. Xn,m
n→∞
=⇒ Xm,

2. Xm
m→∞
=⇒ X , and

3. limm→∞ lim supn→∞ Pr[|Xn,m − Yn| > ε] = 0 for any positive ε,

then Yn ⇒ X .

Proof:

• For any x, we can choose ε arbitrarily small such that

Pr[X = y′] = Pr[X1 = y′] = Pr[X2 = y′] = · · · = 0

and

Pr[X = y′′] = Pr[X1 = y′′] = Pr[X2 = y′′] = · · · = 0,

where y′ = x− ε and y′′ = x + ε.

• We can then derive

Pr[Xn,m ≤ y′]−Pr[|Xn,m−Yn| > ε] ≤ Pr[Yn ≤ x] ≤ Pr[Xn,m ≤ y′′]+Pr[|Xn,m−Yn| > ε].
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Hence,

lim inf
n→∞ (Pr[Xn,m ≤ y′]− Pr[|Xn,m − Yn| > ε])

≤ lim inf
n→∞ Pr[Yn ≤ x]

≤ lim sup
n→∞

Pr[Yn ≤ x]

≤ lim sup
n→∞

(Pr[Xn,m ≤ y′′] + Pr[|Xn,m − Yn| > ε]) ,

which gives:

Pr[Xm ≤ y′]− lim sup
n→∞

Pr[|Xn,m − Yn| > ε]

≤ lim inf
n→∞ Pr[Yn ≤ x]

≤ lim sup
n→∞

Pr[Yn ≤ x]

≤ Pr[Xm ≤ y′′] + lim sup
n→∞

Pr[|Xn,m − Yn| > ε].

• Taking m to infinity in the above inequality, we obtain:

Pr[X ≤ y′] ≤ lim inf
n→∞ Pr[Yn ≤ x] ≤ lim sup

n→∞
Pr[Yn ≤ x] ≤ Pr[X ≤ y′′].

�
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• A random sequence cannot have two distinct weak limits.

Theorem Let Fn, F and G be cdfs of some random variables.

If Fn ⇒ F and Fn ⇒ G,

then F (x) = G(x) for every x ∈ �.
Proof: By definition of convergence in distribution, F (x) and G(x) must coincide

at every continuous points of F (x) and G(x). By definitions, cdfs must be right-

continuous. So F (x) and G(x) coincide also at discontinuous points. �



Fundamental theorems (without proofs) 25-21

Theorem 25.6 (Skorohod’s theorem) Suppose µn and µ are probability

measures on (�,B), and µn ⇒ µ. Then there exist random variables Yn and Y

such that:

1. they are both defined on common probability space (Ω,F , P );

2. Pr[Yn ≤ y] = µn(−∞, y] for every y;

3. Pr[Y ≤ y] = µ(−∞, y] for every y;

4. limn→∞ Yn(ω) = Y (ω) for every ω.

• Implication: Again, cdfs are sufficient; we do not need to rely on the inherited

probability space.
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Theorem (a simplified version of mapping theorem) Suppose that a

real-valued function h is B/B-measurable, and the set Dh of its discontinuities is

B-measurable. Then

Xn ⇒ X and Pr[X ∈ Dh] = 0 imply h(Xn) ⇒ h(X).

Theorem If Xn ⇒ a and function h is continuous at a, then h(Xn) ⇒ h(a).

Example Xn ⇒ X and h(x) = ax + b imply aXn + b ⇒ aX + b.

Example Suppose Xn ⇒ X and h(x) = ax + b and an
n→∞−→ a and bn

n→∞−→ b.

Then (by Theorem 25.4)

(aXn + b)− (anXn + bn) = (a− an)Xn + (b− bn) ⇒ 0

(aXn + b) ⇒ aX + b

}
imply anXn+bn ⇒ aX+b.
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Theorem 25.8 (a rephrased version)The following two conditions are equiv-

alent.

• Fn ⇒ F ;

• lim
n→∞

∫
�
f(x)dFn(x) =

∫
�
f(x)dF (x) for every bounded, continuous real func-

tion f .

Counterexample

• Xn is uniformly distributed over {0, 1/n, 2/n, . . . , (n − 1)/n}, and X is uni-

formly distributed over [0, 1).

• Fn(x) = Pr[Xn ≤ x] and F (x) = Pr[X ≤ x].

• A = set of all rational numbers in [0, 1).

• f(x) = 1 if x ∈ A, and f(x) = 0, otherwise.

• Since f(·) is not continuous (though bounded),

1 =

∫
�
f(x)dFn(x) �→

∫
�
f(x)dF (x) = 0.
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Theorem 25.9 (Helly’s theorem) For every sequence {Fn}∞n=1 of distribu-

tion functions, there exists a subsequence {Fnk}∞k=1 and a non-decreasing, right-

continuous function F (not necessarily a cdf) such that

lim
k→∞

Fnk(x) = F (x)

for every continuous points of F .



Helly’s theorem 25-25

Theorem (The diagonal method) Give a bounded sequence of real numbers:

x1,1 x1,2 x1,3 · · ·
x2,1 x2,2 x2,3 · · ·
... ... ... ...

There exists an increasing sequence n1, n2, . . . such that the limit limk→∞ xm,nk exists

for each m = 1, 2, 3, . . ..

Proof:

• For x1,1, x1,2, x1,3, . . ., there exists n1,1, n1,2, n1,3, . . . such that limk→∞ x1,n1,k exists.

• For x2,n1,1, x2,n1,2, x3,n1,3, . . ., there exists n2,1, n2,2, n2,3, . . . such that limk→∞ x2,n2,k
exists (and still, limk→∞ x1,n2,k exists).

• Repeat the process to obtain:

n1,1 n1,2 n1,3 · · ·
n2,1 n2,2 n2,3 · · ·
... ... ... ...

Since each row is a subsequence of the previous row in the above n-list, nk,k is in-

creasing in k. Finally, nk,k, nk+1,k+1, nk+2,k+2, . . . satisfies that limk→∞ xm,nk,k exists.

�.



Helly’s theorem 25-26

Proof of Helly’s theorem:

• List the two dimensional array of Fn(r) for r rational. Then by the diagonal

method, there exists n1, n2, . . . such that limk→∞ Fnk(r) exists for every rational

r.

• Let G(r) = limk→∞ Fnk(r) for every rational r (So for two rationals s < r,

G(s) ≤ G(r)) and define

F (x) = inf{G(r) : r > x and r rational}.
Thus, F (x) is clearly non-decreasing, since taking infimum over a smaller set

yields a larger value. (So for any r > x, G(r) ≥ F (x).)

• By definition of infimum, for a given ε > 0, there exists a rational r > x such

that

G(r) < F (x) + ε.

• (Base on the above r, x and ε.) For any µ satisfying x < x + µ < r, F (x) ≤
F (x + µ) ≤ G(r) (< F (x) + ε).

So

F (x) ≤ lim
µ↓0

F (x + µ) < F (x) + ε.
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(The limit of limµ↓0 F (x+ µ) must exist. Why? Monotone convergence theorem)

Since the above inequality is valid for any ε > 0,

lim
µ↓0

F (x + µ) = F (x),

which means that F (·) is right-continuous.
• Finally, suppose that F (·) is continuous at x.
Then again, by definition of infimum, for a given ε > 0, there exists a rational

r > x such that

G(r) < F (x) + ε.

Also, by continuity, for this ε, there exists y < x such that

F (x)− ε < F (y).

Choose another rational s satisfying y < s < x (< r). Apparently, F (y) ≤
G(s) and G(s) ≤ G(r).

Therefore, we have:

F (x)− ε < G(s) ≤ G(r) < F (x) + ε.
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On the other hand,

Fn(s) ≤ Fn(x) ≤ Fn(r)

implies that

G(s) = lim
k→∞

Fnk(s) ≤ lim inf
k→∞

Fnk(x) ≤ lim sup
k→∞

Fnk(x) ≤ lim
k→∞

Fnk(r) = G(r).

The above concludes to:

F (x)− ε ≤ lim inf
k→∞

Fnk(x) ≤ lim sup
k→∞

Fnk(x) ≤ F (x) + ε.

The proof is completed by noting that ε can be made arbitrarily small. �.

• In the above theorem, the limit F (·) is not necessarily a cdf!

Example Fn(x) = 0 for x < n and Fn(x) = 1 for x ≥ n. Then

lim
n→∞

Fn(x) = 0

for every x ∈ �.
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Definition (tightness) A sequence of cdf’s is said to be tight if for any ε > 0,

there exist x and y such that

Fn(x) < ε and Fn(y) > 1− ε for all sufficiently large n.

• It can be shown that the limit F (·) in Helly’s theorem satisfies 0 ≤ F (x) ≤ 1.

• Also, F (·) is right-continuous and non-decreasing.

• So if limx↓−∞ F (x) = 0 and limx↑∞ F (x) = 1. Then F (·) becomes a cdf.

• Tightness is a condition to prevent the probability mass from escaping to

infinity.
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Theorem 25.10 (rephrased version) Tightness of {Fnk}∞k=1 is a necessary

and sufficient condition for the limit F (·) in Helly’s theorem to be a cdf.

Proof:

1. Sufficiency: Suppose {Fnk(·)}∞k=1 is tight. Then for any ε > 0, we can find x

and y such that

Fnk(x) < ε and Fnk(y) > 1− ε for all sufficiently large k.

Hence,

F (x) = lim
k→∞

Fnk(x) ≤ ε and F (y) = lim
k→∞

Fnk(y) ≥ 1− ε,

which implies

lim
x↓−∞

F (x) ≤ ε and lim
y↑∞

F (y) ≥ 1− ε.

The proof is completed by noting that ε can be made arbitrarily small.
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2. Necessity: Suppose that F (·) is a cdf. Then for any ε > 0, there exist x and

y such that

F (x) < ε and F (y) > 1− ε.

In other words,

lim
k→∞

Fnk(x) < ε and lim
k→∞

Fnk(y) > 1− ε.

Therefore, for all sufficiently large k,

Fnk(x) < ε and Fnk(y) > 1− ε.

�

To let you have some feeling on tightness, we provide the next observation.

Observation Suppose Fn(·) is a degenerated cdf at xn. Then {Fn}∞n=1 is tight if,

and only if, {xn}∞n=1 is bounded.

• Final remark on tightness: Tightness on sequences of probability mea-

sures is similar to boundedness on sequences of real numbers.
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Example 25.10 Let {Xn}∞n=1 be a sequence of normal distribution with mean

mn and variance σ2
n.

• If {mn}∞n=1 and {σn}∞n=1 are bounded, then {Xn}∞n=1 is tight.

Proof: By Markov’s inequality,

Pr[|Xn| > a] ≤ E[X2
n]

a2
=

σ2
n +m2

n

a2
≤ σ2

max +m2
max

a2
.

So for any ε > 0,

x = −
√

σ2
max +m2

max

ε
and

y =

√
σ2
max +m2

max

ε
satisfy the tightness condition. �.
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Example 25.10 (cont.)

• If {mn}∞n=1 is unbounded, then {Xn}∞n=1 is not tight!

Proof: This can be easily seen from Pr[Xn ≥ mn] = Pr[Xn ≤ mn] = 1/2. �
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• Convergence in mean implies convergence in distribution.

But the reverse is not necessarily true.

• However, we can still say “something” in the reverse direction.

Theorem 25.11 If Xn ⇒ X , then

E[|X|] ≤ lim inf
n→∞ E[|Xn|].

Lemma (Fatou’s lemma) If {fn(·)}∞n=1 is a sequence of non-negative mea-

surable functions, and limn→∞ fn(x) = f(x) for every x ∈ E except on a set of

Lebesgue measure zero, then∫
E
f(x)dx ≤ lim inf

n→∞

∫
E
fn(x)dx.

Proof: By Fatou’s lemma,∫
�
|x|dF (x) ≤ lim inf

n→∞

∫
�
|x|dFn(x).

�
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Definition (Integrability) A random variable X is integrable, if

lim
α→∞

∫
[|x|≥α]

|x|dFX(x) = 0.

Lemma A random variable X is integrable if, and only if, E[|X|] < ∞.

Proof:
lim
α→∞

∫
[|x|≥α]

|x|dFX(x) = 0

⇒ (∀ ε > 0)(∃ α′)
∫
[|x|≥α′]

|x|dFX(x) < ε

⇒ E[|X|] =
∫
[|x|<α′]

|x|dFX(x) +

∫
[|x|≥α′]

|x|dFX(x) ≤ α′ + ε < ∞.

and

lim
α→∞

∫
[|x|<α]

|x|dFX(x) =

∫
�
|x|dFX(x) < ∞

⇒ lim
α→∞

∫
[|x|≥α]

|x|dFX(x) = lim
α→∞

(
E[|X|]−

∫
[|x|<α]

|x|dFX(x)

)
= 0. �

• Hence, integrability can also be defined directly through E[|X|] < ∞.

• The reason why we adopt the above definition because it makes easy the ex-

tension definition of uniform integrability.
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Definition (Uniform integrability)A sequence of random variables {Xn}∞n=1

(defined over the same probability space) is uniformly integrable if

lim
α→∞ sup

n≥1

∫
[|x|≥α]

|x|dFXn(x) = 0.

• The necessity of the condition of defining over the same probability space

(Ω,F , P ) is more obvious, if we write the above equation as:

lim
α→∞ sup

n≥1

∫
{ω∈Ω : |xn(ω)|≥α}

|xn(ω)|dP (ω) = 0.

• However, I personally think that the condition of defining over the same pro-

bability space can be relaxed since in-distribution convergence does not require

this condition.
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Lemma Uniform integrability implies that

sup
n≥1

E[|Xn|] < ∞.

Proof:

lim
α→∞

sup
n≥1

∫
[|x|≥α]

|x|dFXn(x) = 0

⇒ (∀ ε > 0)(∃ α′) sup
n≥1

∫
[|x|≥α′]

|x|dFXn(x) < ε

⇒ sup
n≥1

E[|Xn|] = sup
n≥1

(∫
[|x|<α′]

|x|dFXn(x) +

∫
[|x|≥α′]

|x|dFXn(x)

)
≤ α′ + ε < ∞.

�

• Although the converse statement for integrability holds, the converse state-

ment for the uniform integrability is not necessarily valid.
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Lemma

sup
n≥1

E[|Xn|] < ∞
does not necessarily imply uniform integrability.

Proof: Let Pr[Xn = 0] = 1− (1/n) and Pr[Xn = n] = 1/n.

Then, E[|Xn|] = 1 for every n, but∫
[|x|>α]

|x|dFn(x) =

{
0, n < α;

1, n > α.

We therefore have

sup
n≥1

E[|Xn|] = 1 < ∞ but lim
α→∞ sup

n≥1

∫
[|x|>α]

|x|dFn(x) = 1 �→ 0.

�
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Remark:

• In the above example, we actually have

E[|Xn|] =
∫
[|x|>α]

|x|dFn(x) for n > α.

Hence, the uniform “boundedness” ofE[|Xn|] for n > α (i.e., supn≥α E[|Xn|] <
∞) does not imply the uniform “close-to-zero” of E[|Xn|] (i.e.,

sup
n≥α

E[|Xn|] → 0 as α → ∞).

•
sup
n≥1

E[|Xn|] < ∞
does not necessarily imply uniform integrability.

But

sup
n≥1

E[|Xn|1+ε] < ∞

does. (This can be proved by the generalized Markov’s inequality introduced

in the next slide with b = 1 and k = ε.)
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Markov’s inequality ∫
[|x|≥α]

dFX(x) ≤ 1

αk
E[|X|k].

Generalized Markov’s inequality∫
[|x|≥α]

|x|bdFX(x) ≤ 1

αk
E[|X|b+k].

Proof:

E[|X|b+k] =

∫
�
|x|b+kdFX(x)

≥
∫
[|x|≥α]

|x|b+kdFX(x)

≥ αk

∫
[|x|≥α]

|x|bdFX(x).

�
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Lemma If there exists an integrable random variable Z with

Pr[|Xn| ≥ t] ≤ Pr[|Z| ≥ t] for all t and n,

then {Xn}∞n=1 is uniformly integrable.

Proof: ∫
[x≥α]

xdFX(x) = αPr[X ≥ α] +

∫ ∞

α

Pr[X ≥ t]dt.

∫
[|x|≥α]

|x|dFXn(x) = αPr[|Xn| ≥ α] +

∫ ∞

α

Pr[|Xn| ≥ t]dt

≤ αPr[|Z| ≥ α] +

∫ ∞

α

Pr[|Z| ≥ t]dt

=

∫
[|z|≥α]

|z|dFZ(z).

�
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Theorem 25.12 If Xn ⇒ X and {Xn}∞n=1 uniformly integrable, then

X is integrable, and E[Xn]
n→∞−→ E[X ].

Proof:

• By uniform integrability,

E[|X|] ≤ lim inf
n→∞ E[|Xn|] ≤ sup

n≥1
E[|Xn|] < ∞.

Hence, X is integrable.

• Define Yn = XnI[|Xn|<α] and Y = XI[|X|<α].

Observe that

Y +
n ⇒ Y +

α− Y +
n ⇒ α− Y +

}
imply




E[Y +] ≤ lim inf
n→∞ E[Y +

n ]

α − E[Y +] ≤ lim inf
n→∞ (α− E[Y +

n ]) = α− lim sup
n→∞

E[Y +
n ].

Hence, limn→∞E[Y +
n ] = E[Y +].

Similarly, we have limn→∞E[Y −
n ] = E[Y −].

Accordingly, limn→∞E[Yn] = E[Y ].
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• ∣∣∣∣
∫
�
xdFXn(x)−

∫
�
xdFX(x)

∣∣∣∣
=

∣∣∣∣
∫
[|x|<α]

xdFXn(x)−
∫
[|x|<α]

xdFX(x) +

∫
[|x|≥α]

xdFXn(x)−
∫
[|x|≥α]

xdFX(x)

∣∣∣∣
=

∣∣∣∣
∫
�
ydFYn(y)−

∫
�
ydFY (y) +

∫
[|x|≥α]

xdFXn(x)−
∫
[|x|≥α]

xdFX(x)

∣∣∣∣
≤

∣∣∣∣
∫
�
ydFYn(y)−

∫
�
ydFY (y)

∣∣∣∣ + sup
n≥1

∫
[|x|≥α]

|x|dFXn(x) +

∫
[|x|≥α]

|x|dFX(x)

Therefore,

lim sup
n→∞

∣∣∣∣
∫
�
xdFXn(x)−

∫
�
xdFX(x)

∣∣∣∣ ≤ sup
n≥1

∫
[|x|≥α]

|x|dFXn(x) +

∫
[|x|≥α]

|x|dFX(x).

The proof is completed by taking α to the infinity. �
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Corollary Let r be a positive integer. If Xn ⇒ X and supn≥1E[|Xn|r+ε] < ∞,

where ε > 0, then

|X|r integrable, and E[|Xn|r] n→∞−→ E[|X|r].

Proof: This is a direct consequence of Theorem 25.12 by noting that:

1. Xn ⇒ X implies |Xn|r ⇒ |X|r, and
2. supn≥1E[|Xn|r+ε] < ∞ implies {|Xn|r}∞n=1 is uniformly integrable.

�


