Section 25

Convergence of Distributions

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

Convergence of distributions

Definition (convergence in distribution) Distribution function $F_n(\cdot)$ is said to converge weakly to distribution function F, if

$$\lim_{n \to \infty} F_n(x) = F(x),$$

for every continuity point x of $F(\cdot)$.

In notations, we write $F_n \Rightarrow F$.

Why does the definition only require convergence at continuity point? Answer: If not, there will be quite a few distributions do not converge (in distribution).

Convergence of distributions

Example 14.4 Let X_1, X_2, \ldots be i.i.d. with

$$\Pr[X_n = 1] = \Pr[X_n = -1] = \frac{1}{2}.$$

Then

$$F_{(X_1+\dots+X_n)/n}(x) \Rightarrow \Delta(x) = \begin{cases} 0, & \text{if } x < 0; \\ 1, & \text{if } x \ge 0. \end{cases}$$

By symmetry,

$$\Pr\left[\frac{X_1 + \dots + X_n}{n} > 0\right] = \Pr\left[\frac{X_1 + \dots + X_n}{n} < 0\right] = \frac{1 - \Pr\left[\frac{X_1 + \dots + X_n}{n} = 0\right]}{2}.$$

Accordingly,

$$F_{(X_1 + \dots + X_n)/n}(0) = \Pr\left[\frac{X_1 + \dots + X_n}{n} \le 0\right]$$

$$= \underbrace{\frac{1}{2}}_{n=1}, \underbrace{\frac{1 + 2^{-2}\binom{2}{1}}{2}}_{n=2}, \underbrace{\frac{1}{2}}_{n=3}, \underbrace{\frac{1 + 2^{-4}\binom{4}{2}}{2}}_{n=3}, \underbrace{\frac{1 + 2^{-4}\binom{4}{2}}{2}}_{n=4}, \underbrace{\frac{1}{2}}_{n=5}, \underbrace{\frac{1 + 2^{-6}\binom{6}{3}}{2}}_{n=6}, \dots \to \frac{1}{2} \ne \Delta(0) = 1.$$

Vague convergence

Definition (vague convergence) A sequence of measures $\{\mu_n\}_{n=1}^{\infty}$ is said to *converge vaguely* to measure μ , if

$$\mu_n(a,b] \to \mu(a,b],$$

for every finite interval for which $\mu\{a\} = \mu\{b\} = 0$.

In notations, we write $\mu_n \xrightarrow{v} \mu$.

Observation If μ_n and μ are both probability measure, then $\mu_n \xrightarrow{v} \mu$ is equivalent to $F_n \Rightarrow F$, where $F_n(x) = \mu_n(-\infty, x]$ and $F(x) = \mu(-\infty, x]$.

Example 25.1 (converge vaguely $\not\Rightarrow$ converge in distribution) $F_n(x) = I_{[n,\infty)}.$ Then $F_n \xrightarrow{v} F \equiv 0$ but we cannot write $F_n \Rightarrow F$, since $\lim_{x\uparrow\infty} F(x) = 0.$

Vague convergence

The condition "for every finite interval for which $\mu\{a\} = \mu\{b\} = 0$ " is essential for vague convergence.

Example 25.3

 $\mu_n \text{ places mass } 1/n \text{ at each point } k/n \text{ for } k = 0, 1, \dots, n-1.$ Then $F_n(x) = \mu_n(-\infty, x] = \begin{cases} 0, & \text{if } x < 0; \\ \frac{\lfloor nx \rfloor + 1}{n}, & \text{if } 0 \le x < 1; \\ 1, & \text{if } x \ge 1. \end{cases}$

Accordingly,

$$F_n(x) \Rightarrow F(x) = \begin{cases} 0, & \text{if } x < 0; \\ x, & \text{if } 0 \le x < 1; \\ 1, & \text{if } x \ge 1. \end{cases}$$

So $\mu_n \Rightarrow \mu$, where μ is Lebesgue measure confined in [0, 1).

Let \mathbb{Q} be the set of all rational numbers. Then $\mu_n(\mathbb{Q}) = 1$ for every n. But $\mu(\mathbb{Q}) = 0$. However, this does not violate $\mu_n \Rightarrow \mu$.

Poisson approximation to the binomial

Theorem 23.2 $Z_{n,1}, Z_{n,2}, \ldots, Z_{n,r_n}$ are independent random variables. $\Pr[Z_{n,k} = 1] = p_{n,k}$ and $\Pr[Z_{n,k} = 0] = 1 - p_{n,k}$. Then (i) $\lim_{n \to \infty} \sum_{k=1}^{r_n} p_{n,k} = \lambda > 0$ (ii) $\lim_{n \to \infty} \max_{1 \le k \le r_n} p_{n,k} = 0$ and (i) $\lim_{n \to \infty} \sum_{k=1}^{r_n} p_{n,k} = 0$ (ii) $\lim_{n \to \infty} \max_{1 \le k \le r_n} p_{n,k} = 0$ (ii) $\lim_{n \to \infty} \max_{1 \le k \le r_n} p_{n,k} = 0$ (ii) $\lim_{n \to \infty} \max_{1 \le k \le r_n} p_{n,k} = 0$ $\Rightarrow \Pr\left[\sum_{k=1}^{r_n} Z_{n,k} = i\right] \rightarrow \begin{cases} 1, \text{ if } i = 0; \\ 0, \text{ if } i = 1, 2, \dots \end{cases}$

If $r_n = n$, then Theorem 23.2 reduces to Poisson approximation to the binomial.

Poisson approximation to the binomial

Example 25.2 (Poisson approximation to the binomial) Take $p_{n,k} = \lambda/n$.

$$\mu_n\{k\} = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} \text{ for } 0 \le k \le n.$$

Then

$$\mu_n \Rightarrow \text{Poisson}(\lambda).$$

Example 25.4 $\mu_n\{x_n\} = 1$ and $\mu\{x\} = 1$. Then

$$\mu_n \Rightarrow \mu$$
 if, and only if $x_n \stackrel{n \to \infty}{\longrightarrow} x$.

If $x_n > x$ for every n, then (at the discontinuity point x of $F(\cdot)$)

 $F_n(x) = 0$ for every n, but F(x) = 1.

Uniform distribution modulo 1

Fix a sequence of real numbers x_1, x_2, \ldots

Define a counting probability measure as:

$$\mu_n(A) = \frac{\text{number of } "(x_n - \lfloor x_n \rfloor) \in A" \text{ in } x_1, \dots, x_n}{n}.$$

(If $x_i - \lfloor x_i \rfloor = x_j - \lfloor x_j \rfloor \in A$ for some $i \neq j$, then their probability masses add to $\mu_n(A)$.)

Definition (Uniformly distributed modulo 1 for a deterministic sequence) If μ_n , defined above, satisfies $\mu_n \Rightarrow \mu$, where μ is a Lebesgue measure restricted to the unit interval, then x_1, x_2, \ldots is said to *uniformly distributed modulo 1*.

Theorem 25.1 For any *irrational* number θ ,

$$\theta, 2\theta, 3\theta, 4\theta, \ldots,$$

is uniformly distributed modulo 1.

Proof: Will be given in Section 26.

• It forms the basis for numerically generating a Lebesgue measure restricted to the unit interval.

 \square

Convergence in distribution

Definition Let random variables X_n and X have distributions $F_n(\cdot)$ and $F(\cdot)$, respectively. Then X_n is said to *converge in distribution* or *converge in law* to X, if

$$F_n \Rightarrow F$$
,

or equivalently,

$$\lim_{n \to \infty} \Pr[X_n \le x] = \Pr[X \le x]$$

for every x such that $\Pr[X = x] = 0$.

Example 25.5 (also, Example 14.1) Let X_1, X_2, \ldots be i.i.d. with

$$\Pr[X_n \ge x] = \begin{cases} e^{-\alpha x}, & \text{if } x \ge 0; \\ 1, & \text{for } x < 0. \end{cases}$$

Then

$$\Pr\left[\max\{X_1, X_2, \dots, X_n\} - \frac{1}{\alpha}\log(n) \le x\right]$$

$$= \Pr\left[\left(X_1 \le x + \frac{1}{\alpha}\log(n)\right) \land \dots \land \left(X_n \le x + \frac{1}{\alpha}\log(n)\right)\right)$$

$$= \begin{cases} \left(1 - e^{-(\alpha x + \log(n))}\right)^n, & \text{if } \alpha x \ge -\log(n); \\ 0, & \text{if } \alpha x < -\log(n) \end{cases}$$

$$= \begin{cases} \left(1 - \frac{e^{-\alpha x}}{n}\right)^n, & \text{if } \alpha x \ge -\log(n); \\ 0, & \text{if } \alpha x < -\log(n); \\ 0, & \text{if } \alpha x < -\log(n) \end{cases}$$

$$\xrightarrow{n \to \infty} e^{-e^{-\alpha x}} = \Pr[X \le x] \text{ for all } x \in \Re.$$

$$\max\{X_1, X_2, \dots, X_n\} - \frac{1}{\alpha}\log(n) \Rightarrow X.$$

$$X_n \xrightarrow{p} X$$
 implies $X_n \Rightarrow X$

Theorem $X_n \xrightarrow{p} X$ implies $X_n \Rightarrow X$. **Proof:** $X_n \xrightarrow{p} X$ means that

$$\lim_{n \to \infty} \Pr[|X_n - X| > \varepsilon] = 0 \text{ for any positive } \varepsilon.$$

Observe that

$$\frac{\Pr[A \le a] - \Pr[|A - B| > b]}{=} \le \Pr[(A \le a) \land (|A - B| > b)^c]$$
$$= \Pr[(A \le a) \land (|A - B| \le b)]$$
$$= \Pr[(A + b \le a + b) \land (A - b \le B \le A + b)]$$
$$\le \frac{\Pr[B \le a + b]}{=}.$$

$$\Pr[X \le x - \varepsilon] - \Pr[|X_n - X| > \varepsilon] \le \Pr[X_n \le (x - \varepsilon) + \varepsilon] = \underline{\Pr[X_n \le x]},$$

and

$$\underline{\Pr[X_n \le x]} - \Pr[|X_n - X| > \varepsilon] \le \Pr[X \le x + \varepsilon].$$

Hence,

$$\underline{\Pr[X \le x - \varepsilon] - \Pr[|X_n - X| > \varepsilon]} \le \underline{\Pr[X_n \le x]} \le \underline{\Pr[X \le x + \varepsilon] + \Pr[|X_n - X| > \varepsilon]},$$

25-10

$$\underline{X_n \xrightarrow{p} X \text{ implies } X_n \Rightarrow X}$$
²⁵⁻¹¹

which implies that

$$\Pr[X \le x - \varepsilon] \le \liminf_{n \to \infty} \Pr[X_n \le x] \le \limsup_{n \to \infty} \Pr[X_n \le x] \le \Pr[X \le x + \varepsilon].$$

Consequently, for every continuous point of $\Pr[X \leq x]$ (i.e., $\lim_{\epsilon \downarrow 0} \Pr[X \leq x + \epsilon] = \lim_{\epsilon \downarrow 0} \Pr[X \leq x - \epsilon]$),

$$\lim_{n \to \infty} \Pr[X_n \le x] = \Pr[X \le x].$$

-	-	-	-	

• $X_n \Rightarrow X$ does not necessarily imply $X_n \xrightarrow{p} X$.

Counterexample for
$$X_n \Rightarrow X$$
 implying $X_n \xrightarrow{p} X$ 25-12

Counterexample $X \perp \!\!\!\perp Y$ and

$$\Pr[X=0] = \Pr[X=1] = \Pr[Y=0] = \Pr[Y=1] = \frac{1}{2}.$$

Let $X_n = Y$ for each n.

Then apparently, $X_n \Rightarrow X$.

However, for $0 < \varepsilon < 1$,

$$\Pr[|X_n - X| > \varepsilon] = \Pr[|Y - X| > \varepsilon]$$

= $\Pr[X = 0 \land Y = 1] + \Pr[X = 1 \land Y = 0]$
= $\Pr[X = 0] \Pr[Y = 1] + \Pr[X = 1] \Pr[Y = 0]$
= $\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}.$

From the above, you may already get that it is really easy to construct a counterexample for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$. So a general condition under which $X_n \Rightarrow X$ implies $X_n \xrightarrow{p} X$ may be hard to create!

Counterexample for
$$X_n \Rightarrow X$$
 implying $X_n \xrightarrow{p} X$ 25-13

Another note for counterexample construction for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$ is that:

- $X_n \xrightarrow{p} X$ requires that X_1, X_2, X_3, \ldots must be random variables defined on the same probability space. (We need to know the joint distribution of X_n and X in order to examine $\Pr[|X_n - X| > \epsilon]$; so X_n and X must be defined over the same probability space.)
- But $X_n \Rightarrow X$ allows X_1, X_2, X_3, \ldots to be defined over **distinct** probability space. (We only examine whether F_{X_n} converges to F_X for every continuous points of F_X . No joint distribution of X_n and X is required!)

There is however an exception:

Theorem Suppose Pr[X = a] = 1 and X_1, X_2, \ldots are random variables defined over the same probability space. Then

$$X_n \xrightarrow{p} X$$
 if, and only if, $X_n \Rightarrow X$.

• Notably, since X is a degenerated random variable, $X_n \xrightarrow{p} X$ means that for some a,

$$\lim_{n \to \infty} \Pr[|X_n - a| \ge \varepsilon] = 0 \text{ for any } \varepsilon > 0.$$

Counterexample for $X_n \Rightarrow X$ implying $X_n \xrightarrow{p} X$ 25-14

The validity of above inequality does not require X_1, X_2, \ldots to be defined over **the same** probability space.

So we can rewrite the above theorem as:

Theorem Suppose $\Pr[X = a] = 1$. Then

 $\lim_{n \to \infty} \Pr[|X_n - a| \ge \varepsilon] = 0 \text{ for any } \varepsilon > 0 \text{ if, and only if, } X_n \Rightarrow X.$

Properties regarding convergence in distribution

25 - 15

Theorem $X_n \Rightarrow X$ and $\delta_n \xrightarrow{n \to \infty} 0$ jointly imply that $\delta_n X_n \Rightarrow 0$.

Proof:

• For any $\eta > 0$ given, choose x > 0 such that

$$\Pr[|X| \ge x] < \eta$$
 and $\Pr[X = \pm x] = 0.$

Imagine that " η small" implies "x large" for general X. In case X is a degenerated random variable with $\Pr[X = x_0] = 1$, any $x > x_0$ will give $\Pr[|X| \ge x] = 0 < \eta$.

• For any $\varepsilon > 0$ given, choose N_0 such that

$$\delta_n < \frac{\varepsilon}{x} \text{ for } n \ge N_0$$

• Since $\Pr[X = \pm x] = 0$ and $X_n \Rightarrow X$,

$$|\Pr[|X_n| \ge x] - \Pr[|X| \ge x]| \xrightarrow{n \to \infty} 0.$$

Therefore, there exists N_1 such that for $n > N_1$,

$$\left|\Pr[|X_n| \ge x] - \Pr[|X| \ge x]\right| < \eta.$$

Properties regarding convergence in distribution

• Then for $n > \max\{N_0, N_1\},\$

$$\Pr\left[\left|\delta_{n}X_{n}\right| \geq \varepsilon\right] = \Pr\left[\left|\delta_{n}\right| \cdot \left|X_{n}\right| \geq \varepsilon\right] \leq \Pr\left[\frac{\varepsilon}{x} \left|X_{n}\right| \geq \varepsilon\right] = \Pr\left[\left|X_{n}\right| \geq x\right] \\ \leq \Pr\left[\left|X\right| \geq x\right] + \eta < 2\eta.$$

Hence,

$$\limsup_{n \to \infty} \Pr\left[\left| \delta_n X_n \right| \ge \varepsilon \right] < 2\eta.$$

• As η can be chosen arbitrarily small, independent of ε ,

$$\limsup_{n \to \infty} \Pr\left[\left| \delta_n X_n \right| \ge \varepsilon \right] = 0.$$

 _	_	_	
_		_	

25-16

Properties regarding convergence in distribution 25-17

Theorem 25.4 If $X_n \Rightarrow X$ and $X_n - Y_n \Rightarrow 0$, then $Y_n \Rightarrow X$.

Proof: For any x and arbitrarily small (but carefully chosen) $\varepsilon > 0$ (such that $\Pr[X = y'] = \Pr[X = y''] = 0$), let $y' = x - \varepsilon$ and $y'' = x + \varepsilon$. Observe that

$$\Pr[X_n \le y'] - \Pr[|X_n - Y_n| > \varepsilon] \le \left(\Pr[Y_n \le y' + \varepsilon] = \right) \quad \Pr[Y_n \le x],$$

and

$$\Pr[Y_n \le x] - \Pr[|X_n - Y_n| > \varepsilon] \le \left(\Pr[X_n \le x + \varepsilon] = \right) \quad \Pr[X_n \le y''].$$

Hence,

$$\Pr[X_n \le y'] - \Pr[|X_n - Y_n| > \varepsilon] \le \Pr[Y_n \le x] \le \Pr[X_n \le y''] + \Pr[|X_n - Y_n| > \varepsilon],$$

which implies that

$$\Pr[X \le x - \varepsilon] \le \liminf_{n \to \infty} \Pr[Y_n \le x] \le \limsup_{n \to \infty} \Pr[Y_n \le x] \le \Pr[X \le x + \varepsilon].$$

Hence, the desired $Y_n \Rightarrow X$ is obtained.

Properties regarding convergence in distribution

25-18

Theorem 25.5 If

1.
$$X_{n,m} \stackrel{n \to \infty}{\Longrightarrow} X_m$$
,
2. $X_m \stackrel{m \to \infty}{\Longrightarrow} X$, and
3. $\lim_{m \to \infty} \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon] = 0$ for any positive ε ,
then $Y_n \Rightarrow X$.

Proof:

• For any x, we can choose ε arbitrarily small such that

$$\Pr[X = y'] = \Pr[X_1 = y'] = \Pr[X_2 = y'] = \dots = 0$$

and

$$\Pr[X = y''] = \Pr[X_1 = y''] = \Pr[X_2 = y''] = \dots = 0,$$

where $y' = x - \varepsilon$ and $y'' = x + \varepsilon$.

 \bullet We can then derive

 $\Pr[X_{n,m} \le y'] - \Pr[|X_{n,m} - Y_n| > \varepsilon] \le \Pr[Y_n \le x] \le \Pr[X_{n,m} \le y''] + \Pr[|X_{n,m} - Y_n| > \varepsilon].$

Properties regarding convergence in distribution

Hence,

$$\liminf_{n \to \infty} \left(\Pr[X_{n,m} \le y'] - \Pr[|X_{n,m} - Y_n| > \varepsilon] \right) \\
\leq \liminf_{n \to \infty} \Pr[Y_n \le x] \\
\leq \limsup_{n \to \infty} \Pr[Y_n \le x] \\
\leq \limsup_{n \to \infty} \left(\Pr[X_{n,m} \le y''] + \Pr[|X_{n,m} - Y_n| > \varepsilon] \right),$$

which gives:

$$\Pr[X_m \le y'] - \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon]$$

$$\le \liminf_{n \to \infty} \Pr[Y_n \le x]$$

$$\le \limsup_{n \to \infty} \Pr[Y_n \le x]$$

$$\le \Pr[X_m \le y''] + \limsup_{n \to \infty} \Pr[|X_{n,m} - Y_n| > \varepsilon].$$

• Taking m to infinity in the above inequality, we obtain:

$$\Pr[X \le y'] \le \liminf_{n \to \infty} \Pr[Y_n \le x] \le \limsup_{n \to \infty} \Pr[Y_n \le x] \le \Pr[X \le y''].$$

25-19

Properties regarding convergence in distribution 25-20

• A random sequence cannot have two distinct weak limits.

Theorem Let F_n , F and G be cdfs of some random variables. If $F_n \Rightarrow F$ and $F_n \Rightarrow G$, then F(x) = G(x) for every $x \in \Re$.

Proof: By definition of convergence in distribution, F(x) and G(x) must coincide at every continuous points of F(x) and G(x). By definitions, cdfs must be right-continuous. So F(x) and G(x) coincide also at discontinuous points.

Fundamental theorems (without proofs)

Theorem 25.6 (Skorohod's theorem) Suppose μ_n and μ are probability measures on (\Re, \mathcal{B}) , and $\mu_n \Rightarrow \mu$. Then there exist random variables Y_n and Y such that:

1. they are both defined on common probability space (Ω, \mathcal{F}, P) ;

2.
$$\Pr[Y_n \leq y] = \mu_n(-\infty, y]$$
 for every y ;

3.
$$\Pr[Y \le y] = \mu(-\infty, y]$$
 for every y ;

4.
$$\lim_{n\to\infty} Y_n(\omega) = Y(\omega)$$
 for every ω .

• **Implication:** Again, cdfs are sufficient; we do not need to rely on the inherited probability space.

Fundamental theorems (without proofs)

Theorem (a simplified version of mapping theorem) Suppose that a real-valued function h is \mathcal{B}/\mathcal{B} -measurable, and the set \mathcal{D}_h of its discontinuities is \mathcal{B} -measurable. Then

$$X_n \Rightarrow X \text{ and } \Pr[X \in \mathcal{D}_h] = 0 \text{ imply } h(X_n) \Rightarrow h(X).$$

Theorem If $X_n \Rightarrow a$ and function h is continuous at a, then $h(X_n) \Rightarrow h(a)$.

Example $X_n \Rightarrow X$ and h(x) = ax + b imply $aX_n + b \Rightarrow aX + b$.

Example Suppose $X_n \Rightarrow X$ and h(x) = ax + b and $a_n \xrightarrow{n \to \infty} a$ and $b_n \xrightarrow{n \to \infty} b$. Then (by Theorem 25.4)

$$(aX_n + b) - (a_nX_n + b_n) = (a - a_n)X_n + (b - b_n) \Rightarrow 0 (aX_n + b) \Rightarrow aX + b$$
 imply $a_nX_n + b_n \Rightarrow aX + b.$

Fundamental theorems (without proofs)

Theorem 25.8 (a rephrased version) The following two conditions are equivalent.

•
$$F_n \Rightarrow F$$
;
• $\lim_{n \to \infty} \int_{\Re} f(x) dF_n(x) = \int_{\Re} f(x) dF(x)$ for every bounded, continuous real function f .

Counterexample

- X_n is uniformly distributed over $\{0, 1/n, 2/n, \ldots, (n-1)/n\}$, and X is uniformly distributed over [0, 1).
- $F_n(x) = \Pr[X_n \le x]$ and $F(x) = \Pr[X \le x]$.
- $\mathcal{A} = \text{set of all rational numbers in } [0, 1).$
- f(x) = 1 if $x \in \mathcal{A}$, and f(x) = 0, otherwise.
- Since $f(\cdot)$ is not continuous (though bounded),

$$1 = \int_{\Re} f(x) dF_n(x) \not\to \int_{\Re} f(x) dF(x) = 0.$$

Theorem 25.9 (Helly's theorem) For every sequence $\{F_n\}_{n=1}^{\infty}$ of distribution functions, there exists a subsequence $\{F_{n_k}\}_{k=1}^{\infty}$ and a non-decreasing, right-continuous function F (not necessarily a cdf) such that

$$\lim_{k \to \infty} F_{n_k}(x) = F(x)$$

for every continuous points of F.

25 - 25

Theorem (The diagonal method) Give a bounded sequence of real numbers:

There exists an increasing sequence n_1, n_2, \ldots such that the limit $\lim_{k\to\infty} x_{m,n_k}$ exists for each $m = 1, 2, 3, \ldots$

Proof:

- For $x_{1,1}, x_{1,2}, x_{1,3}, \ldots$, there exists $n_{1,1}, n_{1,2}, n_{1,3}, \ldots$ such that $\lim_{k\to\infty} x_{1,n_{1,k}}$ exists.
- For $x_{2,n_{1,1}}, x_{2,n_{1,2}}, x_{3,n_{1,3}}, \ldots$, there exists $n_{2,1}, n_{2,2}, n_{2,3}, \ldots$ such that $\lim_{k\to\infty} x_{2,n_{2,k}}$ exists (and still, $\lim_{k\to\infty} x_{1,n_{2,k}}$ exists).
- Repeat the process to obtain:

Since each row is a subsequence of the previous row in the above *n*-list, $n_{k,k}$ is increasing in *k*. Finally, $n_{k,k}$, $n_{k+1,k+1}$, $n_{k+2,k+2}$, ... satisfies that $\lim_{k\to\infty} x_{m,n_{k,k}}$ exists. \Box .

Proof of Helly's theorem:

- List the two dimensional array of $F_n(r)$ for r rational. Then by the *diagonal* method, there exists n_1, n_2, \ldots such that $\lim_{k\to\infty} F_{n_k}(r)$ exists for every rational r.
- Let $G(r) = \lim_{k \to \infty} F_{n_k}(r)$ for every rational r (So for two rationals s < r, $G(s) \le G(r)$) and define

$$F(x) = \inf\{G(r) : r > x \text{ and } r \text{ rational}\}.$$

Thus, F(x) is clearly non-decreasing, since taking infimum over a smaller set yields a larger value. (So for any r > x, $G(r) \ge F(x)$.)

• By definition of infimum, for a given $\varepsilon > 0$, there exists a rational r > x such that

$$G(r) < F(x) + \varepsilon.$$

• (Base on the above r, x and ε .) For any μ satisfying $x < x + \mu < r, F(x) \le F(x + \mu) \le G(r)$ (< $F(x) + \varepsilon$). So

$$F(x) \le \lim_{\mu \downarrow 0} F(x+\mu) < F(x) + \varepsilon.$$

(The limit of $\lim_{\mu \downarrow 0} F(x + \mu)$ must exist. Why? Monotone convergence theorem) Since the above inequality is valid for any $\varepsilon > 0$,

$$\lim_{\mu \downarrow 0} F(x+\mu) = F(x),$$

which means that $F(\cdot)$ is right-continuous.

 Finally, suppose that F(·) is continuous at x. Then again, by definition of infimum, for a given ε > 0, there exists a rational r > x such that

$$G(r) < F(x) + \varepsilon.$$

Also, by continuity, for this ε , there exists y < x such that

$$F(x) - \varepsilon < F(y).$$

Choose another rational s satisfying $y < s < x \ (< r).$ Apparently, $F(y) \leq G(s)$ and $G(s) \leq G(r).$ Therefore, we have:

$$F(x) - \varepsilon < G(s) \le G(r) < F(x) + \varepsilon.$$

On the other hand,

$$F_n(s) \le F_n(x) \le F_n(r)$$

implies that

$$G(s) = \lim_{k \to \infty} F_{n_k}(s) \le \liminf_{k \to \infty} F_{n_k}(x) \le \limsup_{k \to \infty} F_{n_k}(x) \le \lim_{k \to \infty} F_{n_k}(r) = G(r).$$

The above concludes to:

$$F(x) - \varepsilon \leq \liminf_{k \to \infty} F_{n_k}(x) \leq \limsup_{k \to \infty} F_{n_k}(x) \leq F(x) + \varepsilon.$$

The proof is completed by noting that ε can be made arbitrarily small. \Box .

• In the above theorem, the limit $F(\cdot)$ is not necessarily a cdf!

Example $F_n(x) = 0$ for x < n and $F_n(x) = 1$ for $x \ge n$. Then

$$\lim_{n \to \infty} F_n(x) = 0$$

for every $x \in \Re$.

Definition (tightness) A sequence of cdf's is said to be *tight* if for any $\varepsilon > 0$, there exist x and y such that

 $F_n(x) < \varepsilon$ and $F_n(y) > 1 - \varepsilon$ for all sufficiently large n.

- It can be shown that the limit $F(\cdot)$ in Helly's theorem satisfies $0 \le F(x) \le 1$.
- Also, $F(\cdot)$ is right-continuous and non-decreasing.
- So if $\lim_{x\downarrow -\infty} F(x) = 0$ and $\lim_{x\uparrow\infty} F(x) = 1$. Then $F(\cdot)$ becomes a cdf.
- Tightness is a condition to prevent the probability mass from *escaping to infinity*.

Theorem 25.10 (rephrased version) Tightness of $\{F_{n_k}\}_{k=1}^{\infty}$ is a necessary and sufficient condition for the limit $F(\cdot)$ in Helly's theorem to be a cdf.

Proof:

1. Sufficiency: Suppose $\{F_{n_k}(\cdot)\}_{k=1}^{\infty}$ is tight. Then for any $\varepsilon > 0$, we can find x and y such that

 $F_{n_k}(x) < \varepsilon$ and $F_{n_k}(y) > 1 - \varepsilon$ for all sufficiently large k.

Hence,

$$F(x) = \lim_{k \to \infty} F_{n_k}(x) \le \varepsilon \text{ and } F(y) = \lim_{k \to \infty} F_{n_k}(y) \ge 1 - \varepsilon,$$

which implies

$$\lim_{x \downarrow -\infty} F(x) \le \varepsilon \text{ and } \lim_{y \uparrow \infty} F(y) \ge 1 - \varepsilon.$$

The proof is completed by noting that ε can be made arbitrarily small.

2. Necessity: Suppose that $F(\cdot)$ is a cdf. Then for any $\varepsilon > 0$, there exist x and y such that

$$F(x) < \varepsilon$$
 and $F(y) > 1 - \varepsilon$.

In other words,

$$\lim_{k \to \infty} F_{n_k}(x) < \varepsilon \text{ and } \lim_{k \to \infty} F_{n_k}(y) > 1 - \varepsilon.$$

Therefore, for all sufficiently large k,

$$F_{n_k}(x) < \varepsilon$$
 and $F_{n_k}(y) > 1 - \varepsilon$.

To let you have some feeling on *tightness*, we provide the next observation. **Observation** Suppose $F_n(\cdot)$ is a degenerated cdf at x_n . Then $\{F_n\}_{n=1}^{\infty}$ is tight if, and only if, $\{x_n\}_{n=1}^{\infty}$ is bounded.

• Final remark on tightness: *Tightness* on sequences of probability measures is similar to *boundedness* on sequences of real numbers.

Example for tightness vs boundedness

Example 25.10 Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of normal distribution with mean m_n and variance σ_n^2 .

• If $\{m_n\}_{n=1}^{\infty}$ and $\{\sigma_n\}_{n=1}^{\infty}$ are bounded, then $\{X_n\}_{n=1}^{\infty}$ is tight. *Proof:* By Markov's inequality,

$$\Pr[|X_n| > a] \leq \frac{E[X_n^2]}{a^2} = \frac{\sigma_n^2 + m_n^2}{a^2} \leq \frac{\sigma_{\max}^2 + m_{\max}^2}{a^2}.$$

So for any $\varepsilon > 0$,

$$x = -\sqrt{\frac{\sigma_{\max}^2 + m_{\max}^2}{\varepsilon}}$$

and

$$y = \sqrt{\frac{\sigma_{\max}^2 + m_{\max}^2}{\varepsilon}}$$

satisfy the tightness condition.

 \Box .

Example for tightness vs boundedness

Example 25.10 (cont.)

• If $\{m_n\}_{n=1}^{\infty}$ is unbounded, then $\{X_n\}_{n=1}^{\infty}$ is not tight!

Proof: This can be easily seen from $\Pr[X_n \ge m_n] = \Pr[X_n \le m_n] = 1/2$. \Box

- Convergence in mean implies convergence in distribution. But the reverse is not necessarily true.
- However, we can still say "something" in the reverse direction.

Theorem 25.11 If $X_n \Rightarrow X$, then

 $E[|X|] \le \liminf_{n \to \infty} E[|X_n|].$

Lemma (Fatou's lemma) If $\{f_n(\cdot)\}_{n=1}^{\infty}$ is a sequence of non-negative measurable functions, and $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in \mathcal{E}$ except on a set of Lebesgue measure zero, then

$$\int_{\mathcal{E}} f(x) dx \le \liminf_{n \to \infty} \int_{\mathcal{E}} f_n(x) dx.$$

Proof: By Fatou's lemma,

$$\int_{\Re} |x| dF(x) \le \liminf_{n \to \infty} \int_{\Re} |x| dF_n(x).$$

 \square

25 - 35

Definition (Integrability) A random variable X is *integrable*, if

$$\lim_{\alpha \to \infty} \int_{[|x| \ge \alpha]} |x| dF_X(x) = 0.$$

Lemma A random variable X is integrable if, and only if, $E[|X|] < \infty$.

Proof:

$$\lim_{\alpha \to \infty} \int_{[|x| \ge \alpha]} |x| dF_X(x) = 0$$

$$\Rightarrow (\forall \varepsilon > 0) (\exists \alpha') \int_{[|x| \ge \alpha']} |x| dF_X(x) < \varepsilon$$

$$\Rightarrow E[|X|] = \int_{[|x| < \alpha']} |x| dF_X(x) + \int_{[|x| \ge \alpha']} |x| dF_X(x) \le \alpha' + \varepsilon < \infty.$$

and

$$\lim_{\alpha \to \infty} \int_{[|x| < \alpha]} |x| dF_X(x) = \int_{\Re} |x| dF_X(x) < \infty$$

$$\Rightarrow \lim_{\alpha \to \infty} \int_{[|x| \ge \alpha]} |x| dF_X(x) = \lim_{\alpha \to \infty} \left(E[|X|] - \int_{[|x| < \alpha]} |x| dF_X(x) \right) = 0. \quad \Box$$

• Hence, integrability can also be defined directly through $E[|X|] < \infty$.

• The reason why we adopt the above definition because it makes easy the extension definition of **uniform integrability**.

25-36

Definition (Uniform integrability) A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ (defined over the same probability space) is *uniformly integrable* if

$$\lim_{\alpha \to \infty} \sup_{n \ge 1} \int_{[|x| \ge \alpha]} |x| dF_{X_n}(x) = 0.$$

• The necessity of the condition of defining over the same probability space (Ω, \mathcal{F}, P) is more obvious, if we write the above equation as:

$$\lim_{\alpha \to \infty} \sup_{n \ge 1} \int_{\{\omega \in \Omega : |x_n(\omega)| \ge \alpha\}} |x_n(\omega)| dP(\omega) = 0.$$

• However, I personally think that the condition of defining over the same probability space can be relaxed since in-distribution convergence does not require this condition.

Lemma Uniform integrability implies that

$$\sup_{n\geq 1} E[|X_n|] < \infty.$$

Proof:

$$\lim_{\alpha \to \infty} \sup_{n \ge 1} \int_{[|x| \ge \alpha]} |x| dF_{X_n}(x) = 0$$

$$\Rightarrow (\forall \varepsilon > 0) (\exists \alpha') \sup_{n \ge 1} \int_{[|x| \ge \alpha']} |x| dF_{X_n}(x) < \varepsilon$$

$$\Rightarrow \sup_{n \ge 1} E[|X_n|] = \sup_{n \ge 1} \left(\int_{[|x| < \alpha']} |x| dF_{X_n}(x) + \int_{[|x| \ge \alpha']} |x| dF_{X_n}(x) \right) \le \alpha' + \varepsilon < \infty.$$

• Although the converse statement for **integrability** holds, the converse statement for the **uniform integrability** is not necessarily valid.

Lemma

$$\sup_{n\geq 1} E[|X_n|] < \infty$$

does not necessarily imply uniform integrability.

Proof: Let $\Pr[X_n = 0] = 1 - (1/n)$ and $\Pr[X_n = n] = 1/n$.

Then, $E[|X_n|] = 1$ for every n, but

$$\int_{[|x|>\alpha]} |x| dF_n(x) = \begin{cases} 0, & n < \alpha; \\ 1, & n > \alpha. \end{cases}$$

We therefore have

$$\sup_{n \ge 1} E[|X_n|] = 1 < \infty \quad \text{but} \quad \lim_{\alpha \to \infty} \sup_{n \ge 1} \int_{[|x| > \alpha]} |x| dF_n(x) = 1 \not\to 0.$$

Remark:

• In the above example, we actually have

$$E[|X_n|] = \int_{[|x| > \alpha]} |x| dF_n(x) \quad \text{ for } n > \alpha.$$

Hence, the uniform "boundedness" of $E[|X_n|]$ for $n > \alpha$ (i.e., $\sup_{n \ge \alpha} E[|X_n|] < \infty$) does not imply the uniform "close-to-zero" of $E[|X_n|]$ (i.e.,

$$\sup_{n \ge \alpha} E[|X_n|] \to 0 \text{ as } \alpha \to \infty).$$

 $\sup_{n\geq 1} E[|X_n|] < \infty$

does not necessarily imply uniform integrability. But

$$\sup_{n\geq 1} E[|X_n|^{1+\varepsilon}] < \infty$$

does. (This can be proved by the generalized Markov's inequality introduced in the next slide with b = 1 and $k = \varepsilon$.)

Generalization of Markov's inequality

Markov's inequality

$$\int_{[|x|\geq\alpha]} dF_X(x) \leq \frac{1}{\alpha^k} E[|X|^k].$$

Generalized Markov's inequality

$$\int_{[|x|\geq\alpha]} |x|^b dF_X(x) \leq \frac{1}{\alpha^k} E[|X|^{b+k}].$$

Proof:

$$E[|X|^{b+k}] = \int_{\Re} |x|^{b+k} dF_X(x)$$

$$\geq \int_{[|x| \ge \alpha]} |x|^{b+k} dF_X(x)$$

$$\geq \alpha^k \int_{[|x| \ge \alpha]} |x|^b dF_X(x).$$

More on uniform integrability

Lemma If there exists an **integrable** random variable Z with

$$\Pr[|X_n| \ge t] \le \Pr[|Z| \ge t]$$
 for all t and n,

then $\{X_n\}_{n=1}^{\infty}$ is uniformly integrable.

Proof:

$$\int_{[x \ge \alpha]} x dF_X(x) = \alpha \Pr[X \ge \alpha] + \int_{\alpha}^{\infty} \Pr[X \ge t] dt.$$

$$\int_{[|x|\geq\alpha]} |x|dF_{X_n}(x) = \alpha \Pr[|X_n|\geq\alpha] + \int_{\alpha}^{\infty} \Pr[|X_n|\geq t]dt$$
$$\leq \alpha \Pr[|Z|\geq\alpha] + \int_{\alpha}^{\infty} \Pr[|Z|\geq t]dt$$
$$= \int_{[|z|\geq\alpha]} |z|dF_Z(z).$$

Theorem 25.12 If $X_n \Rightarrow X$ and $\{X_n\}_{n=1}^{\infty}$ uniformly integrable, then

X is integrable, and $E[X_n] \xrightarrow{n \to \infty} E[X]$.

Proof:

• By uniform integrability,

$$E[|X|] \le \liminf_{n \to \infty} E[|X_n|] \le \sup_{n \ge 1} E[|X_n|] < \infty.$$

Hence, X is integrable.

• Define $Y_n = X_n I_{[|X_n| < \alpha]}$ and $Y = X I_{[|X| < \alpha]}$. Observe that

$$\begin{cases} Y_n^+ \Rightarrow Y^+ \\ \alpha - Y_n^+ \Rightarrow \alpha - Y^+ \end{cases} imply \begin{cases} E[Y^+] \le \liminf_{n \to \infty} E[Y_n^+] \\ \alpha - E[Y^+] \le \liminf_{n \to \infty} (\alpha - E[Y_n^+]) = \alpha - \limsup_{n \to \infty} E[Y_n^+]. \end{cases}$$

Hence, $\lim_{n\to\infty} E[Y_n^+] = E[Y^+]$. Similarly, we have $\lim_{n\to\infty} E[Y_n^-] = E[Y^-]$. Accordingly, $\lim_{n\to\infty} E[Y_n] = E[Y]$.

$$\begin{split} &\int_{\Re} x dF_{X_{n}}(x) - \int_{\Re} x dF_{X}(x) \Big| \\ &= \left| \int_{[|x| < \alpha]} x dF_{X_{n}}(x) - \int_{[|x| < \alpha]} x dF_{X}(x) + \int_{[|x| \ge \alpha]} x dF_{X_{n}}(x) - \int_{[|x| \ge \alpha]} x dF_{X}(x) \Big| \\ &= \left| \int_{\Re} y dF_{Y_{n}}(y) - \int_{\Re} y dF_{Y}(y) + \int_{[|x| \ge \alpha]} x dF_{X_{n}}(x) - \int_{[|x| \ge \alpha]} x dF_{X}(x) \right| \\ &\leq \left| \int_{\Re} y dF_{Y_{n}}(y) - \int_{\Re} y dF_{Y}(y) \right| + \sup_{n \ge 1} \int_{[|x| \ge \alpha]} |x| dF_{X_{n}}(x) + \int_{[|x| \ge \alpha]} |x| dF_{X}(x) \end{split}$$

Therefore,

$$\limsup_{n \to \infty} \left| \int_{\Re} x dF_{X_n}(x) - \int_{\Re} x dF_X(x) \right| \leq \sup_{n \ge 1} \int_{[|x| \ge \alpha]} |x| dF_{X_n}(x) + \int_{[|x| \ge \alpha]} |x| dF_X(x).$$

The proof is completed by taking α to the infinity. \Box

Corollary Let r be a positive integer. If $X_n \Rightarrow X$ and $\sup_{n\geq 1} E[|X_n|^{r+\varepsilon}] < \infty$, where $\varepsilon > 0$, then

 $|X|^r$ integrable, and $E[|X_n|^r] \xrightarrow{n \to \infty} E[|X|^r]$.

Proof: This is a direct consequence of Theorem 25.12 by noting that:

1. $X_n \Rightarrow X$ implies $|X_n|^r \Rightarrow |X|^r$, and

2. $\sup_{n\geq 1} E[|X_n|^{r+\varepsilon}] < \infty$ implies $\{|X_n|^r\}_{n=1}^{\infty}$ is uniformly integrable.