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Convergence of distributions 25-1

Definition (convergence in distribution) Distribution function F,,(-) is said
to converge weakly to distribution function £, if

lim F,(x) = F(x),

n—oo

for every continuity point x of F'(-).

In notations, we write F),, = F.

Why does the definition only require convergence at continuity point?
Answer: If not, there will be quite a few distributions do not converge (in distri-
bution).
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Example 14.4 Let X1, X5, ... beiid. with
1
Pr[X, =1] =Pr[X, = —-1] = 5

Then
0, if z <0
Fix axyym(®) = Alr) = { 1, it z > 0.

By symmetry,

Xi+-+ Xy
X+ + X, X+ +X, 1—Pf[ —0}
o >O]—Pr[ LT <o]—
n n 2
. = 1
Accordingly, . . 1< =2 ok <1+ g
+ .o+ n 2k (2k 1
Fix vt xy)m(0) = Pr[ ! - < O] = 27(Y) < \/E(1+24k;—1
) 4 (4 6 (6
1 1+27%()) 1 1+274() 1 1+26(3)” %E#A
R
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Definition (vague convergence) A sequence of measures {1, }°° is said to
converge vaguely to measure fu, if

pnla, b = pla, bl,

for every finite interval for which pu{a} = pu{b} = 0.

In notations, we write f,, — /.

Observation If 1, and p are both probability measure,
then p1, — 1 is equivalent to F,, = F,
where F,(x) = pp(—00,x] and F(x) = pu(—o0, z].

Example 25.1 (converge vaguely # converge in distribution)
Fn(aj) = [[n,oo)-
Then F, — F =0

but we cannot write F;,, = F, since hTm F(x)=0.
oo
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The condition “for every finite interval for which pu{a} = u{b} = 0" is essential for
vague convergence.

Example 25.3
[y places mass 1/n at each point k/n for k=0,1,...,n — 1.
4

0, if © <0;
1
Then F,(x) = pip(—00, x] = < w, if 0 <z <1;
n
L if £ > 1.
Accordingly,
0, if x <O0;
F.z)=F(x)=¢ =z, if0<x <1,
1, if x > 1.

So 1, = i, where p is Lebesgue measure confined in [0, 1).

Let Q be the set of all rational numbers.
Then p,(Q) =1 for every n.

But u(Q) = 0.

However, this does not violate u, = .
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Theorem 23.2 7,1, 2,,», ..

Pl“[Zn’k = 1] = Pn.k and Pl"[ZnJ€ = O] =1-— Pn k-

Then

\

(2) gglokz_;pnk =A>0

(22) im max pp; =0

n—o0 1<k<ry )

and

(77) lim max pup =0
n—oo 1<k<r,

> = Pr

/

(]
A
H

f: Zn,k; = Z] — {
k=1

., Ly, are independent random variables.

2!

1, if 2 =0;

0, fi=12,...

Tn )\Z
7 i]—)ek—forz'—(),l,Q,....

If r, = n, then Theorem 23.2 reduces to Poisson approximation to the

binomial.
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Example 25.2 (Poisson approximation to the binomial)
Take p, = \/n.

kY = (Z) (%)k (1 - %)M for 0 < k < n.

f, = Poisson(\).

Then

Example 25.4 p,{z,} =1 and p{z} = 1.
Then

n—oo

iy, = pif, and only if x, — =.

If 2, > x for every n, then (at the discontinuity point = of F(+))

F,(x) = 0 for every n, but F(z) = 1.
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Fix a sequence of real numbers z1, 2o, . ..

Define a counting probability measure as:

~ number of “(z, — [z,]) € A7 inwxy,..., 2,

fin(A) = n

(If x; — |@i] = x; — |x;] € A for some i # j, then their probability masses add to p,(A).)

Definition (Uniformly distributed modulo 1 for a deterministic se-
quence) If i, defined above, satisfies p,, = p, where p is a Lebesgue measure
restricted to the unit interval, then xq, o, ... is said to uniformly distributed
modulo 1.

Theorem 25.1 For any #rrational number 6,

0.26.36.46, ...

is uniformly distributed modulo 1.

Proof: Will be given in Section 26. O

e [t forms the basis for numerically generating a Lebesgue measure restricted to
the unit interval.
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Definition Let random variables X,, and X have distributions F,(-) and F'(-),
respectively. Then X, is said to converge in distribution or converge in law to
X, if

F, = F,

or equivalently,
lim Pr|X, <zx]=Pr[X <z

n—o0

for every x such that Pr[X = z| = 0.
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Example 25.5 (also, Example 14.1) Let X3, X5, ... be i.i.d. with

e " if x > 0;

PF[X"Zx]_{l for x < 0.

Then

I 1
Pr {max{ X7, Xo,..., X,,} — —log(n) < a:]
a

= Pr :<X1 < az+élog(n)) ARRRA (Xn < x+élog(n)>]

B (1 — 6_(Oé$+log(n>>)n7 if ax Z — 10g(n)’
- 0, if ar < —log(n)

n

(1 _ £ ) , if ax > —log(n);
0, if ax < —log(n)

e Pr[X < z] for all x € R.

1
max{ X1, Xo, ..., X} — alog(n) = X.
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Theorem X, Ly X implies X, = X.
Proof: X, - X means that

lim Pr[| X, — X| > ¢] = 0 for any positive €.

n—o0

Observe that

PrlA <a] —Pr[|[A—B|>b < Prl(A<a)A(|JA—B|>b)]
= Prj(A<a)A(|JA— B| <)
= Pr(A+b<a+bAN(A-b< B<A+Db)
< Pr[B<a+}).

Hence,

PriX <z —¢]—Pr[|X, — X| >¢] <Pr[X, <z] <Pr[X <z+¢| + Pr[| X, — X| > €],
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which implies that

Pr[X <z —¢] <liminf Pr[X,, < z] <limsupPr[X, <z] <Pr[X <z +¢].

n—00 n—00

Consequently, for every continuous point of Pr[X < z] (i.e., lim. o Pr[X < x+¢| =
lim. o Pr[X <z —¢),

lim Pr[X, <z]=Pr[X <z

n—oo

e X, = X does not necessarily imply X,, — X.
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Counterexample X 1l Y and

PriX =0]=Pr[ X =1]=Pr[Y =0 =P1]Y =1] = -

Let X,, =Y for each n.
Then apparently, X, = X.

However, for 0 < ¢ < 1,

Pr[| X, — X| > ¢] = Pr[|]Y — X| > ¢]
= PrlX=0AY =1+Pr[X=1AY =(]

= Pr[X =0]Pr[Y = 1]+ Pr[X = 1] Pr[Y =0
B 1><1+1><1—1
9279 92792

From the above, you may already get that it is really easy to construct a coun-
terexample for X,, = X implying X,, — X. So a general condition under which
X, = X implies X,, — X may be hard to create!
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Another note for counterexample construction for X,, = X implying X, 2y X is
that:

o X, =5 X requires that X, Xo, X3, ... must be random variables defined on
the same probability space. (We need to know the joint distribution of X,
and X in order to examine Pr[|X,, — X| > €]; so X, and X must be defined
over the same probability space.)

e But X,, = X allows X1, Xy, X3,... to be defined over distinct probability
space. (We only examine whether Fy converges to Fy for every continuous
points of Fly. No joint distribution of X, and X is required!)

There is however an exception:

Theorem Suppose Pr|X = a] =1 and X, Xy, ... are random variables defined
over the same probability space. Then

X, = X if, and only if, X,, = X.

e Notably, since X is a degenerated random variable, X,, —— X means that for

some a,
lim Pr[|X,, —a| > €] =0 for any € > 0.

n—oo
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The validity of above inequality does not require X1, Xo, ... to be defined over
the same probability space.

So we can rewrite the above theorem as:

Theorem Suppose Pr[X =a| =1. Then

lim Pr[|X,, —a| > €] =0 for any ¢ > 0 if, and only if, X,, = X.

n—o0
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Theorem X, = X and 9, 20 jointly imply that 4,,.X,, = 0.

Proof:

e For any n > 0 given, choose x > 0 such that

Pr[|X| > x] <n and Pr[X =+z]=0.

Imagine that “n small” implies “x large” for general X .
In case X is a degenerated random variable with Pr[X = x¢] = 1, any x > z
will give Pr||X| > x] =0 < 7.

e For any € > 0 given, choose Ny such that

€
0, < — for n > Nj.
x

e Since Pr[X = 2] =0and X,, = X,
Pr[| X, > 2] — Pr[|X]| > ]| == 0.
Therefore, there exists /Ny such that for n > Ny,

[Pr{| Xl = 2] = Pr[|X] = z]] <n.
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e Then for n > max{ Ny, NV},

Pr(|0,X,| > ¢ = Pr(|6,] - |X,| > ¢ < Pr [5 X, > g} — Pr[|X,| > 1]
x
< Pr[|X| > x| +n < 2n.

Hence,
limsup Pr[[6,X,| > €] < 2n.

n—o0

e As 7 can be chosen arbitrarily small, independent of ¢,

limsup Pr[[6,X,| > €] = 0.

n—oo
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Theorem 25.41f X, = X and X,, — Y,, = 0, then Y¥,, = X.

Proof: For any x and arbitrarily small (but carefully chosen) € > 0 (such that
Pr[X =9 =Pr[X =¢"] =0),let Y =2 —c and y’ = 2 + . Observe that

PriX, <] —Pr[| X, =Y, >¢] < (Pr Y, <y +¢|= ) PrY, < z],
and
Pr[Y, <z —Pr[|X, =Y, >¢] < (Pr[Xn <z+el = ) Pr(X, <]

Hence,

Pr(X, <y |-Pr[|X,—Y,| > ] < Pr[Y, < z] < Pr[X, <y']+Pr]|X,—Y,| > €],

which implies that

Pr[X <z —¢] <liminf Pr[Y,, < z| <limsup Pr|Y,, <z] < Pr[X <z +¢].

n—00 n—00

Hence, the desired Y,, = X is obtained. O
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Theorem 25.5 If
1. Xpm = X,
2. X, = X, and
3. limyy, 00 limsup,,_, oo Pr{| Xpnm — Yn| > €] = 0 for any positive &,

then Y,, = X.
Proof:

e For any x, we can choose € arbitrarily small such that
PriX =y ]=PrX1=y]=Pr[Xo=¢]=---=0

and
PriX =" =Pr[X; =¢"|=Pr[ Xy =¢"]|=--- =0,

where ) = x — e and ¢/ = x + €.
e We can then derive

Pr[X,m < ¢ ]—Pr[| Xpm—=Ys| > €] < Pr]Y, <z] < Pr[X,,m < ¢"|4+Pr[|X,n—Ya| > €.
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Hence,

lim inf (Pr[ X, < '] — Pr[| Xym — Ya| > €])

n—oo

< liminf Pr[Y, < z]

n—oo

lim sup Pr[Y,, < z]

n—oo

< limsup (Pr[X,,m < ¢"] + Pr[| Xom — Yl > €]),

n—oo

IA

which gives:

Pr[X,, <] = limsup Pr[| X, — Y| > €]

n—oo

liminf Pr[Y, < x]

n—o0

limsup Pr[Y,, < z]

n—oo

Pr[X,, <¢"] + limsup Pr[| X, — Y| > ¢].

n—oo

IAIA

IA

e Taking m to infinity in the above inequality, we obtain:

Pr[X <¢/] <liminf Pr[Y, < z] <limsup Pr[Y, < ] < Pr[X <y¢"].

n—00 n—00

25-19
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e A random sequence cannot have two distinct weak limits.

Theorem Let F),, F' and G be cdfs of some random variables.
If F,, = F and F,, = G,
then F(z) = G(x) for every x € R.

Proof: By definition of convergence in distribution, F'(x) and G(x) must coincide
at every continuous points of F(z) and G(z). By definitions, cdfs must be right-
continuous. So F(z) and G(x) coincide also at discontinuous points. O
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Theorem 25.6 (Skorohod’s theorem) Suppose p, and g are probability
measures on (R, B), and p,, = p. Then there exist random variables Y;, and Y
such that:

1. they are both defined on common probability space (€2, F, P);
2. PrlY, <y] = pn(—00,y] for every y;
3. PrlY < y] = pu(—o0, y] for every y;

4. limy, 00 Yn(w) = Y (w) for every w.

e Implication: Again, cdfs are sufficient; we do not need to rely on the inherited
probability space.
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Theorem (a simplified version of mapping theorem) Suppose that a
real-valued function h is B/B-measurable, and the set D), of its discontinuities is
B-measurable. Then

X,= X and Pr[lX € D)) =0 imply h(X,)= h(X).

Theorem If X,, = a and function h is continuous at a, then h(X,) = h(a).

Example X, = X and h(z) = ax + b imply aX,, + b = aX +b.

n—oo n—oo

Example Suppose X,, = X and h(x) = ax + b and a, — a and b, — b.
Then (by Theorem 25.4)

(aX,, +b0) — (an Xp+by) = (a—ay) X, + (b—0,) = 0

(aX, +b) = aX +b } imply a,X,,+b, = aX-+b.
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Theorem 25.8 (a rephrased version) The following two conditions are equiv-

alent.
o F, = I
e lim / f(z)dF,( / f(z)dF(x) for every bounded, continuous real func-
n—o0
tion f.
Counterexample

e X, is uniformly distributed over {0,1/n,2/n,...,(n —1)/n}, and X is uni-
formly distributed over [0, 1).

e F,(z) =Pr[X, <z|and F(x) =Pr[X <z
o A = set of all rational numbers in [0, 1).
o f(x)=1ifx € A, and f(x) = 0, otherwise.

e Since f(-) is not continuous (though bounded),

1_/f VdE,(z ﬁ/f )dF(x) = 0.
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Theorem 25.9 (Helly’s theorem) For every sequence {F,,}°°, of distribu-
tion functions, there exists a subsequence {F), }7°, and a non-decreasing, right-
continuous function F' (not necessarily a cdf) such that

lim F, (z) = F(z)

k—o00

for every continuous points of F'.
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Theorem (The diagonal method) Give a bounded sequence of real numbers:

11 T12 213
21 T22 X23

There exists an increasing sequence nq, ng, ... such that the limit limy_,oo 2y, 5, exists

for each m =1,2,3,.. ..
Proof:

e Lor x11,x12,%13,. .., there exists ny 1, 112,13, ... such that limy_,o 21, , exists.

® FOr T9,, 1y X201 91 T30y 5 - - -, there exists mg1,n2.2, M3, . .. such that limg oo T2 5, ,
exists (and still, limy_,o0 21 5, , €Xists).

e Repeat the process to obtain:

nyp Ni2 Ni13
na1 M22 TN23

Since cach row is a subsequence of the previous row in the above n-list, ng . is in-
creasing in k. Finally, ny i, ngi1 g1, g2 k2, - - - satisfies that limy o @y, p, , €xists.
0.
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Proof of Helly’s theorem:

e List the two dimensional array of F),(r) for r rational. Then by the diagonal
method, there exists ny, ng, . . . such that limy._, F),, () exists for every rational
T.

o Let G(r) = limy_,o0 £, (r) for every rational 7 (So for two rationals s < r,

G(s) < G(r)) and define
F(z) =inf{G(r) : r > x and r rational}.

Thus, F(x) is clearly non-decreasing, since taking infimum over a smaller set
yields a larger value. (So for any r > x, G(r) > F(x).)

e By definition of infimum, for a given € > 0, there exists a rational » > x such
that
G(r) < F(x)+e¢

e (Base on the above r, x and €.) For any p satisfying v < x4+ pu < r, F(z) <
Flz+p) <G(r) (< F(x)+e).
S0

F($)<E£I01F(:L’—!—,LL)<F( x) +
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(The limit of limy, o F'(x + p) must exist. Why? Monotone convergence theorem)
Since the above inequality is valid for any € > 0,

lim F(x + p) = F(x),
pd0

which means that F(-) is right-continuous.

e Finally, suppose that F'(+) is continuous at x.
Then again, by definition of infimum, for a given € > 0, there exists a rational
r > x such that
G(r) < F(x) +e.

Also, by continuity, for this €, there exists y < x such that
F(z)—e < F(y).

Choose another rational s satisfying y < s < x (< r). Apparently, F(y) <
G(s) and G(s) < G(r).

Therefore, we have:

F(z)—e<G(s) <G(r) < F(z) +«.
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On the other hand,
F,(s) < Fy(x) < F,(r)

implies that
G(s) = lim F,, (s) <liminf F}, (z) < limsup F,, (z) < lim F, (r) = G(r).

k—o00 k— 00 k—s00 T k—oo

The above concludes to:

F(z) —e <liminf F,, (z) <limsup F,, (z) < F(x) + €.

k—00 k—o0

O

The proof is completed by noting that € can be made arbitrarily small.

e In the above theorem, the limit F'(+) is not necessarily a cdf!

Example F,(x) =0 for x < n and F,(x) = 1 for z > n. Then

lim F,(x) =0

n—oo

for every x € R.
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Definition (tightness) A sequence of cdf’s is said to be tight if for any € > 0,
there exist x and y such that

F,(z) < e and F,(y) > 1 — ¢ for all sufficiently large n.

e [t can be shown that the limit F'(-) in Helly’s theorem satisfies 0 < F'(x) < 1.
e Also, F(+) is right-continuous and non-decreasing.
e So if lim,| F(x) =0 and lim,4 F'(x) = 1. Then F(-) becomes a cdf.

e Tightness is a condition to prevent the probability mass from escaping to
infinity.
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Theorem 25.10 (rephrased version) Tightness of {£), }?°, is a necessary

and sufficient condition for the limit F'(-) in Helly’s theorem to be a cdf.

Proof:

1. Sufficiency: Suppose {F,, (-)};2, is tight. Then for any € > 0, we can find
and gy such that

F,, (v) <eand F, (y) > 1 — ¢ for all sufficiently large k.

Hence,

F(z)= lim F, () <ecand F(y) = lim F, (y) > 1 —¢,

k—00 k—o00
which implies

Em F(z) <eand liTmF(y)Zl—s.
xl—00 yToo

The proof is completed by noting that € can be made arbitrarily small.
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2. Necessity: Suppose that F(-) is a cdf. Then for any € > 0, there exist = and
y such that
F(r)<eand Fy) > 1 —e.

In other words,

lim F, () <eand lim F, (y) >1—e¢.

k—o00 k—o00

Therefore, for all sufficiently large &,
F, (r) <eand F, (y) >1—¢.

To let you have some feeling on tightness, we provide the next observation.
Observation Suppose F,(-) is a degenerated cdf at x,,. Then {F},}>°, is tight if,
and only if, {z,}> is bounded.

e Final remark on tightness: Tightness on sequences of probability mea-
sures is similar to boundedness on sequences of real numbers.
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Example 25.10 Let {X,,}°°; be a sequence of normal distribution with mean

2

m,, and variance o;.

o If {m,}>°, and {0,}>°, are bounded, then {X,}°°, is tight.
Proof: By Markov’s inequality,

PeX, | > o] < Pl _ Gt it M
n _— - .

a? a? - a?
So for any € > 0,
2 2
\/O-HlaX _|_ mmax
T = —
€
and
2 2
o O max + Minax
y f—
€

satisfy the tightness condition. 0.



Example for tightness vs boundedness 2533

Example 25.10 (cont.)
o If {m,}>°, is unbounded, then {X,}>°, is not tight!

Proof: This can be easily seen from Pr|X,, > m,] = Pr[X,, <m,|=1/2. O
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e Convergence in mean implies convergence in distribution.
But the reverse is not necessarily true.

e However, we can still say “something’ in the reverse direction.

Theorem 25.11 If X, = X, then
E[|X]] < liminf E[|X,]].

n—oo

Lemma (Fatou’s lemma) If {f,(-)}>2,

surable functions, and lim,_,~ f,(z) = f(z) for every z € £ except on a set of
Lebesgue measure zero, then

Aﬂmmgmmlﬁmm.

n—o0

is a sequence of non-negative mea-

Proof: By Fatou's lemma,

/\az\dF(x) gliminf/ |z|dF ().
R R

n—oo
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Definition (Integrability) A random variable X is integrable, if

lim/ |dFx(z) = 0.
=% Jujzal

Lemma A random variable X is integrable if, and only if, E[|X|] < oc.

Proof:
lim / lz|dFx(x) =0
@700 x|z
= (Ve 0)3 o/)/ 2|dFy(z) < 2
[lz|>a]
= F[|X|] = / |z|dFx () +/ lz|dFx(z) < o + e < oo.
[lz]<a] [lz|>a]
and
lim / |x|dFx(x) —/]x]dFX(a:) < 0
=00 Jz|<a] R
= lim / |z|dFx(z) = lim (EHXH —/ \a:\dFX(a:)) =0. O
a—00 [|z|>a Q=00 [|lz]|<al

e Hence, integrability can also be defined directly through E[| X|] < oo.

e The reason why we adopt the above definition because it makes easy the ex-
tension definition of uniform integrability.
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Definition (Uniform integrability) A sequence of random variables { X, }>°
(defined over the same probability space) is uniformly integrable if

lim sup/ |z|dFx, () = 0.
(2=l

a— 00 n>1

e The necessity of the condition of defining over the same probability space
(€2, F, P) is more obvious, if we write the above equation as:

lim Sup/ |z, (w)|dP(w) = 0.
{we : |zp(w)|>a}

a— 00 n>1

e However, I personally think that the condition of defining over the same pro-
bability space can be relaxed since in-distribution convergence does not require
this condition.
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Lemma Uniform integrability implies that

sup F[| X,|] < oo.

n>1

Proof:

lim sup/ |z|dFx, () =0
[|z[=a]

a— 00 n>1

= (Ve>0)(3a) sup/ lz|dFx, (x) < €
[|z[=</]

n>1

]:C]dFXn(:C)> <ad+e< oo

= sup E[|X,|] = sup (/[ | ]’:C’dFXn(CU)—I—/
x|<a!

n>1 n>1 [|z|>a/]

O

e Although the converse statement for integrability holds, the converse state-
ment for the uniform integrability is not necessarily valid.
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Lemma
sup B[ X, ] < oo

n>1

does not necessarily imply uniform integrability.
Proof: Let Pr[X,, =0l =1—(1/n) and Pr|.X,, =n| = 1/n.
Then, E[|X,|] =1 for every n, but

0 < q;
[N IO
[|z|>a] I, n>a.

sup B[|X,]] =1 <00 but lim sup/ |z|dF,(x) =1 4 0.
[|z[>a]

n>1 =00 n>1

We therefore have
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Remark:

e [n the above example, we actually have
El|X,| = / 2dFy(z) forn > a.
[|z[>a]

Hence, the uniform “boundedness” of E[| X, || forn > « (i.e., sup,s, E[| X,|] <
o0) does not imply the uniform “close-to-zero” of E|[|X,|] (i.e.,

sup E[| X,|]] = 0 as a — o0).

n>o

sup B[ X, ] < 00

n>1
does not necessarily imply uniform integrability.
But
SupEHXnleFE] < o0

n>1
does. (This can be proved by the generalized Markov’s inequality introduced
in the next slide with b = 1 and k£ = ¢.)



Generalization of Markov’s inequality 2540

Markov’s inequality

1
dFx(z) < —E[|X|".
/[:cm] a

Generalized Markov’s inequality
1
| paldrs) < S E1XP,
[|z[>0] o
Proof:

E[X|"] = /% 2P dFy (2)

JRE e
[|z|>a]

ozk/ 2|’dFx (z).
[lz[>a]

1V

IV
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Lemma If there exists an integrable random variable Z with

Pr{| X,| > 1] < Pr|Z] > 1] for all £ and 7,

then {X,}°°, is uniformly integrable.

Proof:

©.¢]

/ rdFx(z) = aPr[X > af +/ Pr[X > t]dt.
[z>a

«

(0.9]

/ lz|dFy, (v) = aPr[|X,] > q +/ Pr[| X,,| > t]dt
[|x|>a]

«
o0

< aPr[|Z] > +/ Pr[|Z| > t]dt

o

= / |2|dFz(2).
1220
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Theorem 25.12 If X, = X and {X,,}°°; uniformly integrable, then
X is integrable, and E[X,] = E[X].

Proof:
e By uniform integrability,
E[|X]|] < liminf E[| X,|] < sup E[|X,|] < oc.

n—00 n>1
Hence, X is integrable.

e Define Yn = X”I[!Xn\<04] and Y = XIHX\<0¢]-
Observe that

v+ o Yyt E[Y "] <liminf E[Y,]
n . n—00
a—Y =a-Y" } mply 4, _ ElY'] <liminf(a — E[Y,"]) = a — limsup E[Y,"].

n—00 n—00

Hence, lim,, o E[Y,[] = E[Y"].
Similarly, we have lim,,_,, E[Y, "] = E[Y].

n

Accordingly, lim,, ., E[Y,] = E[Y].
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/ xdFx, () — / rdFy(x)

R R

= / rdFy, (r) — / xdFy(x) +/ xdFx, () — / rdFx ()
[|z[<a] [|z[<a] [|z[>a] [|z[>a]

= AdeYn(y) — /%deY(y) +/[$>a] vdFx, (1) — /[xm] xdFx(z)

< / ydFy (y) — / dey(y)‘ T sup / 2|dFy (z) + / 2|dFy ()
R R n=1 Jlz|>al [|z[=a]
Therefore,
lim sup /xdFXn(x)—/xdFX(a:) < sup/ ]x]dFXn(x)+/ |z|dFx ().
n—oo |JR R nzl J|z[za] [|z[=a]

The proof is completed by taking a to the infinity. O
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Corollary Let r be a positive integer. If X,, = X and sup,>; E[|X,|""] < oo,
where € > 0, then

n—oo

| X|" integrable, and E[|X,|"] — E[|X]|"].

Proof: This is a direct consequence of Theorem 25.12 by noting that:
1. X, = X implies | X,|" = | X", and

2. sup,>1 E[|X,|"™] < oo implies {|X,|"};2; is uniformly integrable.



