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Law of large numbers revisited 22-1

Theorem 22.1 (advanced version of strong law of large numbers) If

X1, X2, . . . are pair-wise independent with common marginal distribution and

finite mean, then
Sn

n
→ E[X1] with probability 1,

where Sn = X1 +X2 + · · · +Xn.

Proof (due to Etemadi): Assume without loss of generality thatXi is non-negative.

If the theorem holds for non-negative random variables, then

Sn

n
=

1

n

n∑
k=1

X+
k − 1

n

n∑
k=1

X−
k

w.p. 1−→ E[X+
1 ]− E[X−

1 ] = E[X1].

• Consider the truncated random variable Yk = XkI[Xk≤k], and denote S∗
n =∑n

k=1 Yk. (Notably, Y1, Y2, . . . is not identically distributed, but only pair-wise

independent.)

Then for k ≤ n,

E[Y 2
k ] = E[X2

kI[Xk≤k]] = E[X2
1I[X1≤k]] ≤ E[X2

1I[X1≤n]] = E[Y 2
n ].
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The reason of introducing a truncated version ofXn is because E[X2
n] may

be infinity! This is the key technique used in this proof.

• Claim: For un � �αn� with α > 1 fixed,

∞∑
n=1

Pr

[∣∣∣∣S∗
un

− E[S∗
un
]

un

∣∣∣∣ > ε

]
< ∞ for any ε > 0.

Theorem 4.3 (First Borel-Cantelli lemma)
∞∑
n=1

P (An) < ∞ ⇒ P

(
lim sup
n→∞

An

)
= P (An i.o.) = 0.

Proof of the claim: By Chebyshev’s inequality,

∞∑
n=1

Pr

[∣∣∣∣S∗
un

− E[S∗
un
]

un

∣∣∣∣ > ε

]
≤

∞∑
n=1

Var[S∗
un
]

u2nε
2

≤ 1

ε2

∞∑
n=1

E[Y 2
un
]

un
,

where by pair-wise independence,

Var[S∗
un
] =

un∑
k=1

Var[Yk] ≤ unE[Y 2
un
].
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Hence,

∞∑
n=1

Pr

[∣∣∣∣S∗
un

− E[S∗
un
]

un

∣∣∣∣ > ε

]
≤ 1

ε2

∞∑
n=1

E[Y 2
un
]

un
=

1

ε2

∞∑
n=1

E[X2
un
I[Xun≤un]]

un

=
1

ε2

∞∑
n=1

E[X2
1I[X1≤un]]

un
=

1

ε2
lim

m→∞

m∑
n=1

E[X2
1I[X1≤un]]

un

=
1

ε2
lim

m→∞E

[
X2

1

m∑
n=1

1

un
I[X1≤un]

]
(fm(x) � x2

m∑
n=1

1

un
I[x≤un])

=
1

ε2
E

[
X2

1 lim
m→∞

m∑
n=1

1

un
I[X1≤un]

]
(by monotone conv. thm.)

=
1

ε2
E

[
X2

1

∞∑
n=1

1

un
I[X1≤un]

]

Monotone convergence theorem: If for every positive integer m and every x in

the support X of random variable X , 0 ≤ fm(x) ≤ fm+1(x), then

lim
m→∞E[fm(X)] = lim

m→∞

∫
X
fm(x)dPX(x) =

∫
X

lim
m→∞ fm(x)dPX(x) = E

[
lim

m→∞ fm(X)
]
.
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Observe that for any x > 0 fixed,

∞∑
n=1

1

un
I[x≤un] =

∑
{n∈N : un≥x}

1

un

=
∑
n≥N

1

un
, where N = min{n ∈ N : un ≥ x}

≤
∑
n≥N

2

αn
, (since un = �αn� and �y� ≥ 1

2
y for y ≥ 1)

=

(
2

1− α−1

)
1

αN

≤
(

2α

α− 1

)
1

x
. (by αN ≥ �αN� = uN ≥ x)

This concludes that:

∞∑
n=1

Pr

[∣∣∣∣S∗
un

− E[S∗
un
]

un

∣∣∣∣ > ε

]
≤ 1

ε2
E

[
X2

1

∞∑
n=1

1

un
I[X1≤un]

]
≤ 1

ε2

(
2α

α− 1

)
E [X1] < ∞.
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• By the above claim and the first Borel-Cantelli lemma,

S∗
un

− E[S∗
un
]

un
→ 0 with probability 1.

• By the Cesáro-mean theorem (cf. the next slide),

lim
un→∞E[Yun]

(
= lim

n→∞E[Yun] = lim
n→∞E[X1I[X1≤un]]

)
= E[X1] < ∞

implies
1

un
E[S∗

un
] =

1

un

un∑
k=1

E[Yk] → E[X1] as n → ∞.

Thus,
S∗
un

un
→ E[X1] with probability 1.
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Theorem (Cesáro-mean theorem) If limn→∞ an = a and bn =

(1/n)
∑n

i=1 ai, where a is finite, then limn→∞ bn = a.

Proof: limn→∞ an = a implies that for any ε > 0, there exists N such

that for all n > N , |an − a| < ε. Then

|bn − a| =

∣∣∣∣∣1n
n∑

i=1

(ai − a)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|ai − a|

=
1

n

N∑
i=1

|ai − a| + 1

n

n∑
i=N+1

|ai − a|

≤ 1

n

N∑
i=1

|ai − a| + n−N

n
ε.

Hence, limn→∞ |bn − a| ≤ ε. Since ε can be made arbitrarily small,

limn→∞ bn = a. �
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• Claim:
Sn − S∗

n

n
→ 0 with probability 1.

Proof of the claim:
∞∑
n=1

Pr[Xn 
= Yn] =
∞∑
n=1

Pr[Xn 
= XnI[Xn≤n]]

=
∞∑
n=1

Pr[Xn > n]

=
∞∑
n=1

Pr[X1 > n] (by “identical distributed” assumption)

≤
∫ ∞

0

Pr[X1 > t]dt

= E[X1] (by non-negativity assumption of X1)

< ∞.

Hence, the first Bore-Cantelli lemma gives that

Pr[(Xn 
= Yn) is true infinitely often in n] = 0,

equivalently,

Pr[(Xn 
= Yn) is true finitely many in n] = 1.
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This implies that

Pr [(∃ U = {n1, n2, . . . , nM}) Xn 
= Yn only for n ∈ U] = 1.

The above result, together with the fact that

Pr[(Xn − Yn) < ∞] = Pr
[
XnI[Xn>n] < ∞]

= Pr
[
X1I[X1>n] < ∞]

= 1

because E[X1] < ∞, leads to:

Pr

[
lim
n→∞

(X1 − Y1) + · · · + (Xn − Yn)

n
= 0

]

= Pr

[
lim
n→∞

(Xn1 − Yn1) + · · · + (XnM − YnM )

n
= 0

]
= 1.

•
Now we have

S∗
un
/un → E[X1] with probability 1, where un = �αn� for some α > 1 fixed, and

(Sn − S∗
n)/n → 0 with probability 1.

The above two results directly imply Sun/un → E[X1] (as n goes to infinity)

with probability 1.

It remains to show Sk/k → E[X1] (as k goes to infinity) with probability 1.
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• For un ≤ k < un+1,

un
un+1

Sun

un
=

Sun

un+1

=
X1 + · · · +Xun

un+1

≤ X1 + · · · +Xun

k

≤ X1 + · · · +Xun + · · · +Xk

k
=

Sk

k

≤ X1 + · · · +Xun + · · · +Xk

un

≤ X1 + · · · +Xun + · · · +Xk + · · · +Xun+1

un

=
Sun+1

un

=
un+1

un

Sun+1

un+1
,

since Xn is assumed non-negative.
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Because
un
un+1

Sun

un
→ 1

α
E[X1] with probability 1,

and
un+1

un

Sun+1

un+1
→ αE[X1] with probability 1,

we obtain:

1

α
E[X1] ≤ lim inf

k→∞
Sk

k
≤ lim sup

k→∞

Sk

k
≤ αE[X1] with probability 1.

As the above statement is valid for any α > 1, we conclude that

Sk

k
→ E[X1] with probability 1.

�
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Theorem If X1, X2, . . . are pair-wise independent with common marginal dis-

tribution whose mean exists (could be infinity as defined in Slide 21-1), then

1

n

n∑
k=1

Xk → E[X1] with probability 1.

Proof: Now, based on the previous theorem, we only need to prove the current

theorem for the case of E[X1] = ∞.

• Suppose without loss of generality that E[X−
1 ] < ∞ and E[X+

1 ] = ∞. Then

1

n

n∑
k=1

X−
k → E[X−

1 ] with probability 1.

• Let Yn(u) = X+
n I[Xn≤u], and observe that

1

n

n∑
k=1

X+
k ≥ 1

n

n∑
k=1

Yk(u), and
1

n

n∑
k=1

Yk(u) → E[Yk(u)] with probability 1.

Hence,

1

n

n∑
k=1

X+
k ≥ E[Yk(u)] (as n goes to infinity) with probability 1.
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Pr[An ≥ Bn] = 1

Pr
[
lim
n→∞Bn = b

]
= 1

⇒




Pr
[
lim inf
n→∞ An ≥ b

]
≥ Pr

[
lim inf
n→∞ An ≥ b ∧ lim inf

n→∞ Bn = b
]

≥ Pr
[
lim inf
n→∞ An ≥ lim inf

n→∞ Bn ∧ lim inf
n→∞ Bn = b

]
= 1

• Since the above statement is valid for any u, and E[Yk(u)] → ∞ as u → ∞,

1

n

n∑
k=1

X+
k → ∞ with probability 1.

• Finally,

1

n

n∑
k=1

Xk =
1

n

n∑
k=1

X+
k − 1

n

n∑
k=1

X−
k → ∞ with probability 1.

�
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Next, we introduce a famous result for Possion distribution, whose validity can be

proved by weak-law or Chebyshev’s-inequality argument.

Lemma (degeneration of normalized Poisson) Let Yλ be a Poisson ran-

dom variable with parameter λ, and let Gλ(·) be the cdf of a Yλ/λ. Then

lim
λ→∞

Gλ(t) =

{
1, if t > 1;

0, if t < 1.

Proof: By Chebyshev’s inequality,

Pr

[∣∣∣∣Yλ − λ

λ

∣∣∣∣ ≥ ε

]
= Pr [|Yλ − λ| ≥ ελ] ≤ Var[Yλ]

λ2ε2
=

λ

λ2ε2
=

1

λε2
→ 0

as λ → ∞. �
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Let X be a non-negative random variable.

Derive the one-sided Laplace transform of the distribution of X as:

MX(s)+ =

∫ ∞

0

e−sxdFX(x) for s ≥ 0.

Notably, MX(s)+ =
∫∞
0 e−sxdFX(x) ≤

∫∞
0 dFX(x) = 1 is finite for all s ≥ 0, but

may be infinity for s < 0.

Here, we are only interested in those s with s ≥ 0; hence, it is named the one-sided

Laplace transform.

In addition, MX(s)+ = MX(−s), where MX(·) is the moment generating function

of X .
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Proposition Fix a non-negative random variable X . For y > 0,

Pr[X ≤ y] = lim
s→∞

�sy�∑
k=0

(−1)k

k!
skM

(k)
X (s)+.

Proof: For s > 0,

M
(k)
X (s)+ = (−1)k

∫ ∞

0

xke−sxdFX(x).
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Hence, for s > 0,

�sy�∑
k=0

(−1)k

k!
skM

(k)
X (s)+ =

�sy�∑
k=0

(−1)k

k!
sk

(
(−1)k

∫ ∞

0

xke−sxdFX(x)

)

=

∫ ∞

0

�sy�∑
k=0

e−sx(sx)
k

k!
dFX(x)

=

∫ ∞

0

Pr
[
Ysx ≤ �sy�]dFX(x)

=

∫ ∞

0

Pr
[
Ysx ≤ sy

]
dFX(x)

=

∫ ∞

0

Pr

[
Ysx

sx
≤ y

x

]
dFX(x)

=

∫ ∞

0

Gsx

(y
x

)
dFX(x).
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As a result,

lim
s→∞

�sy�∑
k=0

(−1)k

k!
skM

(k)
X (s)+ = lim

s→∞

∫ ∞

0

Gsx

(y
x

)
dFX(x) =

∫ ∞

0

lim
s→∞Gsx

(y
x

)
dFX(x),

since by dominated convergence theorem, fn(x) = Gnx(y/x) ≤ 1 = g(x) for every

n, and

∫ ∞

0

g(x)dFX(x) = 1 < ∞.

Give a sequence of non-negative µ-measurable function fn with lim
n→∞ fn(x) = f(x)

for all x ∈ X , except on a subset of X with µ-measure zero.

Lemma (Fatou’s lemma)

∫
X

[
lim
n→∞ fn(x)

]
µ(dx) ≤ lim inf

n→∞

∫
X
fn(x)µ(dx).

Fatou’s lemma indicates that in general, we cannot interchange the order of inte-

gration and limit operation.

Theorem (Lebesgue convergence theorem or dominated conver-

gence theorem) If, in addition to non-negativity, fn(x) ≤ g(x) for all x ∈ X ,

except on a subset ofX with µ-measure zero, and g(·) is µ-integrable in X (namely,∫
X
g(x)µ(dx) < ∞), then

∫
X

[
lim
n→∞ fn(x)

]
µ(dx) = lim

n→∞

∫
X
fn(x)µ(dx).
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Consequently, (for y that has no point mass),

lim
s→∞

�sy�∑
k=0

(−1)k

k!
skM

(k)
X (s)+ =

∫ ∞

0

lim
s→∞Gsx

(y
x

)
dFX(x)

=

∫ y

0

dFX(x)

= Pr[X ≤ y].

(How to determine Pr[X ≤ y] whenX has point mass at y? Hint: Right-continuity)

�

Corollary The distribution of a non-negative random variable is uniquely deter-

mined by its moment generating function MX(s) at s < 0.

Proof: For y > 0,

Pr[X ≤ y] = lim
s→∞

�sy�∑
k=0

(−1)k

k!
sk
∂kMX(−s)

∂sk
.

Determining Pr[X = 0] by the right-continuity of cdf gives the desired result. �

Final comment: In fact, to determine the cdf of a non-negative random variable

X , we only need to know MX(s) for s < −s0 for any s0 > 0.
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The maximal inequalities concern the maxima of partial sums.

Theorem 22.4 (due to Kolmogorov) Suppose that X1, X2, . . . are indepen-

dent with zero mean and finite variances (not necessarily identically distributed).

Then for α > 0,

Pr

[
max
1≤k≤n

|Sk| ≥ α

]
≤ 1

α2
Var[Sn],

where Sn = X1 + · · · +Xn.

Chebyshev’s inequality said that

Pr[|Sn| ≥ α] ≤ 1

α2
Var[Sn].

This theorem strengthens the result that α−2Var[Sn] not only bounds Pr[|Sn| ≥ α],

but also bounds Pr
[
max1≤k≤n |Sk| ≥ α

]
.

Proof: Define the event

Ak =
[|S1| < α ∧ |S2| < α ∧ · · · ∧ |Sk−1| < α ∧ |Sk| ≥ α

]
.
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Since there is exactly one of {Ak}∞k=1 is true,

E[S2
n] = E

[
S2
n

(
IA1 + IA2 + · · · + IAn + IAn+1 + · · · )]

≥ E
[
S2
n (IA1 + IA2 + · · · + IAn)

]
=

n∑
k=1

E
[
S2
nIAk

]

=
n∑

k=1

E
[(
S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2
)
IAk

]

≥
n∑

k=1

E
[(
S2
k + 2Sk(Sn − Sk)

)
IAk

]

=

n∑
k=1

E
[
S2
kIAk

+ 2SkIAk
(Sn − Sk)

]

=

n∑
k=1

(
E
[
S2
kIAk

]
+ 2E

[
SkIAk

(Sn − Sk)
])

=
n∑

k=1

(
E
[
S2
kIAk

]
+ 2E

[
SkIAk

]
E [Sn − Sk]

)
,

where the last step follows from the independence between SkIAk
and Sn − Sk.
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Continue the previous derivation:

E[S2
n] ≥

n∑
k=1

(
E
[
S2
kIAk

]
+ 2E

[
SkIAk

]
E [Sn − Sk]

)

=
n∑

k=1

E
[
S2
kIAk

]
(by the zero mean assumption, E[Sn − Sk] = 0)

≥
n∑

k=1

E
[
α2IAk

]
(IAk

= 1 only when |Sk| ≥ α)

= α2
n∑

k=1

Pr[Ak]

= α2 Pr

[
max
1≤k≤n

|Sk| ≥ α

]
.

�
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The previous theorem provides a bound for the cdf of max
1≤k≤n

|Sk| using the second

moment.

We can also bound the cdf of max
1≤k≤n

|Sk| by the cdf of |Sk| for 1 ≤ k ≤ n.

Theorem 22.5 (due to Etemadi) Suppose that X1, X2, . . . are independent.

For α ≥ 0,

Pr

[
max
1≤k≤n

|Sk| ≥ 3α

]
≤ 3 max

1≤k≤n
Pr[|Sk| ≥ α].

Proof: Define the event

Ak =
[|S1| < 3α ∧ |S2| < 3α ∧ · · · ∧ |Sk−1| < 3α ∧ |Sk| ≥ 3α

]
.

Then

Pr

[
max
1≤k≤n

|Sk| ≥ 3α

]
= Pr

[(
max
1≤k≤n

|Sk| ≥ 3α

)
∧ (|Sn| ≥ α)

]

+Pr

[(
max
1≤k≤n

|Sk| ≥ 3α

)
∧ (|Sn| < α)

]

≤ Pr [|Sn| ≥ α] + Pr

[(
max
1≤k≤n

|Sk| ≥ 3α

)
∧ (|Sn| < α)

]
.
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(Continue from the previous slide)

Pr

[
max
1≤k≤n

|Sk| ≥ 3α

]
≤ Pr [|Sn| ≥ α] + Pr

[(
max
1≤k≤n

|Sk| ≥ 3α

)
∧ (|Sn| < α)

]
= Pr [|Sn| ≥ α] + Pr [(A1 ∨ A2 ∨ · · · ∨ An) ∧ (|Sn| < α)]

= Pr [|Sn| ≥ α] +

n∑
k=1

Pr [Ak ∧ (|Sn| < α)] ({Ak}nk=1 are disjoint events.)

= Pr [|Sn| ≥ α] +
n−1∑
k=1

Pr [Ak ∧ (|Sn| < α)] (Pr[An ∧ (|Sn| < α)] = 0)

≤ Pr [|Sn| ≥ α] +

n−1∑
k=1

Pr [Ak ∧ (|Sn − Sk| > 2α)]

|Sn| < α ∧ |Sk| ≥ 3α

⇒ (−α < Sn < α ∧ Sk ≥ 3α) ∨ (−α < Sn < α ∧ Sk ≤ −3α)

⇒ (Sn < α ∧ −Sk ≤ −3α) ∨ (Sn > −α ∧ −Sk ≥ 3α)

⇒ (Sn − Sk < −2α) ∨ (Sn − Sk > 2α)

⇒ |Sn − Sk| > 2α.
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(Continue from the previous slide)

Pr

[
max
1≤k≤n

|Sk| ≥ 3α

]
≤ Pr [|Sn| ≥ α] +

n−1∑
k=1

Pr [Ak ∧ (|Sn − Sk| > 2α)]

= Pr [|Sn| ≥ α] +
n−1∑
k=1

Pr [Ak] Pr [|Sn − Sk| > 2α]

(by the independence of Ak and |Sn − Sk|)
≤ Pr [|Sn| ≥ α] + max

1≤k≤n
Pr [|Sn − Sk| ≥ 2α]

≤ Pr [|Sn| ≥ α] + max
1≤k≤n

Pr [|Sn| ≥ α ∨ |Sk| ≥ α]

(Notably, |x| < α and |y| < α imply |x− y| < 2α.)

≤ Pr [|Sn| ≥ α] + max
1≤k≤n

(Pr [|Sn| ≥ α] + Pr [|Sk| ≥ α])

≤ max
1≤k≤n

Pr [|Sk| ≥ α] + max
1≤k≤n

Pr [|Sk| ≥ α] + max
1≤k≤n

Pr [|Sk| ≥ α]

= 3 max
1≤k≤n

Pr [|Sk| ≥ α] .

�



Convergence of X1 +X2 + · · · +Xn 22-25

Theorem (implication of Kolmogorov’s zero-one law) If X1, X2, . . . are

independent binary 0-1 random variables, then Pr

[ ∞∑
k=1

Xk < ∞
]
is either 1 or 0.

Proof:

• Define the event Ak = [Xk = 1]. Then A1, A2, . . . are independent events. By

the two Borel-Cantelli lemmas, Pr[An i.o] is either 1 or 0.

Theorem 4.3 (First Borel-Cantelli lemma)
∞∑
n=1

P (An) < ∞ ⇒ P

(
lim sup
n→∞

An

)
= P (An i.o.) = 0.

Theorem 4.4 (Second Borel-Cantelli Lemma) If {An}∞n=1 forms

an independent sequence of events,
∞∑
n=1

P (An) = ∞ ⇒ P

(
lim sup
n→∞

An

)
= P (An i.o.) = 1.

• Apparently, if A1, A2, . . . are valid infinitely often in n with probability 1,
n∑

k=1

Xk = ∞ with probability 1.
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• On the contrary, ifA1, A2, . . . are valid finitely many times in n with probability

1,
∞∑
k=1

Xk < ∞ with probability 1. �

Theorem (general version) If X1, X2, . . . are independent random variables,

then Pr

[ ∞∑
k=1

Xk < ∞
]
is either 1 or 0.

• In general, to determine whether
∞∑
k=1

Xk converge or diverge is hard.

• In what follows, we provide theorems that can tell whether
∞∑
k=1

Xk converges

by their moments.
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Theorem 22.6 Suppose that X1, X2, . . . are pair-wise independent with zero

mean. Then, if

∞∑
k=1

Var[Xk] < ∞,

∞∑
k=1

Xk < ∞ with probability 1.

Proof:

Again, I use a different proof from that in Billingsley’s book, which is eas-

ier to understand for engineering-major students. It suffices to prove that

Pr[maxk≥1 |Sn+k| < ∞] = 1.

• First, for any n fixed, |Sn| < ∞ with probability 1 because it were not true,

we have Pr[|Sn| = ∞] > 0. Derive

Pr[|Sn| ≥ L] ≤ 1

L2

n∑
k=1

Var[Xk]. (by zero mean and Chebyshev’s ineq)

As Pr[|Sn| ≥ L] is non-increasing in L, its limit exists, and

lim
L→∞

Pr[|Sn| ≥ L] = 0,

a contradiction to Pr[|Sn| = ∞] > 0.
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• Secondly, for any n fixed, maxk≥1 |Sn+k − Sn| < ∞ with probability 1 , be-

cause if Pr[maxk≥1 |Sn+k−Sn| = ∞] > 0, then a contradiction can be obtained

as follows.

Pr

[
max
1≤k≤r

|Sn+k − Sn| ≥ L

]
≤ 1

L2
Var [Sn+r − Sn] (by Theorem 22.4 on Slide 22-19)

=
1

L2
Var [Xn+1 + · · · +Xn+r]

=
1

L2

r∑
k=1

Var[Xn+k] (by pair-wise independence)

≤ 1

L2

∞∑
k=1

Var[Xn+k].

Since Pr [max1≤k≤r |Sn+k − Sn| ≥ L] is non-decreasing in r, its limit exists by

the monotone convergence theorem. Thus,

lim
r→∞Pr

[
max
1≤k≤r

|Sn+k − Sn| ≥ L

]
= Pr

[
max
k≥1

|Sn+k − Sn| ≥ L

]
≤ 1

L2

∞∑
k=1

Var[Xn+k].

Then by taking L to infinity, we obtain the same contradiction as the previous

item.
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• Thirdly,

Pr[|Sn| < ∞] = 1 and Pr

[
max
k≥1

|Sn+k − Sn| < ∞
]
= 1

imply

Pr

[
|Sn| < ∞∧max

k≥1
|Sn+k − Sn| < ∞

]
= 1.

Pr(A) = 1 and Pr(B) = 1 ⇒ Pr(A ∪B) = 1

⇒ Pr(A ∩B) = Pr(A) + Pr(B)− Pr(A ∪B) = 1.

By

max
k≥1

|Sn+k| ≤ max
k≥1

(|Sn+k − Sn| + |Sn|) ≤ max
k≥1

(|Sn+k − Sn|) + |Sn|,
we get:

Pr

[
max
k≥1

|Sn+k| < ∞
]

≥ Pr

[
|Sn| < ∞∧max

k≥1
|Sn+k − Sn| < ∞

]
= 1.

�
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Example 22.2 The Rademacher functions {rn(ω)}∞n=1 on a unit interval are

defined as:

rn(ω) =

{
+1, if dn = 1;

−1, if dn = 0,

where ω = .d1d2d3 . . . is a number lying in [0, 1).

Let W be uniformly distributed over [0, 1).

Define Rn = rn(W ). Then {Rn}nn=1 is i.i.d. with uniform marginal.

Also, define Xn = anRn, where {an}∞n=1 is a constant sequence.

As a result,

Var[Xn] = a2nVar[Rn] = a2n.

By Theorem 22.6,

∞∑
n=1

Var[Xn] =
∞∑
n=1

a2n < ∞ ⇒
∞∑
n=1

Xn < ∞ with probability 1.

�
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A small note on Sn =
∑n

k=1Xk:

• If Sn converges with probability 1, then Sn converges to some finite random

variable S with probability 1.
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Theorem 22.7 For an independent sequence {Xn},
∞∑
k=1

Xk converges with probability 1

if, and only if,
∞∑
k=1

Xk converges in probability.

Proof:

1. ∞∑
n=1

Xn converges with probability 1

implies
∞∑
n=1

Xn converges in probability

is a known result.
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1. Sn converges with probability 1 if

lim
n→∞Pr

[
max
k≥1

|Sn+k − Sn| > ε

]
= 0.

2. That Sn converges to S in probability implies

lim sup
n→∞

Pr [|Sn − S| > ε] = 0.

2. Suppose Sn converges to S in probability.

Then from Theorem 22.5 (cf. Slide 22-22),

Pr

[
max
1≤k≤r

|Sn+k − Sn| > 3ε

]
≤ 3 max

1≤k≤r
Pr [|Sn+k − Sn| ≥ ε]

≤ 3 max
1≤k≤r

(
Pr

[
|Sn+k − S| ≥ ε

2

]
+ Pr

[
|Sn − S| ≥ ε

2

])
= 3 max

1≤k≤r
Pr

[
|Sn+k − S| ≥ ε

2

]
+ 3Pr

[
|Sn − S| ≥ ε

2

]
≤ 3max

k≥1
Pr

[
|Sn+k − S| ≥ ε

2

]
+ 3Pr

[
|Sn − S| ≥ ε

2

]
.
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So,

Pr

[
max
k≥1

|Sn+k − Sn| > 3ε

]
= lim

r→∞Pr

[
max
1≤k≤r

|Sn+k − Sn| > 3ε

]
≤ 3max

k≥1
Pr

[
|Sn+k − S| ≥ ε

2

]
+ 3Pr

[
|Sn − S| ≥ ε

2

]
,

which implies

lim sup
n→∞

Pr

[
max
k≥1

|Sn+k − Sn| > 3ε

]
≤ 3 lim sup

n→∞
max
k≥1

Pr
[
|Sn+k − S| ≥ ε

2

]
+ 3 lim sup

n→∞
Pr

[
|Sn − S| ≥ ε

2

]
= 3 lim

n→∞ sup
�≥n

max
k≥1

Pr
[
|S�+k − S| ≥ ε

2

]
+ 3 lim sup

n→∞
Pr

[
|Sn − S| ≥ ε

2

]
= 3 lim

n→∞ sup
k′≥n+1

Pr
[
|Sk′ − S| ≥ ε

2

]
+ 3 lim sup

n→∞
Pr

[
|Sn − S| ≥ ε

2

]
= 3 lim sup

n→∞
Pr

[
|Sn − S| ≥ ε

2

]
+ 3 lim sup

n→∞
Pr

[
|Sn − S| ≥ ε

2

]
= 0.

�
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• Alternative conditions for convergence with probability 1.

Theorem 22.8 (three-series theorem) Suppose that {Xn}∞n=1 is indepen-

dent. Then

1. If
∞∑
n=1

Pr[|Xn| > c],
∞∑
n=1

E[XnI[|Xn|≤c]], and
∞∑
n=1

Var[XnI[|Xn|≤c]]

converges for some positive c, then
∑∞

n=1Xn converges with probability 1.

2. If
∑n

n=1Xn converges with probability 1, then

∞∑
n=1

Pr[|Xn| > c],
∞∑
n=1

E[XnI[|Xn|≤c]], and
∞∑
n=1

Var[XnI[|Xn|≤c]]

converge for all positive c.

Proof: Omitted. �
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Example 22.3 Continue from Example 22.2.

DefineXn = anRn, where {an}∞n=1 is a constant sequence, and {Rn}∞n=1 is i.i.d. with

Pr[Rn = 1] = Pr[Rn = −1] = 1/2.

By Theorem 22.6,

∞∑
n=1

Var[Xn] =
∞∑
n=1

a2n < ∞ ⇒
∞∑
n=1

Xn converges with probability 1.

By Theorem 22.8,

∞∑
n=1

Xn converges with probability 1 ⇒
∞∑
n=1

Var [anRn] =
∞∑
n=1

a2n < ∞.

So
∞∑
n=1

Xn converges with probability 1 if, and only if,
∞∑
n=1

a2n < ∞.



Three-series theorem 22-37

By Theorem 22.8,

∞∑
n=1

Xn converges with probability 1 ⇒
∞∑
n=1

Pr [|anRn| > c] =
∞∑
n=1

I[|an|>c] < ∞.

⇒ an is bounded infinitely often in n. �


