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Law of large numbers revisited 22-1

Theorem 22.1 (advanced version of strong law of large numbers) If

X1, Xo, ... are pair-wise independent with common marginal distribution and
finite mean, then

S.

— — E[X;] with probability 1,

n

where S, = X7 + Xo+--- + X,,.

Proof (due to Etemadi): Assume without loss of generality that X; is non-negative.

If the theorem holds for non-negative random variables, then

S 1n 1 - w.p. 1
=N X -2 X ™ EBIX{ - E[X{] = E[X4].
w =X 2 X T B — B = Bl

e Consider the truncated random variable Yy = X;Ijx, <4, and denote S, =
> i1 Y. (Notably, Y1, Y5, ... is not identically distributed, but only pair-wise

independent.)
Then for k£ <n,

ElY)] = E[Xi1ix,<y] = E[X{Iix,<y] < E[X{Iix,<q) = E[Y,7].
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The reason of introducing a truncated version of X, is because E[X?] may

be infinity! This is the key technique used in this proof.

o Claim: For u, = |a"| with a > 1 fixed,

S = B[S,

Un
u
n=1 n

>€] < oo foranye > 0.

Theorem 4.3 (First Borel-Cantelli lemma)
ZP ) <oo=P (lim Sup An) = P(A, i.0.) =0.

n—oo

Proof of the claim: By Chebyshev’s inequality,

> S — B[Sk ] “Var[Si ] 1 = E
SR s R sa

n=1 n=1

where by pair-wise independence,

Var[S | Z\/ar Vi) < u, B[Y2).
k=1
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Hence,
nipr [ Sy — E[szzn}‘ N 5] - é i E[fn] ) é i EIX2 Jf“"%ﬂ
_ énzo? E[Xfi[:lwﬂ _ é%ﬂnoo ;m; E[Xfi[:lqn]]
- ;ﬂlgnooE X7 Z X1<un] (fn(z) = 27 zm; uin[[l’flm])
1 N

= —F X2 lim Z —IX1<un] (by monotone conv. thm.)
m—0o0

i 1
2
= gE X E :_u [[Xléun]]
B n=1 "

Monotone convergence theorem: If for every positive integer m and every x in
the support X of random variable X, 0 < f,,(z) < fi11(z), then

lim E[fn(X)] = lim / Ffonl)dPy(z /X lim fm(x)dPX(x):E[lim fm(X)]

m—00 m—o0 m—o0 m—o0
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Observe that for any x > 0 fixed,

(0.9]

1 1
Z u_I[SUSUn] - Z o

Uu
n=1 " {neN : u,>x} "

1
— Z—, where N = min{n € N: u, > z}

n>N n

> ) 1
< Z@’ (since u, = |"] and |y]| > 5Y for y > 1)

n>N

/2 )
 \l—a1l) ¥

< ( 2 )1. (by > o] = uy > )

a—1/ x

This concludes that:

S [eta

Uu
n=1 n

1
>5] < —F
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e By the above claim and the first Borel-Cantelli lemma,

St — E[S* ]

Un Un

— 0 with probability 1.
Un

e By the Cesaro-mean theorem (cf. the next slide),

lim EY, | (— lim E[Y, ] = lim E[Xll[qum]]) = F[X1] <
Uy, — 00 -

n—oo n—oo
implies
1 ] &
—FE|ST — EY. — E|X — 00.
IS = -3 B = BLXi] wsno oo
Thus,

Xx

. — FE[X;] with probability 1.
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Theorem (Cesaro-mean theorem) If lim, ,a, = a and b, =
(1/n)> " | a;, where a is finite, then lim, . b, = a.

Proof: lim, ., a, = a implies that for any € > 0, there exists N such
that for all n > N, |a, — a|] < e. Then

n

<=Y lai-a

1=1

n

> (@i a)

1=1

b —a| =

n

1 & 1
— Ez;]ai—a\%—ﬁ Z ‘CLZ'—CL’
—

1=N+1

N
1 n— N
S ﬁl_zél ’ai—a‘+ o E.

Hence, lim,, o |b, — @] < e. Since € can be made arbitrarily small,

lim,, o0 b, = a. O
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Sy — Sy

n

o Claim: — 0 with probability 1.

n
Proof of the claim:

D OPHX, # Y] = ) Pr(X, # Xl <)
n=1 n=1
= Z Pr[X,, > n]
n=1

= Z Pr[X; > n] (by “identical distributed” assumption)

n=1
< / PI”[Xl > t]dt
0

= FE[Xi] (by non-negativity assumption of Xj)

< OQ.
Hence, the first Bore-Cantelli lemma gives that
Pr[(X,, # Y,) is true infinitely often in n| = 0,
equivalently,

Pr[(X,, # Y,) is true finitely many in n| = 1.
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This implies that
Pr{(3U ={ny,no,...,nn}) X,y #Y, only forn € U] = 1.
The above result, together with the fact that
Pr((X, —Y,) < oo] = Pr [ Xpl[x,=n < 00| = Pr[Xilx,o, < 00| =1

because E[X;] < oo, leads to:

X, —Y) 4+ (X, — Y,
Pr[lim( ! ks al )—O]
n—0o0 n
N PRCAS AR v
n—00 n

= 1.

Now we have

(S, — S¥)/n — 0 with probability 1.

o S, Ju, — E[X;| with probability 1, where u,, = [a" | for some a > 1 fixed, and

The above two results directly imply S, /u, — E[X;] (as n goes to infinity)
with probability 1.

[t remains to show Sj/k — E[X1] (as k goes to infinity) with probability 1.
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e For u, <k < w1,

Un Sun o Sun
Up+1 Un Up+1
B X1_|_..._|_Xun
Un+1
- X1_|_..._|_Xun
- k
c Xt A X+ X | S
- k k
B R T
= U,
Xt A X XA X
= U
_ SurH—l
Up
_ un—i—lsun—i—l
Unp, u?”H—l7

since X, is assumed non-negative.
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Because g 1
D2y~ BX] with probability 1,
Up+1 Up Q
and g
Unt1Pupyy — aE[X1] with probability 1,
Up Up+1
we obtain:
1 Sk Sk : il;
—F[X;] < liminf — < limsup — < aE[X;] with probability 1.
o k—00 koo K

As the above statement is valid for any a > 1, we conclude that

S
f — E[X;] with probability 1.



Law of large numbers revisited 2211

Theorem If X, Xy, ... are pair-wise independent with common marginal dis-
tribution whose mean exists (could be infinity as defined in Slide 21-1), then

1 n
— E X — E[X;] with probability 1.
n

k=1

Proof: Now, based on the previous theorem, we only need to prove the current
theorem for the case of E[X;] =

e Suppose without loss of generality that F[X;] < oo and F[X{] = oco. Then

— Z X, — E[X, ] with probability 1.

o Let Y, (u) = X,/ Ijx, <, and observe that

1 < 1 —

— X > = Y, d— Yi(u ElY, ith probability 1.
nz k—nz_: r(u), an Z k(1) — EYi(u)] with probability
Hence,

1 n
- E X" > E[Yi(u)] (as n goes to infinity) with probability 1.
n

k=1
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(Pr [lim inf A,, > b}
n—0o0
Pr[A, > B,] = 1 > Pr [hm inf A, > b A liminf B, = b]
= [JEEOB” =0 =1 > Pr [hmmfAn > liminf B, A liminf B, = b}
n—o0 n—0o0 n—0o0
— 1

\

e Since the above statement is valid for any u, and E[Y;(u)] — 0o as u — oo,
1= o, | .
— Z X, — oo with probability 1.
(L

e Finally,

] — ] —
N X =2) XF-IZN X ith probability 1.
; L n}; h n}; . — oo with probability




Limit of normalized Poisson 29-13

Next, we introduce a famous result for Possion distribution, whose validity can be
proved by weak-law or Chebyshev’s-inequality argument.

Lemma (degeneration of normalized Poisson) Let Y), be a Poisson ran-
dom variable with parameter A, and let G)y(+) be the cdf of a Y)/A. Then

{1, if ¢t >1;

lim Ga() =9 o it¢ <1,

A—00

Proof: By Chebyshev’s inequality;,

i

as A — 00. o

Val"[Y)\] - A 1

2222 \222 A2 =0

Yy — A
AA |zs] = Pr[[Vy — A\ > e\ <
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Let X be a non-negative random variable.

Derive the one-sided Laplace transform of the distribution of X as:

Mx(s), = / e *dFx(x) for s > 0.
0

Notably, Mx(s)y = [, e 5dFx(z) < [,;” dFx(x) =1 is finite for all s > 0, but
may be infinity for s < 0.

Here, we are only interested in those s with s > 0; hence, it is named the one-sided
Laplace transform.

In addition, Mx(s), = Mx(—s), where Mx(-) is the moment generating function
of X.
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Proposition Fix a non-negative random variable X. For y > 0,

LS?JJ (_1)]<; y (k)
Pr[X <y] = Sli_gloz S My7(s)+.
k=0 '

Proof: For s > 0,

MP(s), = (=1)* / N 2Fe qFy ().
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Hence, for s > 0,

Lsy] 3 Lsy] k 00

—1 —1
g ( k') 551“‘;]\4)@(s)Jr = ( k') s ((—1)k/ xkesxdFX(x))
k’:O ' k: ) O
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As a result,
SyJ > Y > Y
tin 3 S0 = i [ 6 () are = [ i G (3) arte)

since by dominated convergence theorem, f,(x) = G.(y/x) <1 = g(z) for every

n, and / g(x)dFx(x) =1 < o0.
0

Give a sequence of non-negative p-measurable function f, with lim f,(x) = f(z)

n—0o0
for all x € X, except on a subset of X with p-measure zero.
Lemma (Fatou’s lemma) / [ lim fn(:c)} ) < liminf / fol

X n— o0 n—o0

Fatou’s lemma indicates that in general, we cannot interchange the order of inte-
gration and limit operation.

Theorem (Lebesgue convergence theorem or dominated conver-
gence theorem) If, in addition to non-negativity, f,,(x) < g(x) for all z € &,
except on a subset of X with g-measure zero, and g(-) is p-integrable in X' (namely,

[ stowuida) < o) then [ [t ()] n(de) = lim [ fi(on(da)
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Consequently, (for y that has no point mass),

I M _ lim G., (—) dF
i 3 = [l G (1) dFvio
Yy
= / de(:C)
0
= Pr[X <y

(How to determine Pr[X < y| when X has point mass at y? Hint: Right-continuity)
[

Corollary The distribution of a non-negative random variable is uniquely deter-

mined by its moment generating function Mx(s) at s < 0.

Proof: For y > 0,

[sy] k k
o (=1)" 40" Mx(~s)
PriX <y = Slglc;lo kg_o T v

Determining Pr[X = 0] by the right-continuity of cdf gives the desired result. O

Final comment: In fact, to determine the cdf of a non-negative random variable
X, we only need to know Mx(s) for s < —sq for any sy > 0.
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The maximal inequalities concern the maxima of partial sums.

Theorem 22.4 (due to Kolmogorov) Suppose that X7, Xo, ... are indepen-
dent with zero mean and finite variances (not necessarily identically distributed).
Then for o > 0,

1
Pr [max |Sk| > Oz] < —QV&Y[Sn]a
1<k<n o

where S, = X7 + - -+ X,,.

Chebyshev’s inequality said that

1
Pr{|S,| > a] < —Var[S]

This theorem strengthens the result that a=*Var[S,,] not only bounds Pr[|S,,| > al,
but also bounds Pr | maxi<x<n |Sk| > a].

Proof: Define the event

Ap=[IS1] < an S <aA---A[Spi| < a NSk > al.
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Since there is exactly one of { Ay }72, is true,

E[S? = E[S? (Lo, + Tay+ -+ 1o, +1ap, +-)]

IV

L [ng ([A1 T lgy A+ [An)}

— Z E [SilAk}
k=1

= > B [(SE+251(S, — i) + (S0 — Si)?) L
k=1

> N B[(SE+ 2540 — Si)) La,]
k=1

— Z E [S%IAk + QSk:IAk(Sn - Sk?)]
k=1

= > (B[SiLy] +2E [SiLa, (S, — S)])
k=1

n

= (E [Sila,] +2F [Sila,] E[S, — SH])

where the last step follows from the independence between Si.14, and S, — Si.
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Continue the previous derivation:

n

B[S = Y (B [Sila] +2B [Sia] E[S, - Si])

k=1

- Z E [SilAk] (by the zero mean assumption, E[S, — Si] = 0)
k=1

1V

Z E[a”I4,] (14, =1 only when |S;| > «)
k=1

= o’y PrlA]
k=1

= o’ Pr [max |Sk| > oz] :

1<k<n
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The previous theorem provides a bound for the cdf of nax | Sk| using the second
<k<n

moment.

We can also bound the cdf of ax |Sk| by the cdf of |Sg| for 1 < k < n.

Theorem 22.5 (due to Etemadi) Suppose that X7, Xy, ... are independent.
For a > 0,

Pr [max | Sk| > 304] < 3 max Pr[|Sy| > a.

1<k<n 1<k<n

Proof: Define the event
Ak = []Sl\ < 3a A ’SQ‘ < 3a NN ’Sk:—l‘ < 3a N ‘S/{;‘ > 304].

Then

Pr [max |Sk| > 304] = Pr [(max 1Sk > 304) A (|Sn] > oz)]

1<k<n 1<k<n

+Pr K max | Sy > 3a> A (]S, < a)]

1<k<n

1<k<n

< Pr[|S,| > o] + Pr K max |Sy| > 3a> A (S| < a)] |
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(Continue from the previous slide)

Pr [max |Sk| > 304] < Pr[|S,] > o]+ Pr [(max |Sk| > 304) A (S| < oz)]

1<k<n 1<k<n

= Pr[|S,| > a] + Prl(A1V Ay V-V A A (|Su] < )]

= Pr[|S,]| > o] + Z Pr[Ap A (]S, < «)]  ({Ax})_, are disjoint events.)

k=1
n—1

= Pr{|S] > o] + Y PriAc A(IS.] < )] (Pr[A, A (|S,] < a)] = 0)

n—1

< Pr{|Sy| > al+ ) PriAg A (IS, — Si| > 2a)]
k=1

1Sy < a A |Sk| > 3a

= (—a< S, <aAS;>3a)V(—a< S, <aAS; < —-3a)
= (Sp<aAN=5<-=3a)V(S,>—-aA-=5>3a)

= (S, — Sk < —2a) V (S, — Sk > 2a)

= ]Sn—Sk\>2a.
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(Continue from the previous slide)

n—1
Pr [max 1Sk > 304] < Pr[|S,] > a] + ZPr [Ar A (|Sh — Sk| > 2a)]

1<k<n
- k=1
n—1
= Pr[|S,| > a] + > Pr[Ay] Pr[|S, — S| > 20]
k=1
(by the independence of A and |S,, — Sk|)

< Pr[|S,] > a] + uax Pr|S, — Sk| > 2a]
< Pr[|S,| > o] + éﬁé Pr|S,| > aV [Si| > a

(Notably, || < a and |y| < a imply |x — y| < 2a.)

< Pr(|S,] > a] + max (Pr[|S,| > a] + Pr(|S| > o))

< max Pr[|Sy| > a] + max Pr[|Si| > ] + max Pr[|Si| > a]
1<k<n 1<k<n 1<k<n

= 3 max Pr[|Sy| > af.

1<k<n
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Theorem (implication of Kolmogorov’s zero-one law) If X;, X5, ... are

independent binary 0-1 random variables, then Pr [Z X < oo] is either 1 or 0.
k=1

Proof:

e Define the event Ay, = [ X}, = 1]. Then Ay, A, ... are independent events. By
the two Borel-Cantelli lemmas, Pr[A,, i.0] is either 1 or 0.

Theorem 4.3 (First Borel-Cantelli lemma)
ZP(An) <oo=P (hm sup An) = P(A, i.0.) =0.
n=1

n—oo

Theorem 4.4 (Second Borel-Cantelli Lemma) If {4, }°°, forms
an independent sequence of events,

> P(A))=co=P (hm sup An) = P(A,io0) =1
n=1

n—oo

e Apparently, if A;, Ao, ... are valid infinitely often in n with probability 1,
n

Z X} = oo with probability 1.
k=1
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e On the contrary, if Ay, Ao, ... are valid finitely many times in n with probability

1, Z X} < oo with probability 1. O
k=1
Theorem (general version) If X, Xy, ... are independent random variables,

then Pr [Z X < oo is either 1 or 0.
k=1

(0.¢}
e [n general, to determine whether Z X converge or diverge is hard.
k=1
(0.¢}
e In what follows, we provide theorems that can tell whether Z X converges

k=1
by their moments.




Convergence of X1+ Xo+--- 4+ X},

22-27

Theorem 22.6 Suppose that X, Xs, ... are pair-wise independent with zero
0 0

mean. Then, if ZVar[X k] < 00, Z X < oo with probability 1.

k=1 k=1

Proof:

Again, I use a different proof from that in Billingsley’s book, which is eas-

ier to understand for engineering-major students.
Pr[maxy>1 | Sp1x| < oo] = 1.

It suffices to prove that

e Lirst,

for any n fixed, |S,| < oo with probability 1

we have Pr||S,| = oo] > 0. Derive

1

because it were not true,

Pr[|S,| > L] < — ZVar[X k|- (by zero mean and Chebyshev’s ineq)

L2
k=1

As Pr[|S,,| > L] is non-increasing in L, its limit exists, and

lim Pr[|S,| > L] = 0,
L—o0

a contradiction to Pr[|.S,| = oo] > 0.
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e Secondly, for any n fixed, |maxg>1 [Snpir — Sn| < 0o with probability 1|, be-
cause if Prlmaxy>1 |Syir— Sn| = 00] > 0, then a contradiction can be obtained
as follows.

1
ﬁ\/ar [Spir — S (by Theorem 22.4 on Slide 22-19)

1
= —5Var[Xop1+ oo+ X

IA

Pr | max S, — Su| > L]

1<k<r

1 T
= 73 Z Var[X,, 1] (by pair-wise independence)
k=1

1 o0
S ﬁ Z Va;r[Xn+k].
k=1

Since Pr[maxi<g<, [ Sy — Sn| > L] is non-decreasing in 7, its limit exists by
the monotone convergence theorem. Thus,

r—00 1<k<r

. I
lim Pr | max S, — Sp| > L] = Pr [%3¥ysn+k — Syl > L] < 72 ;Var[XnJrk].

Then by taking L to infinity, we obtain the same contradiction as the previous
item.
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e Thirdly,
Pr[|S,| <oolJ=1 and Pr [rl?gqum —S,] < oo] =1

imply
Pr||Sy] < oo A Iilgfc\SnJrk — S| < oo] = 1.

Pr(A)=1and Pr(B)=1 = Pr(AUB) =1
= Pr(ANB)=Pr(A)+Pr(B) - Pr(AUB) = 1.

By
X | Sy < AX (S — Sl + |Sn]) < max([Syer — Sal) +15nl;

we get:

Pr [max\SnJrk] < oo] > Pr []Sn] < 0o Amax Sy — Sp| < oo| =1
k>1 k>1

O
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Example 22.2 The Rademacher functions {r,(w)}>°; on a unit interval are

defined as:

ro(w) =

+1, it d, =1;
—1, if d, =0,

where w = .dydayds . . . is a number lying in [0, 1).

Let W be uniformly distributed over [0, 1).

Define R, = r,(W). Then {R,,}"_; is i.i.d. with uniform marginal.
Also, define X, = a, R, where {a,}>° is a constant sequence.

As a result,

Var[X,] = a’Var[R,] = a’

By Theorem 22.6,

ZVar[Xn] = Z al < oo = ZX” < oo with probability 1.
n=1
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A small note on S, = > ;| Xi:

e If S, converges with probability 1, then S, converges to some finite random
variable S with probability 1.
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if, and only if,

Theorem 22.7 For an independent sequence {X,,},

Z X converges with probability 1
k=1

Z X} converges in probability.
k=1

Proof:

implies

1s a known result.

o]
Z X, converges with probability 1

n=1

o]
Z X, converges in probability

n=1
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1. S, converges with probability 1 if

lim Pr |max|S,x — Sp| >¢| =0.
N—00 k>1

2. That S, converges to S in probability implies
limsup Pr[|S, — S| > ¢] = 0.

n—o0

2. Suppose .5, converges to S in probability.

Then from Theorem 22.5 (cf. Slide 22-22),

_ < — >
Pr gggr\Smk Sl >3€] < 31T£]?§TPT[’Sn+k Sn| > €]

< 3 uax (Pr (S — S| 2 5] +Pr |18, — S| 2 5|

1<k<r

= 3 max Pr []Sn+k—S] > g] + 3Pr [\Sn—S\ > g]

1<k<r

5 5
< — — — —
SIilzachr []Sn+k S| > 2} +3Pr [\Sn S| > 2] .
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S0,

Pr [rggﬁSMk — Syl > 38] = lim Pr [max 1Sk — Syl > 38]

r—00 1<k<r

€ 3

which implies

lim sup Pr [Iilgii 1Sk — S| > 3¢

n—oo

< 3limsup max Pr []Sn% -S| > g} + 3lim sup Pr [\Sn -S| > g]

n—oo k=1 n—00

= 3 lim sup maxPr [\S@rk -S| > g} + 3lim sup Pr []Sn — S| > E]

=00 p>p k21 n—00 2
= 3 lim sup Pr []Sk/ — S| > E} + 3 lim sup Pr []Sn — S| > E}
n—oo ]{3’2714-1 2 n—oo 2

= 3limsup Pr []SH—S] > %} + 3 lim sup Pr [\Sn—S\ > E] = 0.

n—o0 n—o0 2
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e Alternative conditions for convergence with probability 1.

Theorem 22.8 (three-series theorem) Suppose that {X,,}>° is indepen-

dent. Then
1. If
 PrXa| >d, ) EXuIix,<ql, and > Var[X,Ijx,<d]
n=1 n=1 n=1

converges for some positive ¢, then Y| X, converges with probability 1.

2. If > " X, converges with probability 1, then

Y PlIXal>d, > ElXuljx<dl, and Y Var[XuJjx, <
n=1 n=l1 n=1

converge for all positive c.

Proof: Omitted. [
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Example 22.3 Continue from Example 22.2.
Define X,, = a, R,,, where {a, }°°, is a constant sequence, and { R,,}>2; isi.i.d. with
Pr[R, =1] =Pr|R, = —1]=1/2.

By Theorem 22.6,

Z Var[X,] = Z al < oo = Z X,, converges with probability 1.

By Theorem 22.8,

a<oo.

Mg

Z X, converges with probability 1 = Z Var [a, R

n=1 n=1

S0 Z X, converges with probability 1 if, and only if, Z a? < oo.
n=1

n=1
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By Theorem 22.8,

ZX” converges with probability 1 = Z Prlla,R,| > ] = Z g5 < 00.
n=1 n=1 n=1

= a, is bounded infinitely often in n. O



