Section 22

Sums of Independent Random Variables

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

Theorem 22.1 (advanced version of strong law of large numbers) If X_1, X_2, \ldots are **pair-wise** independent with common marginal distribution and finite mean, then

$$\frac{S_n}{n} \to E[X_1] \quad \text{with probability 1,}$$

where $S_n = X_1 + X_2 + \dots + X_n$.

Proof (due to Etemadi): Assume without loss of generality that X_i is non-negative.

If the theorem holds for non-negative random variables, then

$$\frac{S_n}{n} = \frac{1}{n} \sum_{k=1}^n X_k^+ - \frac{1}{n} \sum_{k=1}^n X_k^- \xrightarrow{w.p.\,1} E[X_1^+] - E[X_1^-] = E[X_1].$$

• Consider the truncated random variable $Y_k = X_k I_{[X_k \le k]}$, and denote $S_n^* = \sum_{k=1}^n Y_k$. (Notably, Y_1, Y_2, \ldots is not identically distributed, but only pair-wise independent.)

Then for $k \leq n$,

$$E[Y_k^2] = E[X_k^2 I_{[X_k \le k]}] = E[X_1^2 I_{[X_1 \le k]}] \le E[X_1^2 I_{[X_1 \le n]}] = E[Y_n^2]$$

The reason of introducing a truncated version of X_n is because $E[X_n^2]$ may be infinity! This is the key technique used in this proof.

• Claim: For
$$u_n \triangleq \lfloor \alpha^n \rfloor$$
 with $\alpha > 1$ fixed,

$$\sum_{n=1}^{\infty} \Pr\left[\left|\frac{S_{u_n}^* - E[S_{u_n}^*]}{u_n}\right| > \varepsilon\right] < \infty \quad \text{for any } \varepsilon > 0.$$

Theorem 4.3 (First Borel-Cantelli lemma)

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P\left(\limsup_{n \to \infty} A_n\right) = P(A_n \text{ i.o.}) = 0.$$

Proof of the claim: By Chebyshev's inequality,

$$\sum_{n=1}^{\infty} \Pr\left[\left|\frac{S_{u_n}^* - E[S_{u_n}^*]}{u_n}\right| > \varepsilon\right] \leq \sum_{n=1}^{\infty} \frac{\operatorname{Var}[S_{u_n}^*]}{u_n^2 \varepsilon^2} \leq \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{E[Y_{u_n}^2]}{u_n},$$

where by pair-wise independence,

$$\operatorname{Var}[S_{u_n}^*] = \sum_{k=1}^{u_n} \operatorname{Var}[Y_k] \le u_n E[Y_{u_n}^2].$$

Hence,

$$\begin{split} \sum_{n=1}^{\infty} \Pr\left[\left| \frac{S_{u_n}^* - E[S_{u_n}^*]}{u_n} \right| > \varepsilon \right] &\leq \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{E[Y_{u_n}^2]}{u_n} = \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{E[X_{u_n}^2 I_{[X_{u_n} \le u_n]}]}{u_n} \\ &= \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{E[X_1^2 I_{[X_1 \le u_n]}]}{u_n} = \frac{1}{\varepsilon^2} \lim_{m \to \infty} \sum_{n=1}^m \frac{E[X_1^2 I_{[X_1 \le u_n]}]}{u_n} \\ &= \frac{1}{\varepsilon^2} \lim_{m \to \infty} E\left[X_1^2 \sum_{n=1}^m \frac{1}{u_n} I_{[X_1 \le u_n]} \right] \quad (f_m(x) \triangleq x^2 \sum_{n=1}^m \frac{1}{u_n} I_{[x \le u_n]}) \\ &= \frac{1}{\varepsilon^2} E\left[X_1^2 \lim_{m \to \infty} \sum_{n=1}^m \frac{1}{u_n} I_{[X_1 \le u_n]} \right] \quad (by \text{ monotone conv. thm.}) \\ &= \frac{1}{\varepsilon^2} E\left[X_1^2 \sum_{n=1}^\infty \frac{1}{u_n} I_{[X_1 \le u_n]} \right] \end{split}$$

Monotone convergence theorem: If for every positive integer m and every x in the support \mathcal{X} of random variable $X, 0 \leq f_m(x) \leq f_{m+1}(x)$, then

$$\lim_{m \to \infty} E[f_m(X)] = \lim_{m \to \infty} \int_{\mathcal{X}} f_m(x) dP_X(x) = \int_{\mathcal{X}} \lim_{m \to \infty} f_m(x) dP_X(x) = E\left[\lim_{m \to \infty} f_m(X)\right].$$

Observe that for any x > 0 fixed,

$$\sum_{n=1}^{\infty} \frac{1}{u_n} I_{[x \le u_n]} = \sum_{\{n \in \mathbb{N} : u_n \ge x\}} \frac{1}{u_n}$$
$$= \sum_{n \ge N} \frac{1}{u_n}, \text{ where } N = \min\{n \in \mathbb{N} : u_n \ge x\}$$
$$\leq \sum_{n \ge N} \frac{2}{\alpha^n}, \text{ (since } u_n = \lfloor \alpha^n \rfloor \text{ and } \lfloor y \rfloor \ge \frac{1}{2}y \text{ for } y \ge 1)$$
$$= \left(\frac{2}{1-\alpha^{-1}}\right) \frac{1}{\alpha^N}$$
$$\leq \left(\frac{2\alpha}{\alpha-1}\right) \frac{1}{x}. \quad (\text{by } \alpha^N \ge \lfloor \alpha^N \rfloor = u_N \ge x)$$

This concludes that:

$$\sum_{n=1}^{\infty} \Pr\left[\left|\frac{S_{u_n}^* - E[S_{u_n}^*]}{u_n}\right| > \varepsilon\right] \le \frac{1}{\varepsilon^2} E\left[X_1^2 \sum_{n=1}^{\infty} \frac{1}{u_n} I_{[X_1 \le u_n]}\right] \le \frac{1}{\varepsilon^2} \left(\frac{2\alpha}{\alpha - 1}\right) E\left[X_1\right] < \infty.$$

• By the above claim and the first Borel-Cantelli lemma,

$$\frac{S_{u_n}^* - E[S_{u_n}^*]}{u_n} \to 0 \text{ with probability 1.}$$

• By the Cesáro-mean theorem (cf. the next slide),

$$\lim_{u_n \to \infty} E[Y_{u_n}] \quad \left(= \lim_{n \to \infty} E[Y_{u_n}] = \lim_{n \to \infty} E[X_1 I_{[X_1 \le u_n]}] \right) = E[X_1] < \infty$$

implies

$$\frac{1}{u_n} E[S_{u_n}^*] = \frac{1}{u_n} \sum_{k=1}^{u_n} E[Y_k] \to E[X_1] \quad \text{as } n \to \infty.$$

Thus,

$$\frac{S_{u_n}^*}{u_n} \to E[X_1]$$
 with probability 1.

Theorem (Cesáro-mean theorem) If $\lim_{n\to\infty} a_n = a$ and $b_n = (1/n) \sum_{i=1}^n a_i$, where *a* is finite, then $\lim_{n\to\infty} b_n = a$. **Proof:** $\lim_{n\to\infty} a_n = a$ implies that for any $\varepsilon > 0$, there exists *N* such that for all n > N, $|a_n - a| < \varepsilon$. Then

$$\begin{aligned} |b_n - a| &= \left| \frac{1}{n} \sum_{i=1}^n (a_i - a) \right| \le \frac{1}{n} \sum_{i=1}^n |a_i - a| \\ &= \left| \frac{1}{n} \sum_{i=1}^N |a_i - a| + \frac{1}{n} \sum_{i=N+1}^n |a_i - a| \\ &\le \left| \frac{1}{n} \sum_{i=1}^N |a_i - a| + \frac{n - N}{n} \varepsilon. \end{aligned}$$

Hence, $\lim_{n\to\infty} |b_n - a| \leq \varepsilon$. Since ε can be made arbitrarily small, $\lim_{n\to\infty} b_n = a$.

• Claim:
$$\frac{S_n - S_n^*}{n} \to 0$$
 with probability 1.
Proof of the claim:

$$\sum_{n=1}^{\infty} \Pr[X_n \neq Y_n] = \sum_{n=1}^{\infty} \Pr[X_n \neq X_n I_{[X_n \leq n]}]$$

$$= \sum_{n=1}^{\infty} \Pr[X_n > n]$$

$$= \sum_{n=1}^{\infty} \Pr[X_1 > n] \text{ (by "identical distributed" assumption)}$$

$$\leq \int_0^{\infty} \Pr[X_1 > t] dt$$

$$= E[X_1] \text{ (by non-negativity assumption of } X_1)$$

$$< \infty.$$

Hence, the first Bore-Cantelli lemma gives that

$$\Pr[(X_n \neq Y_n) \text{ is true infinitely often in } n] = 0,$$

equivalently,

$$\Pr[(X_n \neq Y_n) \text{ is true finitely many in } n] = 1.$$

This implies that

$$\Pr\left[\left(\exists \mathbb{U} = \{n_1, n_2, \dots, n_M\}\right) X_n \neq Y_n \text{ only for } n \in \mathbb{U}\right] = 1.$$

The above result, together with the fact that

$$\Pr[(X_n - Y_n) < \infty] = \Pr\left[X_n I_{[X_n > n]} < \infty\right] = \Pr\left[X_1 I_{[X_1 > n]} < \infty\right] = 1$$

because $E[X_1] < \infty$, leads to:

$$\Pr\left[\lim_{n \to \infty} \frac{(X_1 - Y_1) + \dots + (X_n - Y_n)}{n} = 0\right]$$

=
$$\Pr\left[\lim_{n \to \infty} \frac{(X_{n_1} - Y_{n_1}) + \dots + (X_{n_M} - Y_{n_M})}{n} = 0\right]$$

= 1.

Now we have

• $S_{u_n}^*/u_n \to E[X_1]$ with probability 1, where $u_n = \lfloor \alpha^n \rfloor$ for some $\alpha > 1$ fixed, and $(S_n - S_n^*)/n \to 0$ with probability 1.

The above two results directly imply $S_{u_n}/u_n \to E[X_1]$ (as *n* goes to infinity) with probability 1.

It remains to show $S_k/k \to E[X_1]$ (as k goes to infinity) with probability 1.

• For
$$u_n \leq k < u_{n+1}$$
,

$$\begin{split} \boxed{\frac{u_n}{u_{n+1}}\frac{S_{u_n}}{u_n}} &= \frac{S_{u_n}}{u_{n+1}} \\ &= \frac{X_1 + \dots + X_{u_n}}{u_{n+1}} \\ &\leq \frac{X_1 + \dots + X_{u_n} + \dots + X_k}{k} \\ &\leq \frac{X_1 + \dots + X_{u_n} + \dots + X_k}{u_n} \\ &\leq \frac{X_1 + \dots + X_{u_n} + \dots + X_k}{u_n} \\ &\leq \frac{X_1 + \dots + X_{u_n} + \dots + X_k + \dots + X_{u_{n+1}}}{u_n} \\ &= \frac{S_{u_{n+1}}}{u_n} \\ &= \frac{\underbrace{u_{n+1}}{u_n}\underbrace{S_{u_{n+1}}}{u_{n+1}}, \end{split}$$

since X_n is assumed non-negative.

Because

$$\frac{u_n}{u_{n+1}} \frac{S_{u_n}}{u_n} \to \frac{1}{\alpha} E[X_1] \text{ with probability } 1,$$

and

$$\frac{u_{n+1}}{u_n} \frac{S_{u_{n+1}}}{u_{n+1}} \to \alpha E[X_1] \text{ with probability } 1,$$

we obtain:

$$\frac{1}{\alpha}E[X_1] \le \liminf_{k \to \infty} \frac{S_k}{k} \le \limsup_{k \to \infty} \frac{S_k}{k} \le \alpha E[X_1] \text{ with probability 1.}$$

As the above statement is valid for any $\alpha > 1$, we conclude that

$$\frac{S_k}{k} \to E[X_1]$$
 with probability 1.

22-10

Theorem If X_1, X_2, \ldots are **pair-wise** independent with common marginal distribution whose mean exists (could be infinity as defined in Slide 21-1), then

$$\frac{1}{n}\sum_{k=1}^{n} X_k \to E[X_1] \text{ with probability 1.}$$

Proof: Now, based on the previous theorem, we only need to prove the current theorem for the case of $E[X_1] = \infty$.

• Suppose without loss of generality that $E[X_1^-] < \infty$ and $E[X_1^+] = \infty$. Then

$$\frac{1}{n} \sum_{k=1}^{n} X_{k}^{-} \to E[X_{1}^{-}] \text{ with probability 1.}$$

• Let $Y_n(u) = X_n^+ I_{[X_n \le u]}$, and observe that

$$\frac{1}{n}\sum_{k=1}^{n} X_{k}^{+} \ge \frac{1}{n}\sum_{k=1}^{n} Y_{k}(u), \text{ and } \frac{1}{n}\sum_{k=1}^{n} Y_{k}(u) \to E[Y_{k}(u)] \text{ with probability 1.}$$

Hence,

$$\frac{1}{n}\sum_{k=1}^{n} X_{k}^{+} \ge E[Y_{k}(u)] \text{ (as } n \text{ goes to infinity) with probability 1.}$$

$$\begin{cases} \Pr[A_n \ge B_n] = 1\\ \Pr\left[\lim_{n \to \infty} B_n = b\right] = 1 \end{cases} \Rightarrow \begin{cases} \Pr\left[\liminf_{n \to \infty} A_n \ge b \right]\\ \ge \Pr\left[\liminf_{n \to \infty} A_n \ge b \land \liminf_{n \to \infty} B_n = b\right]\\ \ge \Pr\left[\liminf_{n \to \infty} A_n \ge \liminf_{n \to \infty} B_n \land \liminf_{n \to \infty} B_n = b\right]\\ = 1 \end{cases}$$

• Since the above statement is valid for any u, and $E[Y_k(u)] \to \infty$ as $u \to \infty$,

$$\frac{1}{n}\sum_{k=1}^{n} X_{k}^{+} \to \infty \text{ with probability 1.}$$

• Finally,

$$\frac{1}{n}\sum_{k=1}^{n} X_{k} = \frac{1}{n}\sum_{k=1}^{n} X_{k}^{+} - \frac{1}{n}\sum_{k=1}^{n} X_{k}^{-} \to \infty \text{ with probability 1.}$$

Limit of normalized Poisson

Next, we introduce a famous result for Possion distribution, whose validity can be proved by *weak-law* or *Chebyshev's-inequality* argument.

Lemma (degeneration of normalized Poisson) Let Y_{λ} be a Poisson random variable with parameter λ , and let $G_{\lambda}(\cdot)$ be the cdf of a Y_{λ}/λ . Then

 $\lim_{\lambda \to \infty} G_{\lambda}(t) = \begin{cases} 1, & \text{if } t > 1; \\ 0, & \text{if } t < 1. \end{cases}$

Proof: By Chebyshev's inequality,

$$\Pr\left[\left|\frac{Y_{\lambda} - \lambda}{\lambda}\right| \ge \varepsilon\right] = \Pr\left[|Y_{\lambda} - \lambda| \ge \varepsilon\lambda\right] \le \frac{\operatorname{Var}[Y_{\lambda}]}{\lambda^{2}\varepsilon^{2}} = \frac{\lambda}{\lambda^{2}\varepsilon^{2}} = \frac{1}{\lambda\varepsilon^{2}} \to 0$$

as $\lambda \to \infty$.

Limit of normalized Poisson

Let X be a non-negative random variable.

Derive the *one-sided Laplace transform* of the distribution of X as:

$$M_X(s)_+ = \int_0^\infty e^{-sx} dF_X(x) \text{ for } s \ge 0$$

Notably, $M_X(s)_+ = \int_0^\infty e^{-sx} dF_X(x) \le \int_0^\infty dF_X(x) = 1$ is finite for all $s \ge 0$, but may be infinity for s < 0.

Here, we are only interested in those s with $s \ge 0$; hence, it is named the *one-sided* Laplace transform.

In addition, $M_X(s)_+ = M_X(-s)$, where $M_X(\cdot)$ is the moment generating function of X.

Proposition Fix a non-negative random variable X. For y > 0,

$$\Pr[X \le y] = \lim_{s \to \infty} \sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k M_X^{(k)}(s)_+.$$

Proof: For s > 0,

$$M_X^{(k)}(s)_+ = (-1)^k \int_0^\infty x^k e^{-sx} dF_X(x).$$

Hence, for s > 0,

$$\sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k M_X^{(k)}(s)_+ = \sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k \left((-1)^k \int_0^\infty x^k e^{-sx} dF_X(x) \right)$$
$$= \int_0^\infty \sum_{k=0}^{\lfloor sy \rfloor} e^{-sx} \frac{(sx)^k}{k!} dF_X(x)$$
$$= \int_0^\infty \Pr\left[Y_{sx} \le \lfloor sy \rfloor \right] dF_X(x)$$
$$= \int_0^\infty \Pr\left[Y_{sx} \le sy \right] dF_X(x)$$
$$= \int_0^\infty \Pr\left[\frac{Y_{sx}}{sx} \le \frac{y}{x} \right] dF_X(x)$$
$$= \int_0^\infty G_{sx} \left(\frac{y}{x} \right) dF_X(x).$$

As a result,

$$\lim_{s \to \infty} \sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k M_X^{(k)}(s)_+ = \lim_{s \to \infty} \int_0^\infty G_{sx} \left(\frac{y}{x}\right) dF_X(x) = \int_0^\infty \lim_{s \to \infty} G_{sx} \left(\frac{y}{x}\right) dF_X(x),$$

since by dominated convergence theorem, $f_n(x) = G_{nx}(y/x) \le 1 = g(x)$ for every
 n , and $\int_0^\infty g(x) dF_X(x) = 1 < \infty.$

Give a sequence of non-negative μ -measurable function f_n with $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in \mathcal{X}$, except on a subset of \mathcal{X} with μ -measure zero.

Lemma (Fatou's lemma)
$$\int_{\mathcal{X}} \left[\lim_{n \to \infty} f_n(x) \right] \mu(dx) \le \liminf_{n \to \infty} \int_{\mathcal{X}} f_n(x) \mu(dx).$$

Fatou's lemma indicates that in general, we cannot interchange the order of integration and limit operation.

Theorem (Lebesgue convergence theorem or dominated convergence theorem) If, in addition to non-negativity, $f_n(x) \leq g(x)$ for all $x \in \mathcal{X}$, except on a subset of \mathcal{X} with μ -measure zero, and $g(\cdot)$ is μ -integrable in \mathcal{X} (namely, $\int_{\mathcal{X}} g(x)\mu(dx) < \infty$), then $\int_{\mathcal{X}} \left[\lim_{n \to \infty} f_n(x)\right] \mu(dx) = \lim_{n \to \infty} \int_{\mathcal{X}} f_n(x)\mu(dx)$.

Consequently, (for y that has no point mass),

$$\lim_{s \to \infty} \sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k M_X^{(k)}(s)_+ = \int_0^\infty \lim_{s \to \infty} G_{sx}\left(\frac{y}{x}\right) dF_X(x)$$
$$= \int_0^y dF_X(x)$$
$$= \Pr[X \le y].$$

(How to determine $\Pr[X \leq y]$ when X has point mass at y? Hint: Right-continuity)

Corollary The distribution of a non-negative random variable is uniquely determined by its moment generating function $M_X(s)$ at s < 0.

Proof: For y > 0,

$$\Pr[X \le y] = \lim_{s \to \infty} \sum_{k=0}^{\lfloor sy \rfloor} \frac{(-1)^k}{k!} s^k \frac{\partial^k M_X(-s)}{\partial s^k}.$$

Determining $\Pr[X=0]$ by the right-continuity of cdf gives the desired result. \Box

Final comment: In fact, to determine the cdf of a non-negative random variable X, we only need to know $M_X(s)$ for $s < -s_0$ for any $s_0 > 0$.

The maximal inequalities concern the maxima of partial sums.

Theorem 22.4 (due to Kolmogorov) Suppose that X_1, X_2, \ldots are independent with zero mean and finite variances (not necessarily identically distributed). Then for $\alpha > 0$,

$$\Pr\left[\max_{1 \le k \le n} |S_k| \ge \alpha\right] \le \frac{1}{\alpha^2} \operatorname{Var}[S_n],$$

where $S_n = X_1 + \dots + X_n$.

Chebyshev's inequality said that

$$\Pr[|S_n| \ge \alpha] \le \frac{1}{\alpha^2} \operatorname{Var}[S_n].$$

This theorem strengthens the result that $\alpha^{-2} \operatorname{Var}[S_n]$ not only bounds $\Pr[|S_n| \ge \alpha]$, but also bounds $\Pr[\max_{1\le k\le n} |S_k| \ge \alpha]$.

Proof: Define the event

$$A_k = \left[|S_1| < \alpha \land |S_2| < \alpha \land \dots \land |S_{k-1}| < \alpha \land |S_k| \ge \alpha \right].$$

Since there is exactly one of $\{A_k\}_{k=1}^{\infty}$ is true,

$$E[S_n^2] = E\left[S_n^2\left(I_{A_1} + I_{A_2} + \dots + I_{A_n} + I_{A_{n+1}} + \dots\right)\right]$$

$$\geq E\left[S_n^2\left(I_{A_1} + I_{A_2} + \dots + I_{A_n}\right)\right]$$

$$= \sum_{k=1}^n E\left[S_n^2 I_{A_k}\right]$$

$$= \sum_{k=1}^n E\left[\left(S_k^2 + 2S_k(S_n - S_k) + (S_n - S_k)^2\right)I_{A_k}\right]$$

$$\geq \sum_{k=1}^n E\left[\left(S_k^2 + 2S_k(S_n - S_k)\right)I_{A_k}\right]$$

$$= \sum_{k=1}^n E\left[S_k^2 I_{A_k} + 2S_k I_{A_k}(S_n - S_k)\right]$$

$$= \sum_{k=1}^n \left(E\left[S_k^2 I_{A_k}\right] + 2E\left[S_k I_{A_k}(S_n - S_k)\right]\right)$$

$$= \sum_{k=1}^n \left(E\left[S_k^2 I_{A_k}\right] + 2E\left[S_k I_{A_k}\right]E\left[S_n - S_k\right]\right),$$

where the last step follows from the independence between $S_k I_{A_k}$ and $S_n - S_k$.

Continue the previous derivation:

$$E[S_n^2] \ge \sum_{k=1}^n \left(E\left[S_k^2 I_{A_k}\right] + 2E\left[S_k I_{A_k}\right] E\left[S_n - S_k\right] \right)$$

$$= \sum_{k=1}^n E\left[S_k^2 I_{A_k}\right] \quad \text{(by the zero mean assumption, } E[S_n - S_k] = 0)$$

$$\ge \sum_{k=1}^n E\left[\alpha^2 I_{A_k}\right] \quad (I_{A_k} = 1 \text{ only when } |S_k| \ge \alpha)$$

$$= \alpha^2 \sum_{k=1}^n \Pr[A_k]$$

$$= \alpha^2 \Pr\left[\max_{1\le k\le n} |S_k| \ge \alpha\right].$$

The previous theorem provides a bound for the cdf of $\max_{1\leq k\leq n}|S_k|$ using the second moment.

We can also bound the cdf of $\max_{1 \le k \le n} |S_k|$ by the cdf of $|S_k|$ for $1 \le k \le n$.

Theorem 22.5 (due to Etemadi) Suppose that X_1, X_2, \ldots are independent. For $\alpha \ge 0$,

$$\Pr\left[\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right] \leq 3\max_{1\leq k\leq n} \Pr[|S_k| \geq \alpha].$$

Proof: Define the event

$$A_k = \left[|S_1| < 3\alpha \land |S_2| < 3\alpha \land \cdots \land |S_{k-1}| < 3\alpha \land |S_k| \ge 3\alpha \right].$$

Then

$$\Pr\left[\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right] = \Pr\left[\left(\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right) \wedge (|S_n| \geq \alpha)\right] \\ + \Pr\left[\left(\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right) \wedge (|S_n| < \alpha)\right] \\ \leq \Pr\left[|S_n| \geq \alpha\right] + \Pr\left[\left(\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right) \wedge (|S_n| < \alpha)\right].$$

(Continue from the previous slide)

$$\Pr\left[\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right] \leq \Pr\left[|S_n| \geq \alpha\right] + \Pr\left[\left(\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right) \wedge (|S_n| < \alpha)\right] \\ = \Pr\left[|S_n| \geq \alpha\right] + \Pr\left[(A_1 \lor A_2 \lor \cdots \lor A_n) \wedge (|S_n| < \alpha)\right] \\ = \Pr\left[|S_n| \geq \alpha\right] + \sum_{k=1}^{n} \Pr\left[A_k \wedge (|S_n| < \alpha)\right] \quad (\{A_k\}_{k=1}^n \text{ are disjoint events.}) \\ = \Pr\left[|S_n| \geq \alpha\right] + \sum_{k=1}^{n-1} \Pr\left[A_k \wedge (|S_n| < \alpha)\right] \quad (\Pr[A_n \land (|S_n| < \alpha)] = 0) \\ \leq \Pr\left[|S_n| \geq \alpha\right] + \sum_{k=1}^{n-1} \Pr\left[A_k \wedge (|S_n - S_k| > 2\alpha)\right]$$

$$\begin{aligned} |S_n| &< \alpha \land |S_k| \ge 3\alpha \\ \Rightarrow & (-\alpha < S_n < \alpha \land S_k \ge 3\alpha) \lor (-\alpha < S_n < \alpha \land S_k \le -3\alpha) \\ \Rightarrow & (S_n < \alpha \land -S_k \le -3\alpha) \lor (S_n > -\alpha \land -S_k \ge 3\alpha) \\ \Rightarrow & (S_n - S_k < -2\alpha) \lor (S_n - S_k > 2\alpha) \\ \Rightarrow & |S_n - S_k| > 2\alpha. \end{aligned}$$

(Continue from the previous slide)

$$\Pr\left[\max_{1\leq k\leq n} |S_k| \geq 3\alpha\right] \leq \Pr\left[|S_n| \geq \alpha\right] + \sum_{k=1}^{n-1} \Pr\left[A_k \wedge \left(|S_n - S_k| > 2\alpha\right)\right]$$

$$= \Pr\left[|S_n| \geq \alpha\right] + \sum_{k=1}^{n-1} \Pr\left[A_k\right] \Pr\left[|S_n - S_k| > 2\alpha\right]$$
(by the independence of A_k and $|S_n - S_k|$)
$$\leq \Pr\left[|S_n| \geq \alpha\right] + \max_{1\leq k\leq n} \Pr\left[|S_n - S_k| \geq 2\alpha\right]$$

$$\leq \Pr\left[|S_n| \geq \alpha\right] + \max_{1\leq k\leq n} \Pr\left[|S_n| \geq \alpha \vee |S_k| \geq \alpha\right]$$
(Notably, $|x| < \alpha$ and $|y| < \alpha$ imply $|x - y| < 2\alpha$.)
$$\leq \Pr\left[|S_n| \geq \alpha\right] + \max_{1\leq k\leq n} \Pr\left[|S_n| \geq \alpha\right] + \Pr\left[|S_k| \geq \alpha\right]$$

$$\leq \max_{1\leq k\leq n} \Pr\left[|S_k| \geq \alpha\right] + \max_{1\leq k\leq n} \Pr\left[|S_k| \geq \alpha\right] + \max_{1\leq k\leq n} \Pr\left[|S_k| \geq \alpha\right]$$

Convergence of
$$X_1 + X_2 + \dots + X_n$$
 22-25

Theorem (implication of Kolmogorov's zero-one law) If X_1, X_2, \ldots are independent binary 0-1 random variables, then $\Pr\left[\sum_{k=1}^{\infty} X_k < \infty\right]$ is either 1 or 0.

Proof:

• Define the event $A_k = [X_k = 1]$. Then A_1, A_2, \ldots are independent events. By the two Borel-Cantelli lemmas, $\Pr[A_n \text{ i.o}]$ is either 1 or 0.

Theorem 4.3 (First Borel-Cantelli lemma) $\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P\left(\limsup_{n \to \infty} A_n\right) = P(A_n \text{ i.o.}) = 0.$

Theorem 4.4 (Second Borel-Cantelli Lemma) If $\{A_n\}_{n=1}^{\infty}$ forms an independent sequence of events,

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Rightarrow P\left(\limsup_{n \to \infty} A_n\right) = P(A_n \text{ i.o.}) = 1.$$

• Apparently, if A_1, A_2, \ldots are valid infinitely often in n with probability 1, $\sum_{k=1}^{n} X_k = \infty$ with probability 1.

Convergence of $X_1 + X_2 + \dots + X_n$ 22-26

• On the contrary, if A_1, A_2, \ldots are valid finitely many times in n with probability $1, \sum_{k=1}^{\infty} X_k < \infty$ with probability 1.

Theorem (general version) If X_1, X_2, \ldots are independent random variables, then $\Pr\left[\sum_{k=1}^{\infty} X_k < \infty\right]$ is either 1 or 0.

• In general, to determine whether $\sum_{k=1}^{\infty} X_k$ converge or diverge is hard.

• In what follows, we provide theorems that can tell whether $\sum_{k=1}^{\infty} X_k$ converges by their moments.

Convergence of
$$X_1 + X_2 + \dots + X_n$$

Theorem 22.6 Suppose that X_1, X_2, \ldots are **pair-wise** independent with zero mean. Then, if $\sum_{k=1}^{\infty} \operatorname{Var}[X_k] < \infty$, $\sum_{k=1}^{\infty} X_k < \infty$ with probability 1.

22 - 27

Proof:

Again, I use a different proof from that in Billingsley's book, which is easier to understand for engineering-major students. It suffices to prove that $\Pr[\max_{k\geq 1} |S_{n+k}| < \infty] = 1.$

• First, for any *n* fixed, $|S_n| < \infty$ with probability 1 because it were not true, we have $\Pr[|S_n| = \infty] > 0$. Derive

$$\Pr[|S_n| \ge L] \le \frac{1}{L^2} \sum_{k=1}^n \operatorname{Var}[X_k].$$
 (by zero mean and Chebyshev's ineq)

As $\Pr[|S_n| \ge L]$ is non-increasing in L, its limit exists, and

$$\lim_{L \to \infty} \Pr[|S_n| \ge L] = 0,$$

a contradiction to $\Pr[|S_n| = \infty] > 0.$

Convergence of
$$X_1 + X_2 + \dots + X_n$$
 22-28

• Secondly, for any *n* fixed, $\max_{k\geq 1} |S_{n+k} - S_n| < \infty$ with probability 1, because if $\Pr[\max_{k\geq 1} |S_{n+k} - S_n| = \infty] > 0$, then a contradiction can be obtained as follows.

$$\Pr\left[\max_{1\leq k\leq r} |S_{n+k} - S_n| \geq L\right] \leq \frac{1}{L^2} \operatorname{Var}\left[S_{n+r} - S_n\right] \text{ (by Theorem 22.4 on Slide 22-19)}$$
$$= \frac{1}{L^2} \operatorname{Var}\left[X_{n+1} + \dots + X_{n+r}\right]$$
$$= \frac{1}{L^2} \sum_{k=1}^r \operatorname{Var}[X_{n+k}] \text{ (by pair-wise independence)}$$
$$\leq \frac{1}{L^2} \sum_{k=1}^\infty \operatorname{Var}[X_{n+k}].$$

Since $\Pr[\max_{1 \le k \le r} |S_{n+k} - S_n| \ge L]$ is non-decreasing in r, its limit exists by the monotone convergence theorem. Thus,

$$\lim_{r \to \infty} \Pr\left[\max_{1 \le k \le r} |S_{n+k} - S_n| \ge L\right] = \Pr\left[\max_{k \ge 1} |S_{n+k} - S_n| \ge L\right] \le \frac{1}{L^2} \sum_{k=1}^{\infty} \operatorname{Var}[X_{n+k}].$$

Then by taking L to infinity, we obtain the same contradiction as the previous item.

Convergence of
$$X_1 + X_2 + \dots + X_n$$

• Thirdly,

$$\Pr[|S_n| < \infty] = 1$$
 and $\Pr\left[\max_{k \ge 1} |S_{n+k} - S_n| < \infty\right] = 1$

22-29

imply

$$\Pr\left[|S_n| < \infty \land \max_{k \ge 1} |S_{n+k} - S_n| < \infty\right] = 1.$$

$$\begin{split} \Pr(A) &= 1 \ \text{and} \ \Pr(B) = 1 \ \Rightarrow \ \Pr(A \cup B) = 1 \\ &\Rightarrow \ \Pr(A \cap B) = \Pr(A) + \Pr(B) - \Pr(A \cup B) = 1. \end{split}$$

By

$$\max_{k \ge 1} |S_{n+k}| \le \max_{k \ge 1} (|S_{n+k} - S_n| + |S_n|) \le \max_{k \ge 1} (|S_{n+k} - S_n|) + |S_n|,$$

we get:

$$\Pr\left[\max_{k\geq 1}|S_{n+k}|<\infty\right] \geq \Pr\left[|S_n|<\infty \wedge \max_{k\geq 1}|S_{n+k}-S_n|<\infty\right] = 1.$$

Convergence of $X_1 + X_2 + \dots + X_n$ 22-30

Example 22.2 The *Rademacher functions* $\{r_n(\omega)\}_{n=1}^{\infty}$ on a unit interval are defined as:

$$r_n(\omega) = \begin{cases} +1, & \text{if } d_n = 1; \\ -1, & \text{if } d_n = 0, \end{cases}$$

where $\omega = .d_1d_2d_3...$ is a number lying in [0, 1).

Let W be uniformly distributed over [0, 1).

Define $R_n = r_n(W)$. Then $\{R_n\}_{n=1}^n$ is i.i.d. with uniform marginal.

Also, define $X_n = a_n R_n$, where $\{a_n\}_{n=1}^{\infty}$ is a constant sequence.

As a result,

$$\operatorname{Var}[X_n] = a_n^2 \operatorname{Var}[R_n] = a_n^2.$$

By Theorem 22.6,

$$\sum_{n=1}^{\infty} \operatorname{Var}[X_n] = \sum_{n=1}^{\infty} a_n^2 < \infty \quad \Rightarrow \quad \sum_{n=1}^{\infty} X_n < \infty \text{ with probability 1.}$$

Convergence of $X_1 + X_2 + \dots + X_n$

A small note on $S_n = \sum_{k=1}^n X_k$:

• If S_n converges with probability 1, then S_n converges to some finite random variable S with probability 1.

22-31

When convergence in prob. \Leftrightarrow convergence w.p. 1? 22-32

Proof:

1.

implies

is a known result.

When convergence in prob. \Leftrightarrow convergence w.p. 1? 22-33

1. S_n converges with probability 1 if $\lim_{n \to \infty} \Pr\left[\max_{k \ge 1} |S_{n+k} - S_n| > \varepsilon\right] = 0.$ 2. That S_n converges to S in probability implies $\limsup_{n \to \infty} \Pr\left[|S_n - S| > \varepsilon\right] = 0.$

2. Suppose S_n converges to S in probability.

Then from Theorem 22.5 (cf. Slide 22-22),

$$\Pr\left[\max_{1\leq k\leq r}|S_{n+k}-S_n|>3\varepsilon\right] \leq 3\max_{1\leq k\leq r}\Pr\left[|S_{n+k}-S_n|\geq\varepsilon\right]$$
$$\leq 3\max_{1\leq k\leq r}\left(\Pr\left[|S_{n+k}-S|\geq\frac{\varepsilon}{2}\right]+\Pr\left[|S_n-S|\geq\frac{\varepsilon}{2}\right]\right)$$
$$= 3\max_{1\leq k\leq r}\Pr\left[|S_{n+k}-S|\geq\frac{\varepsilon}{2}\right]+3\Pr\left[|S_n-S|\geq\frac{\varepsilon}{2}\right]$$
$$\leq 3\max_{k\geq 1}\Pr\left[|S_{n+k}-S|\geq\frac{\varepsilon}{2}\right]+3\Pr\left[|S_n-S|\geq\frac{\varepsilon}{2}\right].$$

$$\Pr\left[\max_{k\geq 1}|S_{n+k} - S_n| > 3\varepsilon\right] = \lim_{r\to\infty}\Pr\left[\max_{1\leq k\leq r}|S_{n+k} - S_n| > 3\varepsilon\right]$$
$$\leq 3\max_{k\geq 1}\Pr\left[|S_{n+k} - S| \geq \frac{\varepsilon}{2}\right] + 3\Pr\left[|S_n - S| \geq \frac{\varepsilon}{2}\right],$$

which implies

So,

$$\begin{split} \limsup_{n \to \infty} \Pr\left[\max_{k \ge 1} |S_{n+k} - S_n| > 3\varepsilon\right] \\ &\leq 3 \limsup_{n \to \infty} \max_{k \ge 1} \Pr\left[|S_{n+k} - S| \ge \frac{\varepsilon}{2}\right] + 3 \limsup_{n \to \infty} \Pr\left[|S_n - S| \ge \frac{\varepsilon}{2}\right] \\ &= 3 \limsup_{n \to \infty} \sup_{\ell \ge n} \max_{k \ge 1} \Pr\left[|S_{\ell+k} - S| \ge \frac{\varepsilon}{2}\right] + 3 \limsup_{n \to \infty} \Pr\left[|S_n - S| \ge \frac{\varepsilon}{2}\right] \\ &= 3 \limsup_{n \to \infty} \sup_{k' \ge n+1} \Pr\left[|S_{k'} - S| \ge \frac{\varepsilon}{2}\right] + 3 \limsup_{n \to \infty} \Pr\left[|S_n - S| \ge \frac{\varepsilon}{2}\right] \\ &= 3 \limsup_{n \to \infty} \Pr\left[|S_n - S| \ge \frac{\varepsilon}{2}\right] + 3 \limsup_{n \to \infty} \Pr\left[|S_n - S| \ge \frac{\varepsilon}{2}\right] = 0. \end{split}$$

<u>Three-series theorem</u>

• Alternative conditions for convergence with probability 1.

Theorem 22.8 (three-series theorem) Suppose that $\{X_n\}_{n=1}^{\infty}$ is independent. Then

1. If

$$\sum_{n=1}^{\infty} \Pr[|X_n| > c], \quad \sum_{n=1}^{\infty} E[X_n I_{[|X_n| \le c]}], \quad \text{and} \quad \sum_{n=1}^{\infty} \operatorname{Var}[X_n I_{[|X_n| \le c]}]$$

converges for **some** positive c, then $\sum_{n=1}^{\infty} X_n$ converges with probability 1.

2. If
$$\sum_{n=1}^{n} X_n$$
 converges with probability 1, then

$$\sum_{n=1}^{\infty} \Pr[|X_n| > c], \quad \sum_{n=1}^{\infty} E[X_n I_{[|X_n| \le c]}], \text{ and } \sum_{n=1}^{\infty} \operatorname{Var}[X_n I_{[|X_n| \le c]}]$$

converge for **all** positive c.

Proof: Omitted.

Three-series theorem

Example 22.3 Continue from Example 22.2. Define $X_n = a_n R_n$, where $\{a_n\}_{n=1}^{\infty}$ is a constant sequence, and $\{R_n\}_{n=1}^{\infty}$ is i.i.d. with $\Pr[R_n = 1] = \Pr[R_n = -1] = 1/2$.

By Theorem 22.6,

$$\sum_{n=1}^{\infty} \operatorname{Var}[X_n] = \sum_{n=1}^{\infty} a_n^2 < \infty \quad \Rightarrow \quad \sum_{n=1}^{\infty} X_n \text{ converges with probability 1.}$$

By Theorem 22.8,

$$\sum_{n=1}^{\infty} X_n \text{ converges with probability } 1 \quad \Rightarrow \quad \sum_{n=1}^{\infty} \operatorname{Var}\left[a_n R_n\right] = \sum_{n=1}^{\infty} a_n^2 < \infty.$$

So
$$\sum_{n=1}^{\infty} X_n$$
 converges with probability 1 if, and only if, $\sum_{n=1}^{\infty} a_n^2 < \infty$.

<u>Three-series theorem</u>

By Theorem 22.8,

$$\sum_{n=1}^{\infty} X_n \text{ converges with probability } 1 \quad \Rightarrow \quad \sum_{n=1}^{\infty} \Pr\left[|a_n R_n| > c\right] = \sum_{n=1}^{\infty} I_{[|a_n| > c]} < \infty.$$

 \Rightarrow a_n is bounded infinitely often in n. \Box