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Expected value as integral 21-1

Definition (expected value) The expected value of a random variable X is

the integral of X with respect to its cdf. I.e.,

E[X ] = E[X+]− E[X−] =
∫ ∞

0

xdFX(x)−
∫ 0

−∞
(−x)dFX(x) =

∫ ∞

−∞
xdFX(x).

Properties of expected value

1. E[X ] exists if, and only if, at least one of E[X+] and E[X−] is finite.

2. X is integrable, if E[|X|] < ∞.

3. For B/B-measurable (or simply B-measurable) function g,

E[g(X)] = E[g(X)+]− E[g(X)−]

=

∫
{x∈�:g(x)≥0}

g(x)dFX(x)−
∫
{x∈�:g(x)<0}

[−g(x)]dFX(x)

=

∫ ∞

−∞
g(x)dFX(x).
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Definition (absolute moments) The kth absolute moment of X is:

E
[|X|k] = ∫ ∞

−∞
|x|kdFX(x).

Properties of absolute moments

1. The absolute moment always exists.

2. If the kth absolute moment is finite, then the jth absolute moment is finite for

any j ≤ k.

Proof: It can be easily proved by |x|j ≤ 1 + |x|k for j ≤ k. �
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Definition (moments) The kth moment of X is:

E
[
Xk
]
=

∫ ∞

−∞
xkdFX(x)

=

∫ ∞

−∞
max{xk, 0}dFX(x)−

∫ ∞

−∞

(−min{xk, 0}) dFX(x)

= E[(Xk)+]− E[(Xk)−].

Properties of moments

1. E[Xk] exists if, and only if, at least one of E[(Xk)+] and E[(Xk)−] is finite.

2. Xk is integrable, if E[|Xk|] < ∞.

3. For B/B-measurable (or simply B-measurable) function g,

E[g(Xk)] = E[g(Xk)+]− E[g(Xk)−]

=

∫
{x∈�:g(xk)≥0}

g(xk)dFX(x)−
∫
{x∈�:g(xk)<0}

[−g(xk)]dFX(x)

=

∫ ∞

−∞
g(xk)dFX(x).
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Example 21.1 (moments of standard normal) The pdf of a standard

normal distribution is equal to:

1√
2π

e−x2/2.

Integration by parts shows that:∫ ∞

−∞

1√
2π

xke−x2/2dx =

∫ ∞

−∞

1√
2π

(k − 1)xk−2e−x2/2dx,

or equivalently,

E[Xk] = (k − 1)E[Xk−2].

As a result,

E[Xk] =

{
0, for k odd;

1× 3× 5× · · · × (k − 1), for k even.
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Theorem For non-negative random variable X ,

E[X ] =

∫ ∞

0

Pr[X > t]dt =

∫ ∞

0

Pr[X ≥ t]dt.

In other words, the area of ccdf (complementary cdf) is the mean. (The theorem

is valid even if E[X ] = ∞.)(This is an extension of the law of large numbers when

empirical distribution is concerned)!

Geometric interpretation Suppose Pr[X = xi] = pi for 1 ≤ i ≤ k.

�0

�

1

x1

p1p1x1

x2

p2p2x2

x3

p3p3x3

...

· · · xk−1

pk−1pk−1xk−1

xk

pk

cdf

pkxk

The area of ccdf = p1x1 + p2x2 + p3x3
+ · · · + pk−1xk−1 + pkxk = E[X ]
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Theorem For α ≥ 0,∫ ∞

α+
xdFX(x) = αPr[X > α] +

∫ ∞

α

Pr[X > t]dt.

Note that it is always true that
∫∞
0 xdFX(x) =

∫∞
0+ xdFX(x)

but it is possible
∫∞
α xdFx(x) �=

∫∞
α+ xdFX(x)!

Proof: Let Y = X × I[X>α], where I[X>α] = 1 if X > α, and zero, otherwise.

Hence, Y = 0 for X ≤ α, and Y = X for X > α. Consequently,∫ ∞

α+
xdFX(x) = E[Y ] =

∫ ∞

0

Pr[Y > t]dt

=

∫ α

0

Pr[Y > t]dt +

∫ ∞

α

Pr[Y > t]dt

=

∫ α

0

Pr[X > α]dt +

∫ ∞

α

Pr[X > t]dt

= αPr[X > α] +

∫ ∞

α

Pr[X > t]dt.

�

• The empirical approximation of Pr[X > t] (or Pr[X ≤ t]) is more easily

obtained than dF (x). With the above result,E[X ] (orE[Y ]) can be established

directly from Pr[X > t].
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Inequalities regarding moments
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Lemma (Markov’s inequality) For any k > 0 (and implicitly α > 0),

Pr[|X| ≥ α] ≤ 1

αk
E[|X|k].

Proof: The below inequality is valid for any x ∈ �:
|x|k ≥ αk · 1{|x|k ≥ αk} (21.1)

Hence,

E[|X|k] =
∫ ∞

−∞
|x|kdFX(x) ≥ αk ·

∫ ∞

−∞
1{|x|k ≥ αk}dFX(x) = αkPr[|X| ≥ α].

Equality holds if, and only if, equality in (21.1) is true with probability 1. I.e.,

Pr
[|X|k = αk · 1{|X|k ≥ αk}] = 1,

or equivalently, Pr[|X| = 0 or α] = 1. �
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Lemma (Chebyshev-Bienaymé inequality) For α > 0,

Pr[|X − E[X ]| ≥ α] ≤ 1

α2
Var[X ].

Proof: By Markov’s inequality with k = 2, we have:

Pr[|X − E[X ]| ≥ α] ≤ 1

α2
E[|X − E[X ]|2].

Equality holds if, and only if,

Pr[|X − E[X ]| = 0] + Pr
[|X − E[X ]| = α

]
= 1,

which implies that

Pr
[
X = E[X ] + α

]
= Pr

[
X = E[X ]− α

]
= p

and

Pr[X = E[X ]] = 1− 2p

for α > 0. �
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Definition (convexity) A function ϕ(x) is said to be convex over an interval

(a, b) if for every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1,

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2).

Furthermore, a function ϕ is said to be strictly convex if equality holds only when

λ = 0 or λ = 1. (Can we replace (a, b) by a real set X ?)

Definition (support line) A line y = ax + b is said to be a support line of

function ϕ(x) if among all lines of the same slope a, it is the largest one satisfying

ax + b ≤ ϕ(x) for every x.

• A support line ax+ b may not necessarily intersect with ϕ(·). In other words,

it is possible that no x0 satisfies ax0 + b = ϕ(x0).

• However, the existence of intersection between function ϕ(·) and its support

line is guaranteed, if ϕ(·) is convex.
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An example that no intersection exists for a function and its support line
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Lemma (Jensen’s inequality) Suppose that function ϕ(·) is convex on the

domain X of X . (Implicitly, E[X ] ∈ X .) Then

ϕ(E[X ]) ≤ E[ϕ(X)].

Proof: Let ax + b be a support line through the point (E[X ], ϕ(E[X ])).

Thus, over the domain X of ϕ(x),

ax + b ≤ ϕ(x).

If equality holds in X in this step,

then equality remains true for the

subsequent steps.

By taking the expectation value of both sides, we obtain

a · E[X ] + b ≤ E[ϕ(X)],

but we know that a · E[X ] + b = ϕ(E[X ]). Consequently,

ϕ(E[X ]) ≤ E[ϕ(X)].

Equality holds if, and only if, there exist a and b such that aE[X ] + b = ϕ(E[X ])

and

Pr
( {x ∈ X : ax + b = ϕ(x)} ) = 1.

�
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The support line y = ax + b of the convex function ϕ(x).
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E[X ], ϕ(E[X ])

)

ϕ(x)

ax + b
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Lemma (Hölder’s inequality) For p > 1, q > 1 and 1/p + 1/q = 1,

E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q].

Proof: Since the inequality is trivially valid, if E1/p[|X|p]E1/q[|Y |q] = 0. Without

loss of generality, assume E1/p[|X|p]E1/q[|Y |q] > 0.

• exp{x} is a convex function in x. Hence, by Jensen’s inequality,

exp

{
1

p
s +

1

q
t

}
≤ 1

p
exp{s} + 1

q
exp{t}. Since ex is strictly convex,

equality holds iff s = t.

• Let a = exp{s/p} and b = exp{t/q}. Then the above inequality becomes:

ab ≤ 1

p
ap +

1

q
bq,

Equality holds iff ap = bq.

whose validity is not restricted to positive a and b but to non-negative a and b.

• By letting a = |x|/E1/p[|X|p] and b = |y|/E1/q[|Y |q], we obtain:
|xy|

E1/p[|X|p]E1/q[|Y |q] ≤
1

p

|x|p
E[|X|p] +

1

q

|y|q
E[|Y |q].

Equality holds if, and only if,

Pr

[ |X|p
E[|X|p] =

|Y |q
E[|Y |q]

]
= 1.
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Taking the expectation values of both sides yields:
E[|XY |]

E1/p[|X|p]E1/q[|Y |q] ≤
1

p

E[|X|p]
E[|X|p] +

1

q

E[|Y |q]
E[|Y |q] =

1

p
+

1

q
= 1. �

Lemma (Hölder’s inequality) For p > 1, q > 1 and 1/p + 1/q = 1,

E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q].
Equality holds if, and only if,

Pr

[ |X|p
E[|X|p] =

|Y |q
E[|Y |q]

]
= 1 or Pr[X = 0] = 1 or Pr[Y = 0] = 1.

Example. p = q = 2 and

Y = 0 Y = 1

X = 0 p00 p01
X = 1 p10 p11

E[|XY |] = p11

= p
1/2
11 p

1/2
11

≤ (p10 + p11)
1/2(p01 + p11)

1/2

= E1/2[|X|2]E1/2[|Y |2]
with equality holding iff p10 = p01 = 0 or p10 = p11 = 0 or p01 = p11 = 0. �
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Suppose E[|X|] > 0 and E[|Y | > 0.

Lemma (Hölder’s inequality) For p > 1, q > 1 and 1/p + 1/q = 1,

E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q].
Equality holds if, and only if, there exists a such that Pr[|X|p = a|Y |q] = 1.

Lemma (Cauchy-Schwartz’s inequality)

E[|XY |] ≤ E1/2[X2]E1/2[Y 2].

Equality holds if, and only if, there exists a such that Pr[X2 = aY 2] = 1.

Proof: A special case of Hölder’s inequality with p = q = 2.

Equality holds if, and only if,

Pr
[
X2 = aY 2

]
= 1

for some a. �
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Lemma (Lyapounov’s inequality) For 0 < α < β,

E1/α[|Z|α] ≤ E1/β[|Z|β].
Equality holds if, and only if, Pr[|Z| = a] = 1 for some a.

Proof: Letting X = |Z|α, Y = 1, p = β/α and q = β/(β − α) in Hölder’s

inequality yields:

E[|Z|α] ≤ Eα/β
[
(|Z|α)β/α

]
E(β−α)/β

[
1β/(β−α)

]
= Eα/β[|Z|β].

Equality holds if, and only if,

Pr
[
(|Z|α)β/α = a

]
= Pr

[|Z|β = a
]
= Pr

[|Z| = a1/β
]
= 1

for some a (including a = 0). �

• Notably, in the statement of the lemma, β is strictly larger than α.

• It is certain that if α = β, the inequality automatically becomes an equality.
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Lemma For Bk/B-measurable (or simply Bk-measurable) function g and k-

dimensional random vector X ,

E[g(X)] =

∫
�k

g(xk)dFX(xk),

if one of E[(g(X))+] and E[(g(X))−] is finite.

Definition (covariance) The covariance of two random vectors X and Y is:

Cov[X,Y ] = E
[
(X − E[X ])(Y − E[Y ])T

]

= E





X1 − E[X1]

X2 − E[X2]
...

Xk − E[Xk]


 [Y1 − E[Y1] Y2 − E[Y2] · · · Y� − E[Y�]

]



=


(X1 − E[X1])(Y1 − E[Y1]) · · · (X1 − E[X1])(Y� − E[Y�])

... · · · ...

(Xk − E[Xk])(Y1 − E[Y1]) · · · (Xk − E[Xk])(Y� − E[Y�])



k×�

where “T ” represents vector transpose operation, if one of E[((Xi − E[Xi])(Yj −
E[Yj]))

+] and E[((Xi − E[Xi])(Yj − E[Yj]))
−] is finite for every i, j.
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Definition (uncorrelated) X and Y is uncorrelated, if

Cov[X,Y ] = 0k×�.

Definition (independence) X and Y is independent, if

Pr
[
(X1 ≤ x1 ∧ · · · ∧Xk ≤ xk) ∧ (Y1 ≤ y1 ∧ · · · ∧ Y� ≤ y�)

]
= Pr

[
X1 ≤ x1 ∧ · · · ∧Xk ≤ xk

]
Pr
[
Y1 ≤ y1 ∧ · · · ∧ Y� ≤ y�

]
.

Lemma (integrability of product) For independent X1, X2, . . . , Xk, if each

of Xi is integrable, so is X1X2 · · ·Xk, and

E[X1X2 · · ·Xk] = E[X1]E[X2] · · ·E[Xk].

Lemma (sum of variance for pair-wise independent samples) If

X1, X2, . . . , Xk are pair-wise independent and integrable,

Var[X1 +X2 + · · · +Xk] = Var[X1] + Var[X2] + · · · + Var[Xk].

• Notably, pair-wise independence does not imply complete independence.
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Example (only pair-wise independence) Toss a fair coin twice, and assume

independence. Define

X =

{
1, if head appears on the first toss;

0, otherwise,

Y =

{
1, if head appears on the second toss;

0, otherwise,

Z =

{
1, if exactly one head and one tail appear on the two tosses;

0, otherwise,

Then Pr[X = 1 ∧ Y = 1 ∧ Z = 1] = 0;

but Pr[X = 1] Pr[Y = 1] Pr[Z = 1] =
1

2
· 1
2
· 1
2
=

1

8
.

So X, Y and Z are not independent.

Obviously, X ⊥⊥ Y . In addition,

Pr[X = 1|Z = 1] =
Pr[X = 1 ∧ Z = 1]

Pr[Z = 1]
=

1/4

1/2
=

1

2
= Pr[X = 1]

Pr[X = 1|Z = 0] =
Pr[X = 1 ∧ Z = 0]

Pr[Z = 0]
=

1/4

1/2
=

1

2
= Pr[X = 1]


⇒ X ⊥⊥ Z.

One can similarly show (or by symmetry) that Y ⊥⊥ Z.



Joint integrals 21-21

Example (con’t) By

head head ⇒ X + Y + Z = 2

head tail ⇒ X + Y + Z = 2

tail head ⇒ X + Y + Z = 2

tail tail ⇒ X + Y + Z = 0


⇒

Var[X + Y + Z]

=
3

4
(2− 3/2)2 +

1

4
(0− 3/2)2 =

3

4

This is equal to:

Var[X ] + Var[Y ] + Var[Z] =
1

4
+

1

4
+

1

4
=

3

4
.

This result matches that “The variance of sum equals the sum of variances” holds

for pair-wise independent random variables.
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Definition (moment generating function) The moment generating func-

tion of X is defined as:

MX(t) = E[etX ] =

∫ ∞

−∞
etxdFX(x),

for all t for which this is finite.

• If MX(t) is defined (i.e., finite) throughout an interval (−t0, t0), where t0 > 0.

then

MX(t) =
∞∑
k=0

tk

k!
E[Xk].

In other words, MX(t) has a Taylor expansion about t = 0 with positive radius

of convergence if it is defined in some (−t0, t0).

• In case that MX(t) has a Taylor expansion about t = 0 with positive radius of

convergence, the moment of X can be computed by the derivatives of MX(t)

through:

M (k)(0) = E[Xk].

• IfMXi
(t) is defined throughout an interval (−t0, t0) for each i, andX1, X2, . . . , Xn

are independent, then the moment generating function of X1+ · · ·+Xn is also

defined on (−t0, t0), and is equal to
n∏

i=1

MXi
(t).
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Example (random variable whose moment generating function is

defined only at zero) The pdf of a Cauchy distribution is

f(x) =
1

π(1 + x2)
.

For t �= 0, the integral∫ ∞

−∞
etx

1

π(1 + x2)
dx =

∫ ∞

0

(
etx + e−tx

) 1

π(1 + x2)
dx

≥
∫ ∞

0

e|t|x
1

π(1 + x2)
dx

≥
∫ ∞

0

|t|x
π(1 + x2)

dx (by ex ≥ 1 + x ≥ x for x ≥ 0)

≥
∫ ∞

1

|t|x
π(1 + x2)

dx ≥
∫ ∞

1

|t|x
π(x2 + x2)

dx =
|t|
2π

∫ ∞

1

1

x
dx = ∞.

So the moment generating function is not defined for any t �= 0.

The Cauchy distribution is indeed the Student’s T -distribution with 1 degree of freedom.
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Example (Student’s T -distribution with n degree of freedom)

This distribution has moments of order ≤ n− 1 but any higher moments either do

not exist or are infinity.

Some books considers infinite moments as “non-existence”. So they write “This

distribution has moments of order ≤ n− 1 but no higher moments exist.”

Let X, Y1, Y2, . . . , Yn be i.i.d. with standard normal marginal distribution. Then

Tn =
X
√
n√

Y 2
1 + · · · + Y 2

n

is called the Student’s t-distribution (on �) with n degree of freedom.

• The numerator X
√
n has a normal density with mean 0 and variance n.

• χ2 = Y 2
1 + · · ·+Y 2

n is a chi-square distribution with n degree of freedom, and

has density f1/2,n/2(y), where

fα,ν(x) =
1

Γ(ν)
ανxν−1e−αx on [0,∞)

is the gamma density (or sometimes named Erlangian density when ν is a

positive integer) with parameters ν > 0 and α > 0, and Γ(t) =

∫ ∞

0

xt−1e−xdx

is the gamma function.
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(closure under convolutions for gamma density) fα,µ ∗ fα,ν = fα,µ+ν.

Proof:

(fα,µ ∗ fα,ν)(x) =

∫ ∞

0

fα,µ(x− y)fα,ν(y)dy

=
αµ+ν

Γ(µ)Γ(ν)

∫ x

0

(x− y)µ−1e−α(x−y)yν−1e−αydy

=
αµ+ν

Γ(µ)Γ(ν)
e−αx

∫ x

0

(x− y)µ−1yν−1dy

=
αµ+ν

Γ(µ)Γ(ν)
e−αx

∫ 1

0

(x− xt)µ−1(xt)ν−1xdt (by y = xt)

=
1

Γ(µ + ν)
αµ+νxµ+ν−1e−αx · Γ(µ + ν)

Γ(µ)Γ(ν)

∫ 1

0

(1− t)µ−1tν−1dt︸ ︷︷ ︸
=1

= fα,µ+ν(x),

where “that the last term is equal to one” follows the beta integral. �

For µ > 0 and ν > 0, B(µ, ν) =

∫ 1

0
(1− t)µ−1tν−1dt =

∫ ∞

0

tµ−1

(1 + t)µ+ν
dt =

Γ(µ)Γ(ν)

Γ(µ+ ν)
is the so-called beta integral.
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That the pdf of chi-square distribution with 1 degree of freedom equals

f1/2,1/2(y) can be derived as:

Pr[Y 2
1 ≤ y] = Pr[−√

y ≤ Y1 ≤ √
y] = Φ(

√
y)− Φ(−√

y) = 2Φ(
√
y)− 1,

where Φ(·) represents the unit Gaussian cdf. So the derivative of the above
equation is y−1/2φ(y1/2) =

1

Γ(1/2)
(1/2)1/2y(1/2)−1e−(1/2)y for y ≥ 0.

Then by closure under convolution for gamma densities, the distribution

of chi-square distribution with n degree of freedom can be obtained.

In statistical mechanics, Y 2
1 +Y 2

2 +Y 2
3 appears as the square of the speed

of particles. So the density of particle speed (on [0,∞)) is equal to v(x) =

2xf1/2,3/2(x
2), which is called Maxwell density.

By letting Ȳ =
√
Y 2
1 + · · · + Y 2

n ,

Pr[Tn ≤ t] = Pr[(X
√
n)/Ȳ ≤ t] =

∫ ∞

0

Pr[X ≤ yt/
√
n]dFȲ (y)

=

∫ ∞

0

Φ(yt/
√
n)
(
2y f1/2,n/2(y

2)
)
dy.
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So the density of Tn is:

fTn(t) =

∫ ∞

0

(
y√
n
φ(yt/

√
n)

)(
2y f1/2,n/2(y

2)
)
dy

=

∫ ∞

0

(
y√
2πn

e−y2t2/(2n)

)(
1

2n/2−1Γ(n/2)
yn−1e−y2/2

)
dy

=
1

2(n−1)/2Γ(n/2)
√
πn

∫ ∞

0

yne−y2(1+t2/n)/2dy

=
1

2(n−1)/2Γ(n/2)
√
πn

∫ ∞

0

2n/2sn/2

(1 + t2/n)n/2
e−s

(
2−1/2s−1/2

(1 + t2/n)1/2

)
ds

(
by y =

√
2s

(1 + t2/n)1/2

)

=
1

Γ(n/2)
√
πn(1 + t2/n)(n+1)/2

∫ ∞

0

s(n+1)/2−1e−sds

=
Cn

(1 + t2/n)(n+1)/2
, where Cn =

Γ((n + 1)/2)

Γ(n/2)
√
πn

.
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For t �= 0, the integral∫ ∞

−∞
etx

Cn

(1 + x2/n)(n+1)/2
dx ≥ Cn

∫ ∞

0

e|t|x
1

(1 + x2/n)(n+1)/2
dx

≥ Cn

n!

∫ ∞

0

|t|nxn
(1 + x2/n)(n+1)/2

dx

(
by ex ≥ 1 + x +

x2

2
+ · · · + xn

n!
≥ xn

n!
for x ≥ 0

)
≥ Cn

n!

∫ ∞
√
n

|t|nxn
(1 + x2/n)(n+1)/2

dx

≥ Cn

n!

∫ ∞
√
n

|t|nxn
(x2/n + x2/n)(n+1)/2

dx =
Cn|t|nn(n+1)/2

n!2(n+1)/2

∫ ∞
√
n

1

x
dx = ∞.

So the moment generating function is not defined for any t �= 0.
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However for r < n,

E[|Tn|r] =

∫ ∞

−∞
Cn

|t|r
(1 + t2/n)(n+1)/2

dt

= 2Cn

∫ ∞

0

tr

(1 + t2/n)(n+1)/2
dt = Cnn

(r+1)/2

∫ ∞

0

s(r+1)/2−1

(1 + s)(r+1)/2+(n−r)/2
ds

= Cnn
(r+1)/2Γ((r + 1)/2)Γ((n− r)/2)

Γ((n + 1)/2)
= nr/2Γ((r + 1)/2)Γ((n− r)/2)

Γ(n/2)
√
π

< ∞.

But when r = n (similarly for r > n),

E[(T r
n)

+] = E[(Tn
n )

+] =



∫ ∞

−∞
Cn

tn

(1 + t2/n)(n+1)/2
dt, if n even;∫ ∞

0

Cn
tn

(1 + t2/n)(n+1)/2
dt, if n odd.


 = ∞

and

E[(T r
n)

−] = E[(Tn
n )

−] =




0, if n even;∫ 0

−∞
Cn

−tn

(1 + t2/n)(n+1)/2
dt = ∞, if n odd.

This is a good example for which the moments, even if some of them exist (and are

finite), cannot be obtained through the moment generating function.
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gamma distribution : fα,ν(x) (on [0,∞)) has mean ν/α and variance ν/α2.

Snedecor’s distribution or F -distribution : It is the distribution of

Z =

X2
1 + · · · +X2

m

m
Y 2
1 + · · · + Y 2

n

n

,

where Xi and Yj are all independent standard normal. Its pdf with positive

integer parameters m and n is:

mm/2

nm/2

Γ((m + n)/2)

Γ(m/2)Γ(n/2)

zm/2−1

(1 +mz/n)(m+n)/2
on z ≥ 0.

Bilateral exponential distribution : It is the distribution of Z = X1 −X2,

whereX1 andX2 are independent and have common exponential density αe−αx

on x ≥ 0.

Its pdf is
1

2
αe−α|x| on x ∈ �.

It has zero mean and variance 2α−2.
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Beta distribution : Its pdf with parameters µ > 0 and ν > 0 is

βµ,ν(x) =
Γ(µ + ν)

Γ(µ)Γ(ν)
(1− x)µ−1xν−1 on 0 < x < 1.

Its mean is ν/(µ + ν), and its variance is µν/[(µ + ν)2(µ + ν + 1)].

Arc sine distribution : Its pdf is β1/2,1/2(x) =
1

π
√

x(1− x)
on 0 < x < 1.

Its cdf is given by 2
π
sin−1(

√
x) for 0 < x < 1.

Generalized arc sine distribution : It is a beta distribution with µ+ ν = 1.

Pareto distribution : It is the distribution of Z = X−1 − 1, where X is beta

distributed with parameters µ > 0 and ν > 0. Its density is

Γ(µ + ν)

Γ(µ)Γ(ν)

zµ−1

(1 + z)µ+ν
on 0 < z < ∞.

This is often used as an incoming traffic with heavy tail as z−(ν+1).
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Cauchy distribution : It is the distribution of Z = αX/|Y |, where X and Y

are independent standard normal distributed.

Its pdf with parameter α > 0 is

γα(x) =
1

π

α

x2 + α2
on �.

Its cdf is
1

2
+

1

π
tan−1(x/α).

It is also closure under convolution, i.e., γs ∗ γu = γs+u.

It is interesting that Cauchy distribution is also closure under scaling, i.e.,

a ·X has density γaα(·), if X has density γα(·).
Hence, we can easily obtain the density of a1X1 + a2X2 + · · · + anXn as

γa1α1+a2α2+···+anαn(·), if Xi has density γαi(·).
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One-sided stable distribution of index 1/2 : It is the distribution of Z =

α2X−2, where X has a standard normal distribution.

Its pdf is fα(z) =
α√
2π

1√
z3
e−

1
2α

2/z on z ≥ 0.

It is also closure under convolution, namely, fα ∗ fβ = fα+β.

If Z1, Z2, . . . , Zn are i.i.d. with marginal density fα(·), then Z1 + · · · + Zn

n2
also

has density fα(·).
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Weibull distribution : Its pdf and cdf are respectively given by

α

β

(
y

β

)α−1

e−(y/β)α and 1− e−(y/β)α

with α > 0, β > 0 and support (0,∞).

By defining X = 1/Y , where Y has the above distribution, we derive the pdf

and cdf of X as respectively:

αβ(βy)−1−αe−1/(βy) and e−1/(βx)α.

This is useful for ordered statistics.

For example, let X(n) denote the largest one among i.i.d. X1, X2, . . . , Xn.

Then Pr

[
X(n)

n
≤ x

]
= e−(α/π)(1/x), ifXj is Cauchy distributed with parameter α.

Or Pr

[
X(n)

n2
≤ x

]
= e−(α

√
2/
√
π)(1/x1/2), if Xj is a one-sided stable distribution

of index 1/2 with parameter α.

Logistic distribution : Its cdf with parameters α > 0 and β ∈ � is
1

1 + e−αx−β

on �.
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Gaussian distribution :

M(t) =
1√
2πσ2

∫ ∞

−∞
etxe−(x−m)2/(2σ2)dx = emt+σ2t2/2,

which exists for all t ∈ �.
Exponential distribution :

M(t) =

∫ ∞

0

etxαe−αxdx =
α

α− t
=

∞∑
k=0

(
k!

αk

)
tk

k!

is defined for t < α.

So the kth moment is k!α−k.

Poisson distribution :

M(t) =

∞∑
r=0

erte−λλ
r

r!
= eλ(e

t−1),

which exists for all t ∈ �.


