Section 21 Expected Values

Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C.

$Expected value as integral$ $21-1$

Definition (expected value) The expected value of ^a random variable X is the integral of X with respect to its cdf. I.e.,

$$
E[X] = E[X^+] - E[X^-] = \int_0^\infty x dF_X(x) - \int_{-\infty}^0 (-x) dF_X(x) = \int_{-\infty}^\infty x dF_X(x).
$$

Properties of expected value

- 1. $E[X]$ exists if, and only if, at least one of $E[X^+]$ and $E[X^-]$ is finite.
- 2. X is integrable, if $E[|X|] < \infty$.
- 3. For \mathcal{B}/\mathcal{B} -measurable (or simply \mathcal{B} -measurable) function g ,

$$
E[g(X)] = E[g(X)^+] - E[g(X)^-]
$$

=
$$
\int_{\{x \in \Re : g(x) \ge 0\}} g(x) dF_X(x) - \int_{\{x \in \Re : g(x) < 0\}} [-g(x)] dF_X(x)
$$

=
$$
\int_{-\infty}^{\infty} g(x) dF_X(x).
$$

Absolute moments 21-2

Definition (absolute moments) The kth absolute moment of X is:

$$
E\left[|X|^k\right] = \int_{-\infty}^{\infty} |x|^k dF_X(x).
$$

Properties of absolute moments

- 1. The absolute moment always exists.
- 2. If the kth absolute moment is finite, then the jth absolute moment is finite for any $j \leq k$.

Proof: It can be easily proved by $|x|^j \leq 1 + |x|^k$ for $j \leq k$.

Moments 21-3

Definition (moments) The k th moment of X is:

$$
E[X^{k}] = \int_{-\infty}^{\infty} x^{k} dF_{X}(x)
$$

=
$$
\int_{-\infty}^{\infty} \max\{x^{k}, 0\} dF_{X}(x) - \int_{-\infty}^{\infty} (-\min\{x^{k}, 0\}) dF_{X}(x)
$$

=
$$
E[(X^{k})^{+}] - E[(X^{k})^{-}].
$$

Properties of moments

- 1. $E[X^k]$ exists if, and only if, at least one of $E[(X^k)^+]$ and $E[(X^k)^-]$ is finite.
- 2. X^k is integrable, if $E[|X^k|] < \infty$.
- 3. For \mathcal{B}/\mathcal{B} -measurable (or simply \mathcal{B} -measurable) function g ,

$$
E[g(X^{k})] = E[g(X^{k})^{+}] - E[g(X^{k})^{-}]
$$

=
$$
\int_{\{x \in \Re : g(x^{k}) \ge 0\}} g(x^{k}) dF_X(x) - \int_{\{x \in \Re : g(x^{k}) < 0\}} [-g(x^{k})] dF_X(x)
$$

=
$$
\int_{-\infty}^{\infty} g(x^{k}) dF_X(x).
$$

Moments 21-4

Example 21.1 (moments of standard normal) The pdf of ^a standard normal distribution is equal to:

$$
\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.
$$

Integration by parts shows that:

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^k e^{-x^2/2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} (k-1) x^{k-2} e^{-x^2/2} dx,
$$

or equivalently,

$$
E[X^k] = (k-1)E[X^{k-2}].
$$

As ^a result,

$$
E[X^{k}] = \begin{cases} 0, & \text{for } k \text{ odd}; \\ 1 \times 3 \times 5 \times \cdots \times (k-1), & \text{for } k \text{ even}. \end{cases}
$$

Computation of mean 21-5

Theorem For non-negative random variable X,

$$
E[X] = \int_0^\infty \Pr[X > t]dt = \int_0^\infty \Pr[X \ge t]dt.
$$

In other words, the area of ccdf (complementary cdf) is the mean. (The theorem is valid even if $E[X] = \infty$.)(This is an extension of the law of large numbers when empirical distribution is concerned)!

Geometric interpretation Suppose $Pr[X = x_i] = p_i$ for $1 \le i \le k$.

Note that it is always true that $\int_0^\infty x dF_X(x) = \int_{0^+}^\infty x dF_X(x)$ but it is possible $\int_{\alpha}^{\infty} x dF_x(x) \neq \int_{\alpha^+}^{\infty} x dF_X(x)!$

$Computation of mean$ 21-6

Theorem For $\alpha \geq 0$,

$$
\int_{\alpha^+}^{\infty} x dF_X(x) = \alpha \Pr[X > \alpha] + \int_{\alpha}^{\infty} \Pr[X > t] dt.
$$

Proof: Let $Y = X \times I_{[X>\alpha]}$, where $I_{[X>\alpha]} = 1$ if $X > \alpha$, and zero, otherwise. Hence, $Y = 0$ for $X \leq \alpha$, and $Y = X$ for $X > \alpha$. Consequently,

$$
\int_{\alpha^+}^{\infty} x dF_X(x) = E[Y] = \int_0^{\infty} Pr[Y > t] dt
$$

=
$$
\int_0^{\alpha} Pr[Y > t] dt + \int_{\alpha}^{\infty} Pr[Y > t] dt
$$

=
$$
\int_0^{\alpha} Pr[X > \alpha] dt + \int_{\alpha}^{\infty} Pr[X > t] dt
$$

=
$$
\alpha Pr[X > \alpha] + \int_{\alpha}^{\infty} Pr[X > t] dt.
$$

 \Box

• The empirical approximation of $Pr[X > t]$ (or $Pr[X \leq t]$) is more easily obtained than $dF(x)$. With the above result, $E[X]$ (or $E[Y]$) can be established directly from $Pr[X > t]$.

Inequalities regarding moments 21-7

Inequalities regarding moments

Markov's inequality 21-8

Lemma (Markov's inequality) For any $k > 0$ (and implicitly $\alpha > 0$), $\Pr[|X| \ge \alpha] \le \frac{1}{\alpha^k} E[|X|^k].$

Proof: The below inequality is valid for any $x \in \Re$:

$$
|x|^k \ge \alpha^k \cdot \mathbf{1}\{|x|^k \ge \alpha^k\} \tag{21.1}
$$

Hence,

$$
\underline{E[|X|^k]} = \int_{-\infty}^{\infty} |x|^k dF_X(x) \ge \alpha^k \cdot \int_{-\infty}^{\infty} \mathbf{1}\{|x|^k \ge \alpha^k\} dF_X(x) = \alpha^k \underline{\Pr[|X| \ge \alpha]}.
$$

Equality holds if, and only if, equality in (21.1) is true with probability 1. I.e.,

$$
\Pr\left[|X|^k = \alpha^k \cdot \mathbf{1}\{|X|^k \ge \alpha^k\}\right] = 1,
$$

or equivalently, $Pr[|X| = 0$ or $\alpha] = 1$.

Chebyshev-Bienaymé inequality 21-9

Lemma (Chebyshev-Bienaymé inequality) For $\alpha > 0$,

$$
\Pr[|X - E[X]| \ge \alpha] \le \frac{1}{\alpha^2} \text{Var}[X].
$$

Proof: By Markov's inequality with $k = 2$, we have:

$$
Pr[|X - E[X]| \ge \alpha] \le \frac{1}{\alpha^2}E[|X - E[X]|^2].
$$

Equality holds if, and only if,

$$
\Pr[|X - E[X]| = 0] + \Pr[|X - E[X]| = \alpha] = 1,
$$

which implies that

$$
\Pr\left[X = E[X] + \alpha\right] = \Pr\left[X = E[X] - \alpha\right] = p
$$

and

$$
\Pr[X = E[X]] = 1 - 2p
$$

for $\alpha > 0$.

Definition (convexity) A function $\varphi(x)$ is said to be *convex* over an interval (a, b) if for every $x_1, x_2 \in (a, b)$ and $0 \leq \lambda \leq 1$,

$$
\varphi(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda \varphi(x_1) + (1 - \lambda)\varphi(x_2).
$$

Furthermore, a function φ is said to be *strictly convex* if equality holds only when $\lambda = 0$ or $\lambda = 1$. (Can we replace (a, b) by a real set \mathcal{X} ?)

Definition (support line) A line $y = ax + b$ is said to be a support line of function $\varphi(x)$ if among all lines of the same slope a, it is the largest one satisfying $ax + b \leq \varphi(x)$ for every x.

- A support line $ax + b$ may not necessarily intersect with $\varphi(\cdot)$. In other words, it is possible that no x_0 satisfies $ax_0 + b = \varphi(x_0)$.
- However, the existence of intersection between function $\varphi(\cdot)$ and its support line is guaranteed, if $\varphi(\cdot)$ is convex.

An example that no intersection exists for ^a function and its support line

Lemma (Jensen's **inequality**) Suppose that function $\varphi(\cdot)$ is convex on the domain $\mathcal X$ of X. (Implicitly, $E[X] \in \mathcal X$.) Then

 $\varphi(E[X]) \leq E[\varphi(X)].$

Proof: Let $ax + b$ be a support line through the point $(E[X], \varphi(E[X]))$. Thus, over the domain $\mathcal X$ of $\varphi(x)$,

$$
ax + b \le \varphi(x).
$$

If equality holds in $\mathcal X$ in this step, then equality remains true for the subsequent steps.

 \Box

By taking the expectation value of both sides, we obtain

$$
a \cdot E[X] + b \le E[\varphi(X)],
$$

but we know that $a \cdot E[X] + b = \varphi(E[X])$. Consequently,

$$
\varphi(E[X])\leq E[\varphi(X)].
$$

Equality holds if, and only if, there exist a and b such that $aE[X] + b = \varphi(E[X])$ and

$$
Pr(\{x \in \mathcal{X} : ax + b = \varphi(x)\}) = 1.
$$

The support line $y = ax + b$ of the convex function $\varphi(x)$.

Hölder's inequality 21-14

Lemma (Hölder's inequality) For $p > 1$, $q > 1$ and $1/p + 1/q = 1$, $E[|XY|] \leq E^{1/p} |[X|^p] E^{1/q} |[Y|^q].$

Proof: Since the inequality is trivially valid, if $E^{1/p}||X|^p|E^{1/q}||Y|^q = 0$. Without loss of generality, assume $E^{1/p}[[X]^p]E^{1/q}[[Y]^q] > 0.$

• $\exp\{x\}$ is a convex function in x. Hence, by Jensen's inequality,

$$
\exp\left\{\frac{1}{p}s + \frac{1}{q}t\right\} \le \frac{1}{p}\exp\{s\} + \frac{1}{q}\exp\{t\}. \quad \text{Since } e^x \text{ is strictly convex,} \quad \text{equality holds iff } s = t.
$$

• Let $a = \exp\{s/p\}$ and $b = \exp\{t/q\}$. Then the above inequality becomes:

$$
ab \le \frac{1}{p}a^p + \frac{1}{q}b^q,
$$
 Equality holds iff
$$
a^p = b^q.
$$

whose validity is not restricted to positive a and b but to non-negative a and b.

• By letting
$$
a = |x|/E^{1/p}[|X|^p]
$$
 and $b = |y|/E^{1/q}[|Y|^q]$, we obtain:
\n
$$
\frac{|xy|}{E^{1/p}[|X|^p]E^{1/q}[|Y|^q]} \le \frac{1}{p} \frac{|x|^p}{E[|X|^p]} + \frac{1}{q} \frac{|y|^q}{E[|Y|^q]}.
$$
\n
$$
\Pr \left[\frac{|X|^p}{E[|Y|^p]} \right]
$$

Equality holds if, and only if,
Pr
$$
\left[\frac{|X|^p}{E[|X|^p]} = \frac{|Y|^q}{E[|Y|^q]}\right] = 1.
$$

Hölder's inequality 21-15

Taking the expectation values of both sides yields:
\n
$$
\frac{E[|XY|]}{E^{1/p}[|X|^p]E^{1/q}[|Y|^q]} \le \frac{1}{p} \frac{E[|X|^p]}{E[|X|^p]} + \frac{1}{q} \frac{E[|Y|^q]}{E[|Y|^q]} = \frac{1}{p} + \frac{1}{q} = 1.
$$

Lemma (Hölder's inequality) For $p > 1, q > 1$ and $1/p + 1/q = 1$, $E[|XY|] \leq E^{1/p}[|X|^p]E^{1/q}[|Y|^q].$

Equality holds if, and only if,

$$
\Pr\left[\frac{|X|^p}{E[|X|^p]} = \frac{|Y|^q}{E[|Y|^q]}\right] = 1 \text{ or } \Pr[X = 0] = 1 \text{ or } \Pr[Y = 0] = 1.
$$

Example. $p = q = 2$ and

$$
\begin{array}{c|c|c|c|c|c} & Y = 0 & Y = 1 & E[|XY|] & = & p_{11} \\ \hline X = 0 & p_{00} & p_{01} & & \\ X = 1 & p_{10} & p_{11} & & \\ \end{array} \qquad \begin{array}{c|c|c} E[|XY|] & = & p_{11} & & \\ E[|XY|] & = & p_{11}^{1/2} p_{11}^{1/2} & \\ & \leq & (p_{10} + p_{11})^{1/2} (p_{01} + p_{11})^{1/2} \\ & = & E^{1/2} [|X|^2] E^{1/2} [|Y|^2] \end{array}
$$

with equality holding iff $p_{10} = p_{01} = 0$ or $p_{10} = p_{11} = 0$ or $p_{01} = p_{11} = 0$.

Cauchy-Schwartz's inequality 21-16

Suppose $E[|X|] > 0$ and $E[|Y| > 0$. **Lemma (Hölder's inequality)** For $p > 1, q > 1$ and $1/p + 1/q = 1$, $E[|XY|] \leq E^{1/p}[|X|^p]E^{1/q}[|Y|^q].$

Equality holds if, and only if, there exists a such that $Pr[|X|^p = a|Y|^q] = 1$.

Lemma (Cauchy-Schwartz's inequality)

 $E[|XY|] \leq E^{1/2}[X^2]E^{1/2}[Y^2].$

Equality holds if, and only if, there exists a such that $Pr[X^2 = aY^2] = 1$.

Proof: A special case of Hölder's inequality with $p = q = 2$. Equality holds if, and only if,

$$
\Pr\left[X^2 = aY^2\right] = 1
$$

for some a . a . Lyapounov's inequality 21-17

Lemma (Lyapounov's **inequality**) For $0 < \alpha < \beta$,

$$
E^{1/\alpha}[|Z|^{\alpha}] \le E^{1/\beta}[|Z|^{\beta}].
$$

Equality holds if, and only if, $Pr[|Z| = a] = 1$ for some a.

Proof: Letting $X = |Z|^{\alpha}$, $Y = 1$, $p = \beta/\alpha$ and $q = \beta/(\beta - \alpha)$ in Hölder's inequality yields:

$$
E[|Z|^{\alpha}] \leq E^{\alpha/\beta} \left[(|Z|^{\alpha})^{\beta/\alpha} \right] E^{(\beta-\alpha)/\beta} \left[1^{\beta/(\beta-\alpha)} \right] = E^{\alpha/\beta} [|Z|^{\beta}].
$$

Equality holds if, and only if,

$$
\Pr\left[(|Z|^{\alpha})^{\beta/\alpha} = a \right] = \Pr\left[|Z|^{\beta} = a \right] = \Pr\left[|Z| = a^{1/\beta} \right] = 1
$$

for some a (including $a = 0$).

- Notably, in the statement of the lemma, β is strictly larger than α .
- It is certain that if $\alpha = \beta$, the inequality automatically becomes an equality.

 \Box

Lemma For $\mathcal{B}^k/\mathcal{B}$ -measurable (or simply \mathcal{B}^k -measurable) function g and kdimensional random vector *X*,

$$
E[g(\mathbf{X})] = \int_{\Re^k} g(x^k) dF_{\mathbf{X}}(x^k),
$$

if one of $E[(q(X))^+]$ and $E[(q(X))^+]$ is finite.

Definition (covariance) The *covariance* of two random vectors X and Y is: $\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{Y}] \; = \; E\left[(\boldsymbol{X} - E[\boldsymbol{X}]) (\boldsymbol{Y} - E[\boldsymbol{Y}])^T \right]$ $= E$ $\begin{array}{c} \end{array}$ $\begin{bmatrix} \end{bmatrix}$ $\begin{array}{c} \end{array}$ $X_1 - E[X_1]$ $X_2 - E[X_2]$. . . $\left[\begin{matrix} X_2 - E[X_2] \ \vdots \ X_k - E[X_k] \end{matrix} \right] \left[\begin{matrix} Y_1 - E[Y_1] & Y_2 - E[Y_2] & \cdots & Y_\ell - E[Y_\ell] \end{matrix} \right]$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$ = $=\begin{bmatrix} (X_1 - E[X_1])(Y_1 - E[Y_1]) & \cdots & (X_1 - E[X_1])(Y_\ell - E[Y_\ell]) \\ \vdots & & \cdots & & \vdots \\ (X_k - E[X_k])(Y_1 - E[Y_1]) & \cdots & (X_k - E[X_k])(Y_\ell - E[Y_\ell]) \end{bmatrix}_{k \times \ell}$ where "T" represents vector transpose operation, if one of $E[((X_i - E[X_i])(Y_j E[Y_i])$ ⁺] and $E[(X_i - E[X_i])(Y_i - E[Y_i]))^{-}]$ is finite for every *i*, *j*.

Definition (uncorrelated) *X* and *Y* is uncorrelated, if

 $Cov[\boldsymbol{X}, \boldsymbol{Y}] = \mathbf{0}_{k \times \ell}$.

Definition (independence) X and Y is independent, if

$$
\Pr\left[(X_1 \leq x_1 \land \cdots \land X_k \leq x_k) \land (Y_1 \leq y_1 \land \cdots \land Y_\ell \leq y_\ell)\right]
$$

=
$$
\Pr\left[X_1 \leq x_1 \land \cdots \land X_k \leq x_k\right] \Pr\left[Y_1 \leq y_1 \land \cdots \land Y_\ell \leq y_\ell\right].
$$

Lemma (integrability of product) For independent X_1, X_2, \ldots, X_k , if each of X_i is integrable, so is $X_1X_2\cdots X_k$, and

 $E[X_1X_2\cdots X_k]=E[X_1]E[X_2]\cdots E[X_k].$

Lemma (sum of variance for pair-wise independent samples) If X_1, X_2, \ldots, X_k are pair-wise independent and integrable,

 $Var[X_1 + X_2 + \cdots + X_k] = Var[X_1] + Var[X_2] + \cdots + Var[X_k].$

• Notably, *pair-wise independence* does not imply *complete independence*.

Example (only pair-wise independence) Toss a fair coin twice, and assume independence. Define

$$
X = \begin{cases} 1, & \text{if head appears on the first toss;} \\ 0, & \text{otherwise,} \end{cases}
$$

\n
$$
Y = \begin{cases} 1, & \text{if head appears on the second toss;} \\ 0, & \text{otherwise,} \end{cases}
$$

\n
$$
Z = \begin{cases} 1, & \text{if exactly one head and one tail appear on the two tosses;} \\ 0, & \text{otherwise,} \end{cases}
$$

Then $Pr[X = 1 \land Y = 1 \land Z = 1] = 0;$ but Pr[X = 1] Pr[Y = 1] Pr[Z = 1] = $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$. So X, Y and Z are not independent.

Obviously, $X \perp \!\!\! \perp Y$. In addition,

$$
\Pr[X = 1|Z = 1] = \frac{\Pr[X = 1 \land Z = 1]}{\Pr[Z = 1]} = \frac{1/4}{1/2} = \frac{1}{2} = \Pr[X = 1]
$$
\n
$$
\Pr[X = 1|Z = 0] = \frac{\Pr[X = 1 \land Z = 0]}{\Pr[Z = 0]} = \frac{1/4}{1/2} = \frac{1}{2} = \Pr[X = 1]
$$
\n
$$
\Rightarrow X \perp Z.
$$

One can similarly show (or by symmetry) that $Y \perp\!\!\!\perp Z$.

Example (con't) By

head head
$$
\Rightarrow X + Y + Z = 2
$$

head tail $\Rightarrow X + Y + Z = 2$
tail head $\Rightarrow X + Y + Z = 2$
tail tail $\Rightarrow X + Y + Z = 0$

$$
\Rightarrow \left(2 - 3/2\right)^2 + \frac{1}{4}(0 - 3/2)^2 = \frac{3}{4}
$$

This is equal to:

$$
\text{Var}[X] + \text{Var}[Y] + \text{Var}[Z] = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}.
$$

This result matches that "The variance of sum equals the sum of variances" holds for pair-wise independent random variables.

Definition (moment generating function) The moment generating function of X is defined as:

$$
M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} dF_X(x),
$$

for all t for which this is finite.

• If $M_X(t)$ is defined (i.e., finite) throughout an interval $(-t_0, t_0)$, where $t_0 > 0$. then

$$
M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E[X^k].
$$

In other words, $M_X(t)$ has a Taylor expansion about $t=0$ with positive radius of convergence if it is defined in some $(-t_0, t_0)$.

• In case that $M_X(t)$ has a Taylor expansion about $t=0$ with positive radius of convergence, the moment of X can be computed by the derivatives of $M_X(t)$ through:

$$
M^{(k)}(0) = E[X^k].
$$

• If $M_{X_i}(t)$ is defined throughout an interval $(-t_0, t_0)$ for each i, and X_1, X_2, \ldots, X_n are independent, then the moment generating function of $X_1 + \cdots + X_n$ is also defined on $(-t_0, t_0)$, and is equal to $\prod^n M_{X_i}(t)$. $i=1$

Example (random variable whose moment generating function is defined only at zero) The pdf of ^a Cauchy distribution is

$$
f(x) = \frac{1}{\pi(1 + x^2)}.
$$

For $t \neq 0$, the integral

$$
\int_{-\infty}^{\infty} e^{tx} \frac{1}{\pi (1+x^2)} dx = \int_{0}^{\infty} (e^{tx} + e^{-tx}) \frac{1}{\pi (1+x^2)} dx
$$

\n
$$
\geq \int_{0}^{\infty} e^{|t|x} \frac{1}{\pi (1+x^2)} dx
$$

\n
$$
\geq \int_{0}^{\infty} \frac{|t|x}{\pi (1+x^2)} dx \quad \text{(by } e^x \geq 1+x \geq x \text{ for } x \geq 0)
$$

\n
$$
\geq \int_{1}^{\infty} \frac{|t|x}{\pi (1+x^2)} dx \geq \int_{1}^{\infty} \frac{|t|x}{\pi (x^2 + x^2)} dx = \frac{|t|}{2\pi} \int_{1}^{\infty} \frac{1}{x} dx = \infty.
$$

So the moment generating function is not defined for any $t \neq 0$.

The Cauchy distribution is indeed the Student's T-distribution with 1 degree of freedom.

Example (Student's T**-distribution with** ⁿ **degree of freedom)**

This distribution has moments of order $\leq n-1$ but any higher moments either do not exist or are infinity.

Some books considers infinite moments as "non-existence". So they write "This distribution has moments of order $\leq n-1$ but no higher moments exist."

Let X, Y_1, Y_2, \ldots, Y_n be i.i.d. with standard normal marginal distribution. Then

$$
T_n = \frac{X\sqrt{n}}{\sqrt{Y_1^2 + \dots + Y_n^2}}
$$

is called the Student's *t*-distribution (on \Re) with *n* degree of freedom.

- The numerator $X\sqrt{n}$ has a normal density with mean 0 and variance n.
- $\chi^2 = Y_1^2 + \cdots + Y_n^2$ is a *chi-square distribution* with *n* degree of freedom, and has density $f_{1/2,n/2}(y)$, where

$$
f_{\alpha,\nu}(x) = \frac{1}{\Gamma(\nu)} \alpha^{\nu} x^{\nu-1} e^{-\alpha x} \quad \text{on } [0, \infty)
$$

is the *gamma density* (or sometimes named *Erlangian density* when ν is a positive integer) with parameters $\nu > 0$ and $\alpha > 0$, and $\Gamma(t) =$ \int_0^∞ $\left(\right)$ $x^{t-1}e^{-x}dx$ is the gamma function.

 \bm{r} (closure under convolutions for gamma density) $f_{\alpha,\mu}*f_{\alpha,\nu}=f_{\alpha,\mu+\nu}.$ *Proof:*

$$
(f_{\alpha,\mu} * f_{\alpha,\nu})(x) = \int_0^{\infty} f_{\alpha,\mu}(x - y) f_{\alpha,\nu}(y) dy
$$

\n
$$
= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} \int_0^x (x - y)^{\mu-1} e^{-\alpha(x-y)} y^{\nu-1} e^{-\alpha y} dy
$$

\n
$$
= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} e^{-\alpha x} \int_0^x (x - y)^{\mu-1} y^{\nu-1} dy
$$

\n
$$
= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} e^{-\alpha x} \int_0^1 (x - xt)^{\mu-1} (xt)^{\nu-1} x dt \quad \text{(by } y = xt)
$$

\n
$$
= \frac{1}{\Gamma(\mu+\nu)} \alpha^{\mu+\nu} x^{\mu+\nu-1} e^{-\alpha x} \cdot \frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} \int_0^1 (1-t)^{\mu-1} t^{\nu-1} dt
$$

\n
$$
= f_{\alpha,\mu+\nu}(x),
$$

where "that the last term is equal to one" follows the beta integral.

For
$$
\mu > 0
$$
 and $\nu > 0$, $B(\mu, \nu) = \int_0^1 (1-t)^{\mu-1} t^{\nu-1} dt = \int_0^\infty \frac{t^{\mu-1}}{(1+t)^{\mu+\nu}} dt = \frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}$ is the so-called *beta integral*.

 \Box

That the pdf of chi-square distribution with 1 degree of freedom equals $f_{1/2,1/2}(y)$ can be derived as:

 $Pr[Y_1^2 \le y] = Pr[-\sqrt{y} \le Y_1 \le \sqrt{y}] = \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = 2\Phi(\sqrt{y}) - 1,$ where $\Phi(\cdot)$ represents the unit Gaussian cdf. So the derivative of the above equation is $y^{-1/2}\phi(y^{1/2}) =$ 1 $\frac{1}{\Gamma(1/2)}(1/2)^{1/2}y^{(1/2)-1}e^{-(1/2)y}$ for $y \ge 0$. Then by closure under convolution for gamma densities, the distribution of chi-square distribution with n degree of freedom can be obtained.

In statistical mechanics, $Y_1^2 + Y_2^2$ $Y_2^2 + Y_3^2$ appears as the square of the speed of particles. So the density of particle speed (on $[0, \infty)$) is equal to $v(x) =$ $2xf_{1/2,3/2}(x^2)$, which is called *Maxwell density*.

By letting $\bar{Y} = \sqrt{Y_1^2 + \cdots + Y_n^2}$ n ,

$$
\Pr[T_n \le t] = \Pr[(X\sqrt{n})/\overline{Y} \le t] = \int_0^\infty \Pr[X \le yt/\sqrt{n}]dF_{\overline{Y}}(y)
$$

$$
= \int_0^\infty \Phi(yt/\sqrt{n})(2y f_{1/2,n/2}(y^2))dy.
$$

So the density of T_n is:

$$
f_{T_n}(t) = \int_0^\infty \left(\frac{y}{\sqrt{n}} \phi(yt/\sqrt{n})\right) \left(2y f_{1/2,n/2}(y^2)\right) dy
$$

\n
$$
= \int_0^\infty \left(\frac{y}{\sqrt{2\pi n}} e^{-y^2 t^2/(2n)}\right) \left(\frac{1}{2^{n/2-1} \Gamma(n/2)} y^{n-1} e^{-y^2/2}\right) dy
$$

\n
$$
= \frac{1}{2^{(n-1)/2} \Gamma(n/2) \sqrt{\pi n}} \int_0^\infty y^n e^{-y^2 (1+t^2/n)/2} dy
$$

\n
$$
= \frac{1}{2^{(n-1)/2} \Gamma(n/2) \sqrt{\pi n}} \int_0^\infty \frac{2^{n/2} s^{n/2}}{(1+t^2/n)^{n/2}} e^{-s} \left(\frac{2^{-1/2} s^{-1/2}}{(1+t^2/n)^{1/2}}\right) ds \quad \left(\text{by } y = \frac{\sqrt{2s}}{(1+t^2/n)^{1/2}}\right)
$$

\n
$$
= \frac{1}{\Gamma(n/2) \sqrt{\pi n} (1+t^2/n)^{(n+1)/2}} \int_0^\infty s^{(n+1)/2-1} e^{-s} ds
$$

\n
$$
= \frac{C_n}{(1+t^2/n)^{(n+1)/2}}, \text{ where } C_n = \frac{\Gamma((n+1)/2)}{\Gamma(n/2) \sqrt{\pi n}}.
$$

For $t \neq 0$, the integral

$$
\int_{-\infty}^{\infty} e^{tx} \frac{C_n}{(1+x^2/n)^{(n+1)/2}} dx \ge C_n \int_{0}^{\infty} e^{|t|x} \frac{1}{(1+x^2/n)^{(n+1)/2}} dx
$$

\n
$$
\ge \frac{C_n}{n!} \int_{0}^{\infty} \frac{|t|^n x^n}{(1+x^2/n)^{(n+1)/2}} dx
$$

\n(by $e^x \ge 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} \ge \frac{x^n}{n!}$ for $x \ge 0$)
\n
$$
\ge \frac{C_n}{n!} \int_{\sqrt{n}}^{\infty} \frac{|t|^n x^n}{(1+x^2/n)^{(n+1)/2}} dx
$$

\n
$$
\ge \frac{C_n}{n!} \int_{\sqrt{n}}^{\infty} \frac{|t|^n x^n}{(x^2/n + x^2/n)^{(n+1)/2}} dx = \frac{C_n |t|^n n^{(n+1)/2}}{n! 2^{(n+1)/2}} \int_{\sqrt{n}}^{\infty} \frac{1}{x} dx = \infty.
$$

So the moment generating function is not defined for any $t \neq 0$.

However for $r < n$,

$$
E[|T_n|^r] = \int_{-\infty}^{\infty} C_n \frac{|t|^r}{(1+t^2/n)^{(n+1)/2}} dt
$$

= $2C_n \int_0^{\infty} \frac{t^r}{(1+t^2/n)^{(n+1)/2}} dt = C_n n^{(r+1)/2} \int_0^{\infty} \frac{s^{(r+1)/2-1}}{(1+s)^{(r+1)/2+(n-r)/2}} ds$
= $C_n n^{(r+1)/2} \frac{\Gamma((r+1)/2)\Gamma((n-r)/2)}{\Gamma((n+1)/2)} = n^{r/2} \frac{\Gamma((r+1)/2)\Gamma((n-r)/2)}{\Gamma(n/2)\sqrt{\pi}} < \infty.$

But when $r = n$ (similarly for $r > n$),

$$
E[(T_n^r)^+] = E[(T_n^n)^+] = \begin{cases} \int_{-\infty}^{\infty} C_n \frac{t^n}{(1 + t^2/n)^{(n+1)/2}} dt, & \text{if } n \text{ even;} \\ \int_0^{\infty} C_n \frac{t^n}{(1 + t^2/n)^{(n+1)/2}} dt, & \text{if } n \text{ odd.} \end{cases} = \infty
$$

and

$$
E[(T_n^r)^-] = E[(T_n^n)^-] = \begin{cases} 0, & \text{if } n \text{ even;} \\ \int_{-\infty}^0 C_n \frac{-t^n}{(1+t^2/n)^{(n+1)/2}} dt = \infty, & \text{if } n \text{ odd.} \end{cases}
$$

This is ^a good example for which the moments, even if some of them exist (and are finite), cannot be obtained through the moment generating function.

gamma distribution : $f_{\alpha,\nu}(x)$ (on $[0,\infty)$) has mean ν/α and variance ν/α^2 .

Snedecor's distribution or F**-distribution** : It is the distribution of

$$
Z = \frac{\frac{X_1^2 + \dots + X_m^2}{m}}{\frac{Y_1^2 + \dots + Y_n^2}{n}},
$$

where X_i and Y_j are all independent standard normal. Its pdf with positive integer parameters m and n is:

$$
\frac{m^{m/2}}{n^{m/2}} \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \frac{z^{m/2-1}}{(1+mz/n)^{(m+n)/2}} \quad \text{on } z \ge 0.
$$

Bilateral exponential distribution: It is the distribution of $Z = X_1 - X_2$, where X_1 and X_2 are independent and have common exponential density $\alpha e^{-\alpha x}$ on $x\geq 0$. Its pdf is 1 $\frac{1}{2} \alpha e^{-\alpha |x|}$ on $x \in \Re$.

It has zero mean and variance $2\alpha^{-2}$.

Beta distribution : Its pdf with parameters $\mu > 0$ and $\nu > 0$ is

$$
\beta_{\mu,\nu}(x) = \frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} (1-x)^{\mu-1} x^{\nu-1} \quad \text{on } 0 < x < 1.
$$

Its mean is $\nu/(\mu+\nu)$, and its variance is $\mu\nu/[(\mu+\nu)^2(\mu+\nu+1)]$.

 $\bf{Arc\ sine\ distribution}$: Its pdf is $\beta_{1/2,1/2}(x) =$ 1 $\pi\sqrt{x(1-x)}$ on $0 < x < 1$. Its cdf is given by $\frac{2}{\pi}$ $\frac{2}{\pi} \sin^{-1}(\sqrt{x})$ for $0 < x < 1$.

Generalized arc sine distribution: It is a beta distribution with $\mu + \nu = 1$.

Pareto distribution: It is the distribution of $Z = X^{-1} - 1$, where X is beta distributed with parameters $\mu > 0$ and $\nu > 0$. Its density is

$$
\frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} \frac{z^{\mu-1}}{(1+z)^{\mu+\nu}} \quad \text{on } 0 < z < \infty.
$$

This is often used as an incoming traffic with heavy tail as $z^{-(\nu+1)}$.

Cauchy distribution: It is the distribution of $Z = \alpha X / |Y|$, where X and Y are independent standard normal distributed.

Its pdf with parameter $\alpha > 0$ is

$$
\gamma_{\alpha}(x) = \frac{1}{\pi} \frac{\alpha}{x^2 + \alpha^2} \quad \text{on } \Re.
$$

Its cdf is 1 2 $\hspace{0.1mm} +$ 1 π $\tan^{-1}(x/\alpha)$. It is also **closure under convolution**, i.e., $\gamma_s * \gamma_u = \gamma_{s+u}.$

It is interesting that Cauchy distribution is also **closure under scaling**, i.e., $a \cdot X$ has density $\gamma_{a}(\cdot)$, if X has density $\gamma_{\alpha}(\cdot)$. Hence, we can easily obtain the density of $a_1X_1 + a_2X_2 + \cdots + a_nX_n$ as $\gamma_{a_1\alpha_1+a_2\alpha_2+\cdots+a_n\alpha_n}(\cdot)$, if X_i has density $\gamma_{\alpha_i}(\cdot)$.

One-sided stable distribution of index $1/2$: It is the distribution of $Z =$ $\alpha^2 X^{-2}$, where X has a standard normal distribution.

Its pdf is
$$
f_{\alpha}(z) = \frac{\alpha}{\sqrt{2\pi}} \frac{1}{\sqrt{z^3}} e^{-\frac{1}{2}\alpha^2/z}
$$
 on $z \ge 0$.

It is also **closure under convolution**, namely, $f_{\alpha}*f_{\beta}=f_{\alpha+\beta}.$

If Z_1, Z_2, \ldots, Z_n are i.i.d. with marginal density $f_\alpha(\cdot)$, then $Z_1+\cdots+Z_n$ $\frac{n^2}{n^2}$ also has density $f_{\alpha}(\cdot)$.

Weibull distribution : Its pdf and cdf are respectively given by

$$
\frac{\alpha}{\beta} \left(\frac{y}{\beta}\right)^{\alpha - 1} e^{-(y/\beta)^{\alpha}} \quad \text{and} \quad 1 - e^{-(y/\beta)^{\alpha}}
$$

with $\alpha > 0$, $\beta > 0$ and support $(0, \infty)$.

By defining $X = 1/Y$, where Y has the above distribution, we derive the pdf and cdf of X as respectively:

$$
\alpha \beta(\beta y)^{-1-\alpha} e^{-1/(\beta y)}
$$
 and $e^{-1/(\beta x)^{\alpha}}$.

This is useful for ordered statistics.

For example, let $X_{(n)}$ denote the largest one among i.i.d. X_1, X_2, \ldots, X_n . Then Pr $\left[\frac{X_{(n)}}{n}\right]$ $\, n$ $\leq x$ $\big]$ $= e^{-(\alpha/\pi)(1/x)}$, if X_j is Cauchy distributed with parameter α . Or Pr $\left[\frac{X_{(n)}}{n^2}\right]$ $\frac{y}{n^2} \leq x$ $=e^{-(\alpha\sqrt{2}/\sqrt{\pi})(1/x^{1/2})}$, if X_j is a one-sided stable distribution of index $1/2$ with parameter α .

Logistic distribution : Its cdf with parameters $\alpha > 0$ and $\beta \in \Re$ is 1 $1+e^{-\alpha x-\beta}$ on R.

Distribution with nice moment generating function 21-35

Gaussian distribution :

$$
M(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{tx} e^{-(x-m)^2/(2\sigma^2)} dx = e^{mt + \sigma^2 t^2/2},
$$

which exists for all $t \in \Re$.

Exponential distribution :

$$
M(t) = \int_0^\infty e^{tx} \alpha e^{-\alpha x} dx = \frac{\alpha}{\alpha - t} = \sum_{k=0}^\infty \left(\frac{k!}{\alpha^k}\right) \frac{t^k}{k!}
$$

is defined for $t < \alpha$.

So the kth moment is $k! \alpha^{-k}$.

Poisson distribution :

$$
M(t) = \sum_{r=0}^{\infty} e^{rt} e^{-\lambda} \frac{\lambda^r}{r!} = e^{\lambda(e^t - 1)},
$$

which exists for all $t \in \Re$.