Section 21

Expected Values

Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30010, R.O.C.

Expected value as integral

Definition (expected value) The expected value of a random variable X is the integral of X with respect to its cdf. I.e.,

$$E[X] = E[X^+] - E[X^-] = \int_0^\infty x dF_X(x) - \int_{-\infty}^0 (-x) dF_X(x) = \int_{-\infty}^\infty x dF_X(x).$$

Properties of expected value

- 1. E[X] exists if, and only if, at least one of $E[X^+]$ and $E[X^-]$ is finite.
- 2. X is integrable, if $E[|X|] < \infty$.
- 3. For \mathcal{B}/\mathcal{B} -measurable (or simply \mathcal{B} -measurable) function g,

$$E[g(X)] = E[g(X)^{+}] - E[g(X)^{-}]$$

= $\int_{\{x \in \Re: g(x) \ge 0\}} g(x) dF_X(x) - \int_{\{x \in \Re: g(x) < 0\}} [-g(x)] dF_X(x)$
= $\int_{-\infty}^{\infty} g(x) dF_X(x).$

Definition (absolute moments) The kth absolute moment of X is:

$$E\left[|X|^k\right] = \int_{-\infty}^{\infty} |x|^k dF_X(x).$$

Properties of absolute moments

- 1. The absolute moment always exists.
- 2. If the kth absolute moment is finite, then the jth absolute moment is finite for any $j \leq k$.

Proof: It can be easily proved by $|x|^j \leq 1 + |x|^k$ for $j \leq k$.

Moments

Definition (moments) The kth moment of X is:

$$E[X^{k}] = \int_{-\infty}^{\infty} x^{k} dF_{X}(x)$$

= $\int_{-\infty}^{\infty} \max\{x^{k}, 0\} dF_{X}(x) - \int_{-\infty}^{\infty} \left(-\min\{x^{k}, 0\}\right) dF_{X}(x)$
= $E[(X^{k})^{+}] - E[(X^{k})^{-}].$

Properties of moments

- 1. $E[X^k]$ exists if, and only if, at least one of $E[(X^k)^+]$ and $E[(X^k)^-]$ is finite.
- 2. X^k is integrable, if $E[|X^k|] < \infty$.
- 3. For \mathcal{B}/\mathcal{B} -measurable (or simply \mathcal{B} -measurable) function g,

$$E[g(X^{k})] = E[g(X^{k})^{+}] - E[g(X^{k})^{-}]$$

= $\int_{\{x \in \Re: g(x^{k}) \ge 0\}} g(x^{k}) dF_{X}(x) - \int_{\{x \in \Re: g(x^{k}) < 0\}} [-g(x^{k})] dF_{X}(x)$
= $\int_{-\infty}^{\infty} g(x^{k}) dF_{X}(x).$

Moments

Example 21.1 (moments of standard normal) The pdf of a standard normal distribution is equal to:

$$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Integration by parts shows that:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^k e^{-x^2/2} dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} (k-1) x^{k-2} e^{-x^2/2} dx,$$

or equivalently,

$$E[X^{k}] = (k-1)E[X^{k-2}].$$

As a result,

$$E[X^k] = \begin{cases} 0, & \text{for } k \text{ odd}; \\ 1 \times 3 \times 5 \times \dots \times (k-1), & \text{for } k \text{ even.} \end{cases}$$

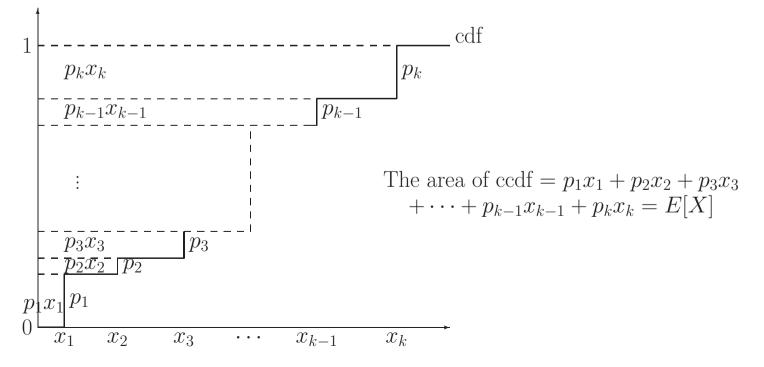
Computation of mean

Theorem For non-negative random variable X,

$$E[X] = \int_0^\infty \Pr[X > t] dt = \int_0^\infty \Pr[X \ge t] dt.$$

In other words, the area of ccdf (complementary cdf) is the mean. (The theorem is valid even if $E[X] = \infty$.)(This is an extension of the law of large numbers when empirical distribution is concerned)!

Geometric interpretation Suppose $\Pr[X = x_i] = p_i$ for $1 \le i \le k$.



Note that it is always true that $\int_0^\infty x dF_X(x) = \int_{0^+}^\infty x dF_X(x)$ but it is possible $\int_{\alpha}^\infty x dF_x(x) \neq \int_{\alpha^+}^\infty x dF_X(x)!$

Computation of mean

21-6

Theorem For $\alpha \geq 0$,

$$\int_{\alpha^+}^{\infty} x dF_X(x) = \alpha \Pr[X > \alpha] + \int_{\alpha}^{\infty} \Pr[X > t] dt.$$

Proof: Let $Y = X \times I_{[X > \alpha]}$, where $I_{[X > \alpha]} = 1$ if $X > \alpha$, and zero, otherwise. Hence, Y = 0 for $X \le \alpha$, and Y = X for $X > \alpha$. Consequently,

$$\int_{\alpha^{+}}^{\infty} x dF_X(x) = E[Y] = \int_{0}^{\infty} \Pr[Y > t] dt$$
$$= \int_{0}^{\alpha} \Pr[Y > t] dt + \int_{\alpha}^{\infty} \Pr[Y > t] dt$$
$$= \int_{0}^{\alpha} \Pr[X > \alpha] dt + \int_{\alpha}^{\infty} \Pr[X > t] dt$$
$$= \alpha \Pr[X > \alpha] + \int_{\alpha}^{\infty} \Pr[X > t] dt.$$

• The empirical approximation of $\Pr[X > t]$ (or $\Pr[X \le t]$) is more easily obtained than dF(x). With the above result, E[X] (or E[Y]) can be established directly from $\Pr[X > t]$.

Inequalities regarding moments

Inequalities regarding moments

Markov's inequality

Lemma (Markov's inequality) For any k > 0 (and implicitly $\alpha > 0$), $\Pr[|X| \ge \alpha] \le \frac{1}{\alpha^k} E[|X|^k].$

Proof: The below inequality is valid for any $x \in \Re$:

$$|x|^k \ge \alpha^k \cdot \mathbf{1}\{|x|^k \ge \alpha^k\}$$
(21.1)

Hence,

$$\underline{E[|X|^k]} = \int_{-\infty}^{\infty} |x|^k dF_X(x) \ge \alpha^k \cdot \int_{-\infty}^{\infty} \mathbf{1}\{|x|^k \ge \alpha^k\} dF_X(x) = \alpha^k \underline{\Pr[|X| \ge \alpha]}.$$

Equality holds if, and only if, equality in (21.1) is true with probability 1. I.e.,

$$\Pr\left[|X|^{k} = \alpha^{k} \cdot \mathbf{1}\{|X|^{k} \ge \alpha^{k}\}\right] = 1,$$

or equivalently, $\Pr[|X| = 0 \text{ or } \alpha] = 1.$

Chebyshev-Bienaymé inequality

Lemma (Chebyshev-Bienaymé inequality) For $\alpha > 0$,

$$\Pr[|X - E[X]| \ge \alpha] \le \frac{1}{\alpha^2} \operatorname{Var}[X].$$

Proof: By Markov's inequality with k = 2, we have:

$$\Pr[|X - E[X]| \ge \alpha] \le \frac{1}{\alpha^2} E[|X - E[X]|^2].$$

Equality holds if, and only if,

$$\Pr[|X - E[X]| = 0] + \Pr[|X - E[X]| = \alpha] = 1,$$

which implies that

$$\Pr\left[X = E[X] + \alpha\right] = \Pr\left[X = E[X] - \alpha\right] = p$$

and

$$\Pr[X = E[X]] = 1 - 2p$$

for $\alpha > 0$.

Definition (convexity) A function $\varphi(x)$ is said to be *convex* over an interval (a, b) if for every $x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$,

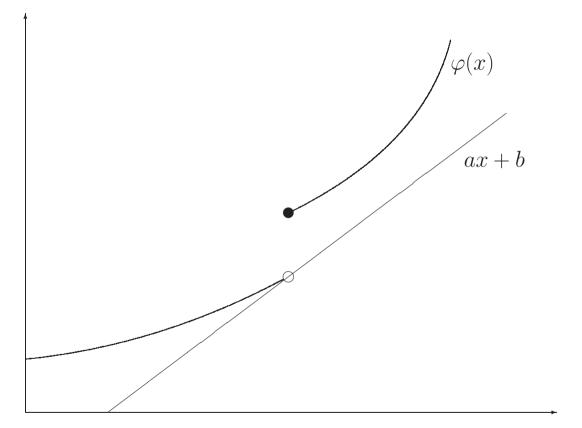
$$\varphi(\lambda x_1 + (1 - \lambda)x_2) \le \lambda \varphi(x_1) + (1 - \lambda)\varphi(x_2).$$

Furthermore, a function φ is said to be *strictly convex* if equality holds only when $\lambda = 0$ or $\lambda = 1$. (Can we replace (a, b) by a real set \mathcal{X} ?)

Definition (support line) A line y = ax + b is said to be a support line of function $\varphi(x)$ if among all lines of the same slope a, it is the largest one satisfying $ax + b \leq \varphi(x)$ for every x.

- A support line ax + b may not necessarily intersect with $\varphi(\cdot)$. In other words, it is possible that no x_0 satisfies $ax_0 + b = \varphi(x_0)$.
- However, the existence of intersection between function $\varphi(\cdot)$ and its support line is guaranteed, if $\varphi(\cdot)$ is convex.

An example that no intersection exists for a function and its support line



Lemma (Jensen's inequality) Suppose that function $\varphi(\cdot)$ is convex on the domain \mathcal{X} of X. (Implicitly, $E[X] \in \mathcal{X}$.) Then

 $\varphi(E[X]) \leq E[\varphi(X)].$

Proof: Let ax + b be a support line through the point $(E[X], \varphi(E[X]))$. Thus, over the domain \mathcal{X} of $\varphi(x)$, If equality hold

$$ax + b \le \varphi(x).$$

If equality holds in \mathcal{X} in this step, then equality remains true for the subsequent steps.

By taking the expectation value of both sides, we obtain

$$a \cdot E[X] + b \le E[\varphi(X)],$$

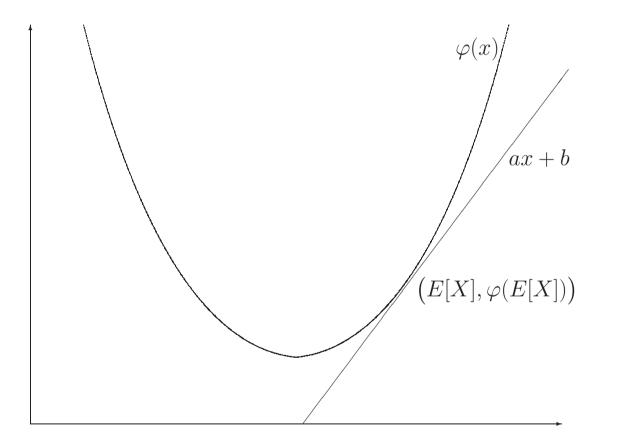
but we know that $a \cdot E[X] + b = \varphi(E[X])$. Consequently,

$$\varphi(E[X]) \leq E[\varphi(X)].$$

Equality holds if, and only if, there exist a and b such that $aE[X] + b = \varphi(E[X])$ and

$$\Pr\left(\left\{x \in \mathcal{X} : ax + b = \varphi(x)\right\}\right) = 1.$$

The support line y = ax + b of the convex function $\varphi(x)$.



Hölder's inequality

Lemma (Hölder's inequality) For p > 1, q > 1 and 1/p + 1/q = 1, $E[|XY|] \le E^{1/p}[|X|^p]E^{1/q}[|Y|^q].$

Proof: Since the inequality is trivially valid, if $E^{1/p}[|X|^p]E^{1/q}[|Y|^q] = 0$. Without loss of generality, assume $E^{1/p}[|X|^p]E^{1/q}[|Y|^q] > 0.$

• $\exp\{x\}$ is a convex function in x. Hence, by Jensen's inequality,

$$\exp\left\{\frac{1}{p}s + \frac{1}{q}t\right\} \le \frac{1}{p}\exp\{s\} + \frac{1}{q}\exp\{t\}.$$
 Since e^x is strictly convex, equality holds iff $s = t$.

• Let $a = \exp\{s/p\}$ and $b = \exp\{t/q\}$. Then the above inequality becomes:

$$ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$$
, Equality holds iff $a^p = b^q$.

whose validity is not restricted to positive a and b but to non-negative a and b.

• By letting
$$a = |x|/E^{1/p}[|X|^p]$$
 and $b = |y|/E^{1/q}[|Y|^q]$, we obtain:

$$\frac{|xy|}{E^{1/p}[|X|^p]E^{1/q}[|Y|^q]} \le \frac{1}{p} \frac{|x|^p}{E[|X|^p]} + \frac{1}{q} \frac{|y|^q}{E[|Y|^q]}.$$
Equality holds if, and only if,

$$\Pr\left[\frac{|X|^p}{E[|X|^p]} = \frac{|Y|^q}{E[|Y|^q]}\right] = 1.$$

Hölder's inequality

Taking the expectation values of both sides yields:

$$\frac{E[|XY|]}{E^{1/p}[|X|^p]E^{1/q}[|Y|^q]} \leq \frac{1}{p} \frac{E[|X|^p]}{E[|X|^p]} + \frac{1}{q} \frac{E[|Y|^q]}{E[|Y|^q]} = \frac{1}{p} + \frac{1}{q} = 1.$$

Lemma (Hölder's inequality) For p > 1, q > 1 and 1/p + 1/q = 1, $E[|XY|] \le E^{1/p}[|X|^p]E^{1/q}[|Y|^q].$

Equality holds if, and only if,

$$\Pr\left[\frac{|X|^p}{E[|X|^p]} = \frac{|Y|^q}{E[|Y|^q]}\right] = 1 \text{ or } \Pr[X=0] = 1 \text{ or } \Pr[Y=0] = 1$$

Example. p = q = 2 and

with equality holding iff $p_{10} = p_{01} = 0$ or $p_{10} = p_{11} = 0$ or $p_{01} = p_{11} = 0$. \Box

Cauchy-Schwartz's inequality

Suppose E[|X|] > 0 and E[|Y| > 0. **Lemma (Hölder's inequality)** For p > 1, q > 1 and 1/p + 1/q = 1, $E[|XY|] \le E^{1/p}[|X|^p]E^{1/q}[|Y|^q].$

Equality holds if, and only if, there exists a such that $\Pr[|X|^p = a|Y|^q] = 1$.

Lemma (Cauchy-Schwartz's inequality)

 $E[|XY|] \le E^{1/2}[X^2]E^{1/2}[Y^2].$

Equality holds if, and only if, there exists a such that $\Pr[X^2 = aY^2] = 1$.

Proof: A special case of Hölder's inequality with p = q = 2. Equality holds if, and only if,

$$\Pr\left[X^2 = aY^2\right] = 1$$

for some a.

Lyapounov's inequality

Lemma (Lyapounov's inequality) For $0 < \alpha < \beta$,

$$E^{1/\alpha}[|Z|^{\alpha}] \le E^{1/\beta}[|Z|^{\beta}].$$

Equality holds if, and only if, $\Pr[|Z| = a] = 1$ for some a.

Proof: Letting $X = |Z|^{\alpha}$, Y = 1, $p = \beta/\alpha$ and $q = \beta/(\beta - \alpha)$ in Hölder's inequality yields:

$$E[|Z|^{\alpha}] \le E^{\alpha/\beta} \left[(|Z|^{\alpha})^{\beta/\alpha} \right] E^{(\beta-\alpha)/\beta} \left[1^{\beta/(\beta-\alpha)} \right] = E^{\alpha/\beta} [|Z|^{\beta}].$$

Equality holds if, and only if,

$$\Pr\left[(|Z|^{\alpha})^{\beta/\alpha} = a\right] = \Pr\left[|Z|^{\beta} = a\right] = \Pr\left[|Z| = a^{1/\beta}\right] = 1$$

for some a (including a = 0).

- Notably, in the statement of the lemma, β is strictly larger than α .
- It is certain that if $\alpha = \beta$, the inequality automatically becomes an equality.

Lemma For $\mathcal{B}^k/\mathcal{B}$ -measurable (or simply \mathcal{B}^k -measurable) function g and kdimensional random vector \mathbf{X} ,

$$E[g(\boldsymbol{X})] = \int_{\Re^k} g(x^k) dF_{\boldsymbol{X}}(x^k),$$

if one of $E[(g(\mathbf{X}))^+]$ and $E[(g(\mathbf{X}))^-]$ is finite.

Definition (covariance) The *covariance* of two random vectors \boldsymbol{X} and \boldsymbol{Y} is: $Cov[\boldsymbol{X}, \boldsymbol{Y}] = E\left[(\boldsymbol{X} - E[\boldsymbol{X}])(\boldsymbol{Y} - E[\boldsymbol{Y}])^T\right]$ $= E\left[\begin{bmatrix}X_1 - E[X_1]\\X_2 - E[X_2]\\\vdots\\X_k - E[X_k]\end{bmatrix}\left[Y_1 - E[Y_1] \ Y_2 - E[Y_2] \ \cdots \ Y_\ell - E[Y_\ell]\right]\right]$ $= \begin{bmatrix}(X_1 - E[X_1])(Y_1 - E[Y_1]) \ \cdots \ (X_1 - E[X_1])(Y_\ell - E[Y_\ell])\\\vdots \ \cdots \ \vdots\\(X_k - E[X_k])(Y_1 - E[Y_1]) \ \cdots \ (X_k - E[X_k])(Y_\ell - E[Y_\ell])\end{bmatrix}_{k \times \ell}$ where "T" represents vector transpose operation, if one of $E[((X_i - E[X_i])(Y_j - E[Y_j]))^+]$ and $E[((X_i - E[X_i])(Y_j - E[Y_j]))^-]$ is finite for every i, j.

Definition (uncorrelated) X and Y is uncorrelated, if

 $\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{Y}] = \mathbf{0}_{k \times \ell}.$

Definition (independence) X and Y is independent, if

$$\Pr\left[(X_1 \le x_1 \land \dots \land X_k \le x_k) \land (Y_1 \le y_1 \land \dots \land Y_\ell \le y_\ell) \right]$$

=
$$\Pr\left[X_1 \le x_1 \land \dots \land X_k \le x_k \right] \Pr\left[Y_1 \le y_1 \land \dots \land Y_\ell \le y_\ell \right]$$

Lemma (integrability of product) For independent X_1, X_2, \ldots, X_k , if each of X_i is integrable, so is $X_1X_2\cdots X_k$, and

 $E[X_1X_2\cdots X_k] = E[X_1]E[X_2]\cdots E[X_k].$

Lemma (sum of variance for pair-wise independent samples) If X_1, X_2, \ldots, X_k are pair-wise independent and integrable,

 $\operatorname{Var}[X_1 + X_2 + \dots + X_k] = \operatorname{Var}[X_1] + \operatorname{Var}[X_2] + \dots + \operatorname{Var}[X_k].$

• Notably, *pair-wise independence* does not imply *complete independence*.

Example (only pair-wise independence) Toss a fair coin twice, and assume independence. Define

$$X = \begin{cases} 1, & \text{if head appears on the first toss;} \\ 0, & \text{otherwise,} \end{cases}$$
$$Y = \begin{cases} 1, & \text{if head appears on the second toss;} \\ 0, & \text{otherwise,} \end{cases}$$
$$Z = \begin{cases} 1, & \text{if exactly one head and one tail appear on the two tosses;} \\ 0, & \text{otherwise,} \end{cases}$$

Then $\Pr[X = 1 \land Y = 1 \land Z = 1] = 0;$ but $\Pr[X = 1] \Pr[Y = 1] \Pr[Z = 1] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}.$ So X, Y and Z are not independent.

Obviously, $X \perp \!\!\!\perp Y$. In addition,

$$\Pr[X=1|Z=1] = \frac{\Pr[X=1 \land Z=1]}{\Pr[Z=1]} = \frac{1/4}{1/2} = \frac{1}{2} = \Pr[X=1]$$
$$\Rightarrow X \perp Z.$$
$$\Pr[X=1|Z=0] = \frac{\Pr[X=1 \land Z=0]}{\Pr[Z=0]} = \frac{1/4}{1/2} = \frac{1}{2} = \Pr[X=1]$$

One can similarly show (or by symmetry) that $Y \perp \!\!\!\perp Z$.

Example (con't) By

head head
$$\Rightarrow X + Y + Z = 2$$

head tail $\Rightarrow X + Y + Z = 2$
tail head $\Rightarrow X + Y + Z = 2$
tail tail $\Rightarrow X + Y + Z = 0$

$$\begin{cases} \Rightarrow & \operatorname{Var}[X + Y + Z] \\ = \frac{3}{4}(2 - 3/2)^2 + \frac{1}{4}(0 - 3/2)^2 = \frac{3}{4}(2 - 3$$

This is equal to:

$$\operatorname{Var}[X] + \operatorname{Var}[Y] + \operatorname{Var}[Z] = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}.$$

This result matches that "The variance of sum equals the sum of variances" holds for pair-wise independent random variables.

Definition (moment generating function) The moment generating function of X is defined as:

$$M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} dF_X(x),$$

for all t for which this is finite.

• If $M_X(t)$ is defined (i.e., finite) throughout an interval $(-t_0, t_0)$, where $t_0 > 0$. then

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E[X^k].$$

In other words, $M_X(t)$ has a Taylor expansion about t = 0 with positive radius of convergence if it is defined in some $(-t_0, t_0)$.

• In case that $M_X(t)$ has a Taylor expansion about t = 0 with positive radius of convergence, the moment of X can be computed by the derivatives of $M_X(t)$ through:

$$M^{(k)}(0) = E[X^k].$$

• If $M_{X_i}(t)$ is defined throughout an interval $(-t_0, t_0)$ for each i, and X_1, X_2, \ldots, X_n are independent, then the moment generating function of $X_1 + \cdots + X_n$ is also defined on $(-t_0, t_0)$, and is equal to $\prod_{i=1}^n M_{X_i}(t)$.

Example (random variable whose moment generating function is defined only at zero) The pdf of a Cauchy distribution is

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

For $t \neq 0$, the integral

$$\begin{split} \int_{-\infty}^{\infty} e^{tx} \frac{1}{\pi(1+x^2)} dx &= \int_{0}^{\infty} \left(e^{tx} + e^{-tx} \right) \frac{1}{\pi(1+x^2)} dx \\ &\ge \int_{0}^{\infty} e^{|t|x} \frac{1}{\pi(1+x^2)} dx \\ &\ge \int_{0}^{\infty} \frac{|t|x}{\pi(1+x^2)} dx \quad (\text{by } e^x \ge 1+x \ge x \text{ for } x \ge 0) \\ &\ge \int_{1}^{\infty} \frac{|t|x}{\pi(1+x^2)} dx \ge \int_{1}^{\infty} \frac{|t|x}{\pi(x^2+x^2)} dx = \frac{|t|}{2\pi} \int_{1}^{\infty} \frac{1}{x} dx = \infty. \end{split}$$

So the moment generating function is not defined for any $t \neq 0$.

The Cauchy distribution is indeed the Student's T-distribution with 1 degree of freedom.

Example (Student's T-distribution with n degree of freedom)

This distribution has moments of order $\leq n-1$ but any higher moments either do not exist or are infinity.

Some books considers infinite moments as "non-existence". So they write "This distribution has moments of order $\leq n-1$ but no higher moments exist."

Let X, Y_1, Y_2, \ldots, Y_n be i.i.d. with standard normal marginal distribution. Then

$$T_n = \frac{X\sqrt{n}}{\sqrt{Y_1^2 + \dots + Y_n^2}}$$

is called the Student's *t*-distribution (on \Re) with *n* degree of freedom.

- The numerator $X\sqrt{n}$ has a normal density with mean 0 and variance n.
- $\chi^2 = Y_1^2 + \cdots + Y_n^2$ is a *chi-square distribution* with *n* degree of freedom, and has density $f_{1/2,n/2}(y)$, where

$$f_{\alpha,\nu}(x) = \frac{1}{\Gamma(\nu)} \alpha^{\nu} x^{\nu-1} e^{-\alpha x} \quad \text{on } [0,\infty)$$

is the gamma density (or sometimes named Erlangian density when ν is a positive integer) with parameters $\nu > 0$ and $\alpha > 0$, and $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ is the gamma function.

(closure under convolutions for gamma density) $f_{\alpha,\mu} * f_{\alpha,\nu} = f_{\alpha,\mu+\nu}$. *Proof:*

$$\begin{aligned} (f_{\alpha,\mu} * f_{\alpha,\nu})(x) &= \int_{0}^{\infty} f_{\alpha,\mu}(x-y) f_{\alpha,\nu}(y) dy \\ &= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} \int_{0}^{x} (x-y)^{\mu-1} e^{-\alpha(x-y)} y^{\nu-1} e^{-\alpha y} dy \\ &= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} e^{-\alpha x} \int_{0}^{x} (x-y)^{\mu-1} y^{\nu-1} dy \\ &= \frac{\alpha^{\mu+\nu}}{\Gamma(\mu)\Gamma(\nu)} e^{-\alpha x} \int_{0}^{1} (x-xt)^{\mu-1} (xt)^{\nu-1} x dt \quad (\text{by } y = xt) \\ &= \frac{1}{\Gamma(\mu+\nu)} \alpha^{\mu+\nu} x^{\mu+\nu-1} e^{-\alpha x} \cdot \underbrace{\frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} \int_{0}^{1} (1-t)^{\mu-1} t^{\nu-1} dt}_{=1} \\ &= f_{\alpha,\mu+\nu}(x), \end{aligned}$$

where "that the last term is equal to one" follows the beta integral.

For
$$\mu > 0$$
 and $\nu > 0$, $B(\mu, \nu) = \int_0^1 (1-t)^{\mu-1} t^{\nu-1} dt = \int_0^\infty \frac{t^{\mu-1}}{(1+t)^{\mu+\nu}} dt = \frac{\Gamma(\mu)\Gamma(\nu)}{\Gamma(\mu+\nu)}$ is the so-called *beta integral*.

 \square

That the pdf of chi-square distribution with 1 degree of freedom equals $f_{1/2,1/2}(y)$ can be derived as:

$$\Pr[Y_1^2 \le y] = \Pr[-\sqrt{y} \le Y_1 \le \sqrt{y}] = \Phi(\sqrt{y}) - \Phi(-\sqrt{y}) = 2\Phi(\sqrt{y}) - 1$$

where $\Phi(\cdot)$ represents the unit Gaussian cdf. So the derivative of the above
equation is $y^{-1/2}\phi(y^{1/2}) = \frac{1}{\Gamma(1/2)}(1/2)^{1/2}y^{(1/2)-1}e^{-(1/2)y}$ for $y \ge 0$.

Then by closure under convolution for gamma densities, the distribution of chi-square distribution with n degree of freedom can be obtained.

In statistical mechanics, $Y_1^2 + Y_2^2 + Y_3^2$ appears as the square of the speed of particles. So the density of particle speed (on $[0, \infty)$) is equal to $v(x) = 2x f_{1/2,3/2}(x^2)$, which is called *Maxwell density*.

By letting $\overline{Y} = \sqrt{Y_1^2 + \dots + Y_n^2}$,

$$\Pr[T_n \le t] = \Pr[(X\sqrt{n})/\bar{Y} \le t] = \int_0^\infty \Pr[X \le yt/\sqrt{n}] dF_{\bar{Y}}(y)$$
$$= \int_0^\infty \Phi(yt/\sqrt{n}) \left(2y f_{1/2,n/2}(y^2)\right) dy.$$

So the density of T_n is:

$$\begin{split} f_{T_n}(t) &= \int_0^\infty \left(\frac{y}{\sqrt{n}} \phi(yt/\sqrt{n})\right) \left(2y f_{1/2,n/2}(y^2)\right) dy \\ &= \int_0^\infty \left(\frac{y}{\sqrt{2\pi n}} e^{-y^2 t^2/(2n)}\right) \left(\frac{1}{2^{n/2-1} \Gamma(n/2)} y^{n-1} e^{-y^2/2}\right) dy \\ &= \frac{1}{2^{(n-1)/2} \Gamma(n/2) \sqrt{\pi n}} \int_0^\infty y^n e^{-y^2 (1+t^2/n)/2} dy \\ &= \frac{1}{2^{(n-1)/2} \Gamma(n/2) \sqrt{\pi n}} \int_0^\infty \frac{2^{n/2} s^{n/2}}{(1+t^2/n)^{n/2}} e^{-s} \left(\frac{2^{-1/2} s^{-1/2}}{(1+t^2/n)^{1/2}}\right) ds \quad \left(\text{by } y = \frac{\sqrt{2s}}{(1+t^2/n)^{1/2}}\right) \\ &= \frac{1}{\Gamma(n/2) \sqrt{\pi n} (1+t^2/n)^{(n+1)/2}} \int_0^\infty s^{(n+1)/2-1} e^{-s} ds \\ &= \frac{C_n}{(1+t^2/n)^{(n+1)/2}}, \text{ where } C_n = \frac{\Gamma((n+1)/2)}{\Gamma(n/2) \sqrt{\pi n}}. \end{split}$$

For $t \neq 0$, the integral

So the moment generating function is not defined for any $t \neq 0$.

However for r < n,

$$\begin{split} E[|T_n|^r] &= \int_{-\infty}^{\infty} C_n \frac{|t|^r}{(1+t^2/n)^{(n+1)/2}} dt \\ &= 2C_n \int_0^{\infty} \frac{t^r}{(1+t^2/n)^{(n+1)/2}} dt = C_n n^{(r+1)/2} \int_0^{\infty} \frac{s^{(r+1)/2-1}}{(1+s)^{(r+1)/2+(n-r)/2}} ds \\ &= C_n n^{(r+1)/2} \frac{\Gamma((r+1)/2)\Gamma((n-r)/2)}{\Gamma((n+1)/2)} = n^{r/2} \frac{\Gamma((r+1)/2)\Gamma((n-r)/2)}{\Gamma(n/2)\sqrt{\pi}} < \infty. \end{split}$$

But when r = n (similarly for r > n),

$$E[(T_n^r)^+] = E[(T_n^n)^+] = \left\{ \begin{array}{l} \int_{-\infty}^{\infty} C_n \frac{t^n}{(1+t^2/n)^{(n+1)/2}} dt, \text{ if } n \text{ even}; \\ \int_{0}^{\infty} C_n \frac{t^n}{(1+t^2/n)^{(n+1)/2}} dt, \text{ if } n \text{ odd.} \end{array} \right\} = \infty$$

and

$$E[(T_n^r)^-] = E[(T_n^n)^-] = \begin{cases} 0, & \text{if } n \text{ even}; \\ \int_{-\infty}^0 C_n \frac{-t^n}{(1+t^2/n)^{(n+1)/2}} dt = \infty, & \text{if } n \text{ odd}. \end{cases}$$

This is a good example for which the moments, even if some of them exist (and are finite), cannot be obtained through the moment generating function.

gamma distribution : $f_{\alpha,\nu}(x)$ (on $[0,\infty)$) has mean ν/α and variance ν/α^2 .

Snedecor's distribution or *F*-distribution : It is the distribution of

$$Z = \frac{\frac{X_1^2 + \dots + X_m^2}{m}}{\frac{Y_1^2 + \dots + Y_n^2}{n}},$$

where X_i and Y_j are all independent standard normal. Its pdf with positive integer parameters m and n is:

$$\frac{m^{m/2}}{n^{m/2}} \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} \frac{z^{m/2-1}}{(1+mz/n)^{(m+n)/2}} \quad \text{on } z \ge 0$$

Bilateral exponential distribution : It is the distribution of $Z = X_1 - X_2$, where X_1 and X_2 are independent and have common exponential density $\alpha e^{-\alpha x}$ on $x \ge 0$. Its pdf is $\frac{1}{2}\alpha e^{-\alpha |x|}$ on $x \in \Re$. It has zero mean and variance $2\alpha^{-2}$. **Beta distribution** : Its pdf with parameters $\mu > 0$ and $\nu > 0$ is

$$\beta_{\mu,\nu}(x) = \frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} (1-x)^{\mu-1} x^{\nu-1} \quad \text{on } 0 < x < 1.$$

Its mean is $\nu/(\mu + \nu)$, and its variance is $\mu\nu/[(\mu + \nu)^2(\mu + \nu + 1)]$.

Arc sine distribution : Its pdf is $\beta_{1/2,1/2}(x) = \frac{1}{\pi\sqrt{x(1-x)}}$ on 0 < x < 1. Its cdf is given by $\frac{2}{\pi} \sin^{-1}(\sqrt{x})$ for 0 < x < 1.

Generalized arc sine distribution : It is a beta distribution with $\mu + \nu = 1$.

Pareto distribution : It is the distribution of $Z = X^{-1} - 1$, where X is beta distributed with parameters $\mu > 0$ and $\nu > 0$. Its density is

$$\frac{\Gamma(\mu+\nu)}{\Gamma(\mu)\Gamma(\nu)} \frac{z^{\mu-1}}{(1+z)^{\mu+\nu}} \quad \text{on } 0 < z < \infty.$$

This is often used as an incoming traffic with heavy tail as $z^{-(\nu+1)}$.

Cauchy distribution : It is the distribution of $Z = \alpha X/|Y|$, where X and Y are independent standard normal distributed.

Its pdf with parameter $\alpha > 0$ is

$$\gamma_{\alpha}(x) = \frac{1}{\pi} \frac{\alpha}{x^2 + \alpha^2}$$
 on \Re .

Its cdf is $\frac{1}{2} + \frac{1}{\pi} \tan^{-1}(x/\alpha)$. It is also **closure under convolution**, i.e., $\gamma_s * \gamma_u = \gamma_{s+u}$.

It is interesting that Cauchy distribution is also **closure under scaling**, i.e., $a \cdot X$ has density $\gamma_{a\alpha}(\cdot)$, if X has density $\gamma_{\alpha}(\cdot)$. Hence, we can easily obtain the density of $a_1X_1 + a_2X_2 + \cdots + a_nX_n$ as $\gamma_{a_1\alpha_1+a_2\alpha_2+\cdots+a_n\alpha_n}(\cdot)$, if X_i has density $\gamma_{\alpha_i}(\cdot)$.

One-sided stable distribution of index 1/2: It is the distribution of $Z = \alpha^2 X^{-2}$, where X has a standard normal distribution.

Its pdf is
$$f_{\alpha}(z) = \frac{\alpha}{\sqrt{2\pi}} \frac{1}{\sqrt{z^3}} e^{-\frac{1}{2}\alpha^2/z}$$
 on $z \ge 0$.

It is also closure under convolution, namely, $f_{\alpha} * f_{\beta} = f_{\alpha+\beta}$.

If Z_1, Z_2, \ldots, Z_n are i.i.d. with marginal density $f_{\alpha}(\cdot)$, then $\frac{Z_1 + \cdots + Z_n}{n^2}$ also has density $f_{\alpha}(\cdot)$.

Weibull distribution : Its pdf and cdf are respectively given by

$$\frac{\alpha}{\beta} \left(\frac{y}{\beta}\right)^{\alpha-1} e^{-(y/\beta)^{\alpha}}$$
 and $1 - e^{-(y/\beta)^{\alpha}}$

with $\alpha > 0$, $\beta > 0$ and support $(0, \infty)$.

By defining X = 1/Y, where Y has the above distribution, we derive the pdf and cdf of X as respectively:

$$\alpha\beta(\beta y)^{-1-\alpha}e^{-1/(\beta y)}$$
 and $e^{-1/(\beta x)^{\alpha}}$.

This is useful for ordered statistics.

For example, let $X_{(n)}$ denote the largest one among i.i.d. X_1, X_2, \ldots, X_n . Then $\Pr\left[\frac{X_{(n)}}{n} \leq x\right] = e^{-(\alpha/\pi)(1/x)}$, if X_j is Cauchy distributed with parameter α . Or $\Pr\left[\frac{X_{(n)}}{n^2} \leq x\right] = e^{-(\alpha\sqrt{2}/\sqrt{\pi})(1/x^{1/2})}$, if X_j is a one-sided stable distribution of index 1/2 with parameter α .

Logistic distribution : Its cdf with parameters $\alpha > 0$ and $\beta \in \Re$ is $\frac{1}{1 + e^{-\alpha x - \beta}}$ on \Re .

Distribution with nice moment generating function 21-35

Gaussian distribution :

$$M(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} e^{tx} e^{-(x-m)^2/(2\sigma^2)} dx = e^{mt + \sigma^2 t^2/2},$$

which exists for all $t \in \Re$.

Exponential distribution :

$$M(t) = \int_0^\infty e^{tx} \alpha e^{-\alpha x} dx = \frac{\alpha}{\alpha - t} = \sum_{k=0}^\infty \left(\frac{k!}{\alpha^k}\right) \frac{t^k}{k!}$$

is defined for $t < \alpha$.

So the kth moment is $k! \alpha^{-k}$.

Poisson distribution :

$$M(t) = \sum_{r=0}^{\infty} e^{rt} e^{-\lambda} \frac{\lambda^r}{r!} = e^{\lambda(e^t - 1)},$$

which exists for all $t \in \Re$.