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Random Variables 201

Definition (random variable) A random variable on a probability space
(2, F,P) is a real-valued function X = X(w) (ie, X : Q — R) with
{we: X(w) <a} € F for every z € R.

e The event space F must be a o-field. Why” See the next two slides.

e The probability measure P can be treated as a quantitative mechanism for
the probability of occurrence of events.

o {we Q: X(w) <z} must be an event, otherwise we do not know its proba-
bility of occurrence.

Under this definition, the cdf of X is well defined as:
PriX <z]=P({weQ: X(w) <zx}).




The Concept of Field/Algebra 2.2

Definition (field/algebra) A set F is said to be a field or algebra of a sample
space () if it is a nonempty collection of subsets of €2 with the following properties:

1.0 e Fand Q € F;

e Interpretation: A mechanism to determine whether an outcome lies in
the empty set (impossible) or the sample space (certain).

2. (closure under complement action) A € F = A° € F;

e [nterpretation: “having a mechanism to determine whether an outcome
lies in A” is equivalent to “having a mechanism to determine whether an
outcome lies in A¢.”

3. (closure under finite union) A € F and B € F = AU B € F.

e [nterpretation: If one has a mechanism to determine whether an outcome
lies in A, and a mechanism to determine whether an outcome lies in B,
then he can surely determine whether the outcome lies in the union of A

and B.

e FElements of F is referred to as events.
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e To work on a field may cause some problems when a person is dealing with
“limat’ .
E.g., Q2 = R (the real line) and F is a collection of all open, semi-open and
closed intervals whose two endpoints are rational numbers, including R itself.

Let

A; = [0,1.010010001 . .. 1).

7 of them

Then, does the infinite union U°; A; belong to F7 The answer is NO!

e We therefore need an extension definition of field, which is named o-field.

Definition (o-field/o-algebra) A set F is said to be a o-field or o-algebra of
a sample space (2 if it is a nonempty collection of subsets of €2 with the following

properties:

1.0 € Fand Q € F;

2. (closure under complement action) A € F = A° € F;

3. (closure under countable union) A; € F fori =1,2,3,... = U A, e F.
i=1




Probability measure 20-4

Definition (probability measure) A set function P on a measurable space
(2, F) is a probability measure, if it satisfies:

1.0< P(A) <1lfor AeF;
2. P(0) =0and P(Q) = 1.
3. (countable additivity) if A;, As, ... is a disjoint sequence of sets in F,

then
P <U Ak> = P(A).
k=1 k=1




Merit by defining random variables based on (€2, F, P) 7

Answer 1: (Q, F, P) is what truly occurring internally, but possibly non-observable.

e [n order to infer what really occurs for this non-observable random outcome
w, an experiment that results in observable values x that depends on this
non-observable outcome must be performed.

e So x that takes real values is a function of w € €.

e Since w is random with respect to probability measure P, the probability of
the observation X is defined over the probability on €.

e Some books therefore state that X : (2, F, P) — (X(Q),B,Q) yields an
observation probability space (X (), B, @), where

X(A) = {X(w) eR:we A}, B={X(A): Ac Fland Q(X(A)) = P(A).
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Example An atom may spin counterclockwisely or clockwisely, which is not di-
rectly observable. The original true probability space (€2, F, P) for this atom is
() = {counterclockwise, clockwise},

F = {(D, {counterclockwise}, {clockwise}, {counterclockwise, clockwise}},
and
[ P(D) =
P({counterclockvvlse}) = 0.4,
P({clockwise}) = 0.6,

P({counterclockwise, clockwise}) = 1.

Now an experiment that uses some advanced facility is performed to examine the
spin direction of this atom. (Suppose there is no observation noise in this
experiment; so a 1-1 correspondence mapping from € to R can be obtained.) This
results in an observable two-value random variable X, namely,

X (counterclockwise) =1 and X (clockwise) = —1.
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Answer 2: (€2, F, P) may be too abstract and lack of the required mathematical
structure for manipulation, such as ordering (that is required for cdf).

Example

(1 = {Aa V,D, .7<>7 ‘}
F = A o-field collection of subsets of (2

P = Some assigned probability measure on F

Define a random variable X on (Q, F, P) as:

S O e W NN
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Examine what subsets should be included in F.

For z < 1, {fweQ: X(w) <z} =0
For1<ax<2 {weQ: Xw) <z} = {a}

(W)
For2<z <3, {we: X(w)<z} = {A,V}
For3<z <4, {weQ: X(w) <z} = {a,v,00}
Ford<ax<b {we: X(w) <z} = {a,v,(0 R}
Forb<x <6, {we: X(w) <z} = {a,v.O RO}

For > 6, {WEQIX(W);.CU} = {A,VORO ¢} =0

By definition, / must be a o-field containing the above seven events or sets.

Note that we can sort 1,2,3,4,5,6 (to yield the cdf), but we may not be able to
sort A, V.1, O, 4, not to mention the manipulation of (A + V) or (0 — W).
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Example of a random variable Y without inverse.
Define a random variable Y on (2, F, P) as:

Y(a)=Y(v)=Y(O) =1
V(M) =Y(0)=Y(#) = 2
Examine what subsets must be included in F.

For y < 1, {weQ:Yw) <y} =10
For1<y<2, {weQ:Y(w) <y} = {a,v,00}
For y > 2, {fweQ: Yw) <y} = {4, VRO ¢} =0

Hence, F must be a o-field containing the above three sets for Y.

The third merit by defining random variables based on (€2, F, P) will be deferred
until the introduction of the definition of random processes.




Existence of mean 20-10

e In mathematics, (+00) + (—00) is undefined.

e To avoid the occurrence of (+00) + (—o00), Real Analysis first defines the
integration of a non-negative function f(x), namely, f(x) > 0 for z € R
(either based on Riemann integral or based on Lebesgue integral). See the next
two slides for details.

e Then, the integration of a general (possibly negative) function is defined thr-

[ fa d:r:—/f+ d:c—/f

where fT(x) = max{f(z),0} and f~(z) = max{—f(x }

ough

e An integral does not exist when /f+(:€)d:€ = /f_(x)dx = 00

e Similar rule applies to random variable X. Notably, the expectation of X is in-
00 00 0
deed an integration (E[X] = / rdPx(x) = / a:dPX(x)—/ (—x)dPX(x)).
—00 0 —00
e This is the reason why people say the mean of a Cauchy distribution does not
exist (and is undefined)!

I G“ +1-f2>> " /io(_x) Gu +1:c2)> e
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Riemann integral:

Let s(z) represent a step function on [a, b), which is defined as that there exists a
partition a = xg < 1 < --+ < x, = b such that s(z) is constant during (z;, z; 1)
for 0 <17 < n.

If a function f(x) is Riemann integrable,

b b ,
fl)da = Sup s(x)dr = inf s(x)dz.
/a {8( } /G {s(a:) : s(x)zf(g;)} /a

z) : s(x)<f(x)

Ezxample of a non-Riemann-integrable function:
f(z) =0 if x is irrational; f(x) = 1 if « is rational.

Then ,
sup / s(x)dx = 0,
{s(x) : s(x)gf(x)} “

b
inf / s(z)dx = (b—a).
{s62) : s(@)>f(a) } Ja

but
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Lebesgue integral:

Let t(x) represent a simple function, which is defined as the linear combination
of indicator functions for finitely many, mutually disjoint partitions.

For example, let U, ...,U,, be the mutually-disjoint partitions of the domain X
and U™ U; = X. The indicator function of U; is 1(z;U;) = 1 if x € U;, and 0,
otherwise.

Then t(xz) = Y ", a;1(z;U;) is a simple function (and [ t(x) = D" a; - AMUy),
where A(+) is a Lebesgue measure (cf. Slide 20-36).)

If a function f(x) is Lebesgue integrable, then

b b b
/f(a:)da:: sup /t(x)dx: inf /t(aj)daj,
a (i) - tw)<fn) } 7 {t@)  t@zs@ } Ja

The previous example is actually Lebesgue integrable, and its Lebesgue integral is
equal to zero.
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e Define X = max{X,0} and X~ = max{—X, 0}.

e Then X = X™ — X~ and both X+ and X~ are non-negative random vari-
ables (so their expectation or integration over its probability measure can be
Riemann-evaluable or Lebesgue-evaluable).

e Define F[X] = E[X1] — B[ X].
e Similar definition applies to E[X?], E[X?], E[X7], E[f(X)], etc.
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Definition (simple function) A simple function is defined as the linear com-
bination of indicator functions for finitely many, mutually disjoint partitions.

Definition (F/B-measurable) A real-valued function f : (Q, F) — (R, B) is
F/B-measurable, if {w € Q0 : f(w) € H} € F for every H € B, where B is the

one-dimensional Borel set.

e Since it is widely adopted that the Borel set is the o-field for real line R, F/B-
measurable is sometimes abbreviated as F-measurable (or measurable JF).

e A Borel set is one that consists of all (countable) intersections and unions of
open, semi-open and closed intervals. In other words, the element in a Borel
set can be obtained by repeating countable (or finite) set-theoretic operations
starting from intervals. So the Borel set is a o-field.

e The Borel set is usually large enough for all “practical” purposes. However, it

does not contain every subset of the real line! (See the example in the next two
slides.)




Limits of Random Variables 2015

A set of real numbers outside the Borel set (due to Vitali)
We now consider the Borel set of [0, 1), which is obtained by repeating countable
(or finite) set-theoretic operations starting from intervals contained in [0, 1).

Denote by ® the operator under [0, 1) as:
r©y = (r+y) mod 1 for two real numbers z,y € [0, 1)
and
Aox={reR:r=a© x for some a € A}.

Two real numbers; x and y in [0, 1), are said to be equivalent, denoted by x ~ vy,
if z © r = y for some rational r in [0,1). Notably, x ~ y and y ~ z imply = ~ z,
because x © r; =y and y © 1o = z imply 2 = x © (r; © 19).

Form a set that consists of all the equivalent points in [0, 1) (there are countable
many elements in this set because rational numbers in [0,1) are countable),
and for convenience, name such set an equivalent class.

Let H be a subset of [0, 1), consisting of exactly one point from each equivalent
class.

List the countably many sets of H © r for each rational number 7.
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Claim: 'H © r; and ‘H © r9 are disjoint for any rational numbers, r1 # rs.

Proof: If there exists a € [0,1) satisfying a € H ® r; and a € H ©® ro, then
a ~ hy for some hy € H and a ~ hy for some hy € H, since r1 and r9 are rational
numbers (and hy # hy since a = hy © 11 = hy © r3). Hence, h; and hy belong to
the same equivalent class, contradicting to the construction of H. O

As a consequence of the above claim, all the sets in the list of H © r are disjoint.

Observe that [0,1) = (J,cqH @ r, where Q is the set of all rational numbers in
0, 1), since every point in [0, 1) belongs to some equivalent class.

Now if H is contained in the Borel set B0, 1) of [0, 1), then by forming a probability
space ([0,1), B[0,1), P) with P(A) = [, _, dx for A € B[0,1), we yield:

dx = / dx. (20.1)
/xE[O,l) Z reHOr

reQ
Apparently, [ _, dr = fer@ dx for any rational r € [0,1). Thus, if [ . do =
A > 0, then (20.1) gives 1 = 37 oA = oo, and if [, dz = 0, (20.1) gives
1=2>,c00=0. Accordingly, H is not contained in BJ0,1).
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Can we form a set ‘H that consists of exactly one point from each of the uncountably
many equivalent classes?

e Give a sequence of set { A }eso, where the union of them is the sample space.

° ﬂ U A, consists of all the elements that appears in { A }.~¢ infinitely many

e>0 a>e
times (could be countably or uncountably many).

le.,wE€ ﬂ U A, implies w € U A, for every € > 0.

e>0 a>e a>e
Hence, for any € > 0, there exists a > € such that this w € A,

(Such choices of € as well as a can be of uncountably many.)

o U ﬂ A consists of all the elements that appears in {A,}e~o finitely many

6?0a>e
times.

e Now if {Ac}c~o are mutually disjoint, then U ﬂ A¢, consists of all the ele-

e>0 a>e
ments that appears in { A, }e~o exactly one time.
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Theorem 13.5 If a real-valued function f : ) — R is F-measurable, then there
exists a sequence of F-measurable stmple functions f, : 0 — R such that

0 < fu(w) T f(w) for those w satisfying f(w) > 0;
0> fo(w) | f(w) for those w satistying f(w) < 0.

Proof: Define mutually disjoint sets as:

{weQ:n< flw)}, if £ =mn2"+1;
A=< {weQ: (k=127 < f(w) < k27"}, if —n2"+1 <k <n2"
{weQ: flw) < —n}, if k= —n2".
Then )
n, if we Apony;
Folw) = ¢ (k—1)27" ifw e Ag for 1 < k < n2"
" k27", if we A for —n2"+1<k<0;
—n, if we A_,on

\
is one of the required function sequences. O
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Definition (simple random variables) A simple random variable takes only
finitely many values.

Theorem 13.5a If a random variable X : @ — R is F-measurable under
probability space (€2, F, P), then there exists a sequence of F-measurable simple
random variables X, : € — R such that X" 1+ X" and X, T X~

< . . > .
(Equivalently, { 0 < Xp(w) T X(w) for those w satisfying X (w) > 0; )

0> X,(w) ) X(w) for those w satisfying X (w) < 0.

Proof: Defining X, = f,, according to X = f in Theorem 13.5 satisfies the need.
(Since €2 may be an abstract and non-real-valued set, we cannot partition €2 using
“>7 or “<”. This is another reason why we have to partition over X (w) € R.) O

e This theorem provides a merit of generalizing theorems that originally apply
to simple random variables.

e Notably, a simple random variable only takes finitely many values; hence, all
moments of a simple random variable are bounded (and hence, exist). There-
fore, all moments of a simple random variable can be determined by taking the
derivatives of its moment generating function.
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Definition (random vectors) A random vector on a probability space
(Q, F, P) is a real-valued function X : Q — R* with {w € Q: X(w) = 2*} € F.

e A random vector is a finite collection of random variables. In fact, each dimen-
sion of X(w) = (X1(w), Xo(w), ..., Xi(w)) is itself a random variable.

e Hence, an equivalent definition of random vectors is:

Definition (random vectors) A random vector is a finite collection of
random variables, each of which is defined on the same probability space.

e Another equivalent definition that can be seen in the literature is:

Definition (random vectors) A random vector is an indexed family of
random variables { X;,7 € Z}, in which each Xj is defined on the same proba-
bility space, and the index set Z is finite.
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e Why requiring each X, to be defined on the same probability
space?

Because, it is through “the same probability space” that the joint distribution
of two (or three, four,.. ., etc) random variables can be well-defined.

PriX; < a; and X; < x]
= P({w e Q: X;(w) < z; and Xj(w) < 2;})
= P{weQ: Xiw) <z}n{we: X;(w) <z,}).

Then, it can be proved that:

A2 {weQ: Xi(w) <az} € F because X; defined over (Q, F, P)
A 2{we: X;w)<a;} €F  because X defined over (€, F, P)
A; € F F closure under complement action
A € F F closure under complement action
A;UA; € F F closure under countable union
(AJUA)) =A;NA; € F  F closure under complement action

Hence, P(A; N A;) is probabilistically measurable (for any x; and z;).

It can be proved from closures under complement action and countable union that
F is closure under countable intersection.




Random Vectors and Random Processes 20-23

Example

Q= {a,VORO ¢}
F = A o-field collection of subsets of €2
P = A probability measure on F

Define a random vector { X;,7 € {1,2}} as:

Xi(a) =1, Xi(W) =2 Xy(A) =1 Xy(Hl) =2
Xi(v) =2, Xi(0) = 1; Xo(v) = 1; Xo(0) = 2
XiO) =1 Xu(e) =2 X)) =1 Xo(¢) =2
Examine what subsets should be included in F.

For x; < 1, fweQ: Xj(w) <z} =0

For1 <z <2, {weQ: Xj(w) <z} = {a,0,0}

For x; > 2, {fweQ: Xj(w) <z} = {aA, VO RO ¢} =0

For xy < 1, {weQ: Xo(w) <ax} =0

For 1 <uzy <2, {weQ: Xolw) <z} = {Aa,V,[J}

For xy > 2, {fwe: Xhw) <z} = {A,VOERO 6=

Hence, F must be a o-field containing the above six sets.



Random Vectors and Random Processes 20-24

We can further extend the random vector to a possibly (uncountably) infinite
collection of random variables all defined on the same probability space.

Definition (random process) A random process is an indexed family of ran-

dom variables {X;,t € Z}, in which each X; is defined on the same probability
space.

e Under such definition, all finite dimensional distributions are well-defined be-
cause

[th <zyand X, <zpand --- and X;, < xk]
= {weQ: Xy (w) <z and X, (w) < a9 and --- and Xy, (w) < 2}

k
— n{w €0 Xy (w) <y}

is surely an event by the o-field properties, and hence, is probabilistically mea-
surable.
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e Third merit by defining random processes based on (€2, F, P):

— All finite dimensional joint distributions are well-defined without the tedious
process of listing all of them.

e The converse however is not true, i.c., it is not necessarily valid that
the statistical properties of a real random process are completely determined
by providing all finite-dimensional distributions for samples.

— See the counterexample in the next slide.
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Example Define random processes { Xy, ¢t € [0,1)} and {Y;, £ € [0,1)} as

1, w#t;
Xi(w) = { 0 o it and Yi(w) =1,

where w € Q = (0,1). Let P(A) = [, da for any A € F. Then,

P({wen: mn xiw <1}) =@ -1

tel0,1)

Pr [min X < 1]
t€l0,1)

but

Pr[minYt<1] = P({weQ: min Yt(w)<1}) = P(0) = 0.

te[0,1) tef0,1)

Thus, X; and Y, have different statistical properties; however, X; and Y; have
exactly the same multi-dimensional distribution for any samples at ¢1, to, . .., tx
and any k:

PriXy, <z and Xy, <@g and --- and X, < xy

i 1. iy ciop 2 > 1
= P (ﬂ {weN: th-(OJ) < 33z}> = { 7 s
1=1

0, otherwise

= PrlYy, <z;and Y, <apand --- and Y}, <z
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We are more interested in the associated sub-event space of X, which is named
the o-field generated by random variable X and is denoted by o(X).

(Remember that the event space has to be a o-field; otherwise, the “limit” may
not be probabilistically measured.)

Note that those events that are not “probabilistically measurable” are of no interest
through the random experiment X.

Definition (o-field generated by X) The o-field generated by X is the
smallest o-field with respect to which it is probabilistically measurable.

Theorem 20.1 Let X = (X3,..., X)) be a random vector.

1. The o-field 0(X) = o(Xy, ..., X)) consists exactly of all the sets {w € Q) :
X (w) € H} for H C B

2. A random variable Y is o(X )-measurable if, and only if, there exists a B* /B-
measurable function f : RF — R (cf. Slides 20-14 and 20-30 for the definition
of B¥/B-measurable function) such that Y(w) = f(X1(w),..., Xi(w)) for
all w € Q, where B and B are k-dimensional and 1-dimensional Borel sets,
respectively.
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Example
1. Define a real-valued function X (a) = X (b) =1 and X (c¢) = —1. Is X a random
variable defined on (€, F, P), where

o () ={a,b,c},

o F = {(D, {a},{b,c},{a,b, c}}

e P(0))=1—P({a,b,c}) =0, P({a}) = 0.4 and P({b,c}) = 0.67
Answer: No, because {w € {a,b,c} : X(w) =1} = {a, b} is not an event.
2. Is X a random variable defined on (2, F, P), where

e () ={a,b,c},

. Fo {@, {a}. (5}, {e}. (0.0}, {b.c}. {c.a}, {ah, c}}

e P(0) = 1 = P({a,b,c}) = 0, P({a}) = P({b}) = P({c}) = 1/3 and
P({av b}) - P({b7 C}) - P({Cv a}) - 2/3?
Answer: Yes, since {w € {a,b,c} : X(w) € H} € F for every H C B.
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An easier way to validate that X is a random variable defined on (€, F, P) is to
examine {w € {a,b,c} : X(w) <z} € F for every x € R, namely, to examine
whether the cdf of X exists or not.

0, if v < —1;
{wed{a,b,c}: X(w) <z} =< {c}, if —1<z<1,;

{a,b,c}, if © > 1.
3. What is o(X) in Problem 27
Answer from Theorem 20.1: Any H containing neither 1 nor —1 gives {w € () :
X(w) e H} =0. Any H containing 1 but not —1 gives {w € Q: X (w) € H} =
{a,b}. Any H contains —1 but not 1 gives {w € Q: X(w) € H} = {c}. Any H
containing both 1 and —1 gives {w € Q : X(w) € H} = {a,b,c}.
Alternative answer: A set consists of all complements, intersections and unions of
{we{a,b,c}: X(w) <z}, ie,

(SCROUNEYES

since {a,b} = {c}*.
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Definition (F/G-measurable) A function f : (Q,F) — (6,G) is F/G-
measurable, if {w € Q: f(w) € G} € F for every G € G.

Definition (B*/B-measurable) A function f : (%%, B*) — (R, B) is B /B-
measurable, if {z* € R : f(2¥) € G} € B for every G € B.

Proof of Theorem 20.1

1. Any set of the form Ay = {w € Q : X (w) € H} must be an element of o(X).
Hence, S = {B C Q: B = Ay for some H € B*} C o(X).
By definition, o(X) is the smallest o-field with respect to which X is probabilis-

tically measurable, and S is apparently a o-field for which X is probabilistically
measurable. Thus, § = o(X).

(a) ) € S by taking H = 0; Q € S by taking H = RF.
(b) Ay e S = A, = Anc € S.
(c) Uf; Ay, = AU?i{Hi €S.
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2. If there exists such B¥ /B-measurable f, then for every G' € B, we have:
HE {2 e R f(a¥) € G} € B,
and

{fweQ:Y(w) eG} = {we: f(X1(w),..., Xiw)) € G}
= {we: (Xi(w),..., Xp(w)) € H}
= {weQ: X(w)eH}
€ o(X).

To prove the necessity, suppose Y is a simple random variable, and is o(X)-
measurable. Let y1, 1o, ...,y be all the distinct values that Y can take.

Then by the first part of Theorem 20.1, 4; = {w € Q: Y(w) =y} € 0(X) =
S implies that A4; = {w € Q: X(w) € H;} for some H; € B*.

Define f(z%) = S°1" v 1(z%; H,;), where 1(a*; H;) equals one if 2% € H;, and
zero, otherwise. Apparently, {zF € R* : f(2¥) € G} for a given G € B can

be formed by finite unions of {#;}, and hence, is contained in B* for every
G € B, which indicates f is B* /B-measurable.

Since {A;}", are disjoint, no X (w) lies in more than one H;. Accordingly,

FX(W) =Y (w)( =y if X(w) € Hy),
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Theorem 13.5a If a random variable X : @ — R is F-measurable under
probability space (€2, F, P), then there exists a sequence of F-measurable simple

random variables X, : 2 — R such that X" 1+ X" and X, T X~

Now suppose Y is not necessary simple, but is still o(X )-measurable. Then
by Theorem 13.5a, there exists a sequence of simple random variables Y, such
that Y,(w) — Y (w) for every w € €.

The previous proof shows that there exists B¥/B-measurable f, such that
Yilw) = f(X(w)) for all w € Q.

Define f(2*) = limsup f,(«"). Then f is also B¥ /B-measurable.

n—o0

The limit of B*/B-measurable functions is also B*/B-measurable, since we can

surely form the “limit set” by countably many set-theoretical operations, and B*
and B are o-fields. (Cf. Theorem 13.4)

limsup f,(z") = lim sup f,(z") = inf sup f,(=").

N—00 n—00 g>n n>1 >n

As a result, f(X(w)) = limsup f,,(X(w)) = limsup Y, (w) = Y(w). O

n—oo n—oo
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In this discussion, we drop the mathematical notion of line measure p that is used
in Billingsley’s book, and focus more on the engineering notion of “distributions”.

Definition (distribution function) The distribution function of a random
variable X is defined as Fx(z) £ Pr[X < z].

Properties of Fx(-)
e non-decreasing
e right-continuous

e the number of discontinuous points is countable

Since Fy(oo) = 1 and Fx(—o0) = 0, the number of “jumps” that exceeds
1/2 is at most 2 (index them by 1 and 2); the number of “jumps” that exceeds
1/3 but are less than 1/2 is at most 3 (index them by 3, 4 and 5); the number
of “jumps” that exceeds 1/4 but are less than 1/3 is at most 4 (index them
by 6, 7, 8 and 9); - - -. So we can index these discontinuous points countably.

Theorem 14.1 If a function F(+) is non-decreasing, right-continuous and satisfies

Em F(z) =0 and liTm () = 1, then there exists a random variable and a pro-

bability space such that the cdf of the random variable defined over the probability
space is equal to F'(-).
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Theorem 14.1 releases us with the burden of referring to a probability space before
our defining a random variable. We can indeed define a random variable X directly
by its cdf, i.e., Pr|X < x]. Nevertheless, it is better to keep in mind (and learn) that
a formal mathematical notion of random variables is defined over some probability
space.

Notably, Theorem 14.1 only proves the “existence” but not the “uniqueness”.

Definition (support) The support of a random variable X is a Borel set H for
which Pr[X € H] = 1.

e Since we can only well-define the probability of an event in Borel set, the
support of X must be a Borel set (cf. Slide 20-36).

Definition (discrete random variables) If the support of a random variable
X is discrete, then X is called a discrete random variable.
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1. Binomial distribution: Pr[X = r| = (n)pr(l —p)" " forr=0,1,...,n.
r

Example of the probability space which X is defined on.

(0=1{0,1,2,....n},

< F =2
P(A) ZZieAP[X:i]a
X(w) =w.

\

2. Poisson distribution: Pr[X =] = e‘A—' forr=0,1,2,...
r!

How about the support of X cannot be made discrete? Then the probability den-
sity function of X may exist.
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Definition (Lebesgue measure) A Lebesgue measure A over the Borel set B
is that for any A € B,
P
i=1

and {Z;}22, are disjoint intervals satisfying A = UX,Z;, and A(Z) is equal to the
right-margin of interval Z minus the left-margin of the same interval.

Definition (probability density function) A random variable and its distri-
bution (cdf) have density f with respect to Lebesgue measure, if f is B-measurable
(ie., f: (M, B) — (R, B)) non-negative function that satisfies

Pr[X € A] = / f(z) A(dx) = /Af(a:)da: for every A € B.

Proposition (uniqueness of density) If A ({x € ®: f(x) # g(z)}) = 0,
then both f and g can be the density of the same random variable.

e [t may not be easy to examine the existence of density by means of the above
definition. So we need an equivalent examinable condition.
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Theorem Let Fy(x) = Pr[X < x]. Then

Pr[X € A] = / f(z) A(dx) = /Af(a:)dx for every A € B.

if, and only if,

b
Fx(b) — Fx(a) = / f(x)dx for every a,b € R.

e Fy(x) is differentiable for every x € R except for a set of Lebesgue measure
zero (cf. Slide 20-36).

e Note that Fx(x) is not necessarily differentiable on every x for such f(-) to
exist.

e Ifsuch f exists, then F' (x) = f(x) for every x € R except for a set of Lebesgue
measure zero.

e If such f exists, and is continuous, then F(x) = f(z) for every z € R.
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1. Exponential distribution: The probability density function (pdf) of expo-
nential distribution with parameter o > 0 1is:

ae” it x > 0;
flw) = { 0, otherwise.

[ts cdf is then equal to:

e ", if x > 0;

z 1 —
F(z) = /Oo fly)dy = { 0, otherwise.

2. Normal distribution: The pdf of normal distribution with parameters m
and o > 0 is:

1 2 /(6.2
flz) = e~ @m0 for 2 € R,
V2mo?

No close-form formula exists for its cdf.

3. Standard normal distribution: Normal distribution with m = 0 and o = 1.
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4. Uniform distribution A uniform distribution has pdf equal to:

1
if a <ax <b;
fe)={ b=a’ "=T
0, otherwise.
[ts cdf is then equal to:
( 0, if v < a;

r—a

F(:U)—/ fly)dy = < ; ,ifa<ax <y
0o —a

1, otherwise.

\
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[t is easy to construct a random variable whose support cannot be made discrete.

But a more interesting case would be the random variable having continuous cdf
but no pdf!

In other words, F'(b) — F'(a) > 0 for b > a for every a and b (in the smallest closure
of the set that gathers unit probability mass), but there exists no f(-) such that

F(b) — Fla) = [ f(x)dx.
Example Let X =Y * | B,27" where {B;}$°, are i.i.d. with Pr[B, = 0] = p
and Pr[B, =1 =1—pand p € (0,1/2). Since X is a binary representation of a
number in [0, 1), the support of X is equal to [0, 1).
For any @ = .bybobs . . ., where b; € {0, 1},
Fx(x) =Pr[X <z
= Pr{(Bi<b)V(Bi=b0iABy <by)V(Bi=bNBy=byN\B3<b3)V---]
By <b)]+Pr[By=b;ANBy <by|+Pr[By=b ANBy=by A\ By <bg]+---
By < bi]+ Pr[By = b)|Pr[By < bo] + Pr[By = by| Pr[By = by Pr[Bs < bs] + - - -
= bip+ [(1 = 2p)by + plbap + [(1 — 2p)by + pl[(1 — 2p)ba + plbsp + - --

o k1 .
— Z bip <H[(1 — 2p)by +p]> , where we assume H[(l —2p)by+p| = 1.
k=1

(=1 (=1

= Pr]|
Pr|
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For any & > o = .bybobz - - -, let j be the smallest integer such that b; = 1, where
.b1bobs - - - is the binary representation of (Z — ). Denote i the largest integer such

that bz =0 almong {bo,bl,bg, s ,bj}7 where bo = 1. Put z + Q_j = .b1b2b3 T
011---11, i< j: ~- . 100---00, i< j:
e b@'bz'+1'--bj—{ te

Note that bz'bz'—H s bj == { ) .
O) 1= J?

L L=,
bk:l;kfork<z'andk>j,and:%2x+2_j>:r3.

Example (Assume binary number system.)
=011 and 2 = 0.11101 = (2 — x) = 0.00101 = .bybobs--- = j = 3
{bo, b1, b2, -+, b} = {bO, bi,bo,b3} ={1,1,1,0} =i=3
:U+2_j = biboby - = 0.11+27% = 0.111
= 0.11101 > z+ 27 = 0111 > z = 0.11 and bb;y1---b; = b3 = 0,
bel b—b3—1andbk#bkonlyfor3—2<k<]—3
Example (Assume binary number system.)
z=0.011 and 2 = 0.100 = (& — x) = 0.001 = .bybob3--- = j =3
{bo, b1, by, - - ,bj} = {b(), b1, b, bg} = {1,0, I, 1} =1=1
2+ 27 = bibsbs -+ - = 0.011 4273 = 0.100
£ = 0100 > 2427 = 0.100 > x = 0.011 and b;b1---b; = bbby = 011,

bibis1 -+~ b; = bibybs = 100, andbk#bkforl_z<k<]_3
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We then derive
Fx(&) — Fx(z) > Fx(z +277) — Fx()

(gl :k:i (=1
1—1 0
- (H[(l—Qp)bg—HO]) p+ Y bip ((1 —p)p’
/—1 i k=7+1
j—i—1 00 k—1

— Z ka (H[(l — 2p)l~)g +p]> — Z brp <H[(1 — 2p)by +p]>

I
L
SN
T
i
R
— I
—
|
DO
=
gl
+
=
v
|
>~
T
=
—
—
|
DO
=
<
_l_
=,
~_

20-42
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where we assume [[;_[(1 — 2p)b + p] = 1 for k = 4. This implies that Fy(z) is
strictly increasing for x € [0, 1).

In addition, for any z € [0, 1),

PriX =x2] = PriBi=biABy=0byANB3=0bsN\---]
— Pr[31:bl]Pr[BQ:bQ]Pr[Bgzbg}...

= ]| |[(X —2p)b; + p|
1=1

S max(p, 1 - p)
i=1

— 0,

which indicates Fx(-) is continuous over [0, 1).

Theorem 31.2 A nondecreasing function is differentiable almost everywhere (i.e.,

except on a set of Lebesgue measure 0), and its derivative is non-negative.
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Thus, from Theorem 31.2, Fx(-) is differentiable almost everywhere, namely,

Fx($+€)—FX($) FX($+€)—F)((SIZ)

lim sup = lim inf
£10 £ el0 €
F — Fx(x — F — Fx(z —
= limsup x(w) = Fylx =€) = lim inf x(w) = Fx(x =€) = F'(z),
£10 £ el0 £

and F%(x) > 0.
Theorem 31.3 If f is non-negative and integrable, and if F(z) = [*__ f(¢)dt,
then F'(z) = f(z) except on a set of Lebesgue measure 0.

Now suppose there exists f(x) (nonnegative and integrable) such that Fx(z) =
f_xoo f(t)dt. Then by Theorem 31.3, F(x) = f(x) except on a set of Lebesgue
measure 0. However, F(x) = 0 for every x € [0,1) at which Fyx(z) is
differentiable (See the proof below). Hence, f(x) = 0 except on a set of Lebesgue
measure 0; a contradiction is thus obtained since Fix(z) > 0 but ffoo f(y)dy =0
for any z € [0,1). O
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Suppose F%(x) = ¢ > 0 forsomex € [0,1). Let k
where u; € {0, 1}, and

20-45

n =2 k22 S
an, = Fx((k,+1)27") — Fx(k,27")
Pr(k,27" < X < (ko +1)27"]
= Pr k27" < X < (ko +1)27"]
(Since Pr(X = k,2

) =Pr(X =(k,+1)27")

n

H (1 = 2p)u; + p]

Then,

—0)

Fi(s) = lim 22X\t 1)2

") — Fx(k,27") T
= lim — =,
n—00 2—n n—oo 27N
which implies a,y1/a, — 1/2. However, a,.1/a, = [(1 — 2p)u,1 + p] 4 1/2, a
contradiction

—1
Sl Uk
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e [t can be shown that

Fylr) = pFx(2x), if 0<z<1/2;
M=V p+ Q1 —p)Fx20 - 1), if1/2< 2 <1

So by Fx(0) = 0 and Fx(1) = 1, we can obtain Fy(1/2) = p, Fx(1/4) = p*
and Fx(3/4)=p+ (1 —p)p, ...
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o If g(-) is strictly increasing , then T'(-) = g~1(-) exists.

Then

Now if Fy () has continuous derivative f(-), and T'(+) is differentiable, then the
pdf of g(X) is equal to:
f(T ()T (x).

e Now how about general g(-)? We can still have:
Prlg(X) < x] = Pr[X € G,]
where G, = {r e ®: g(r) < z}.

— It is always suggestive to derive cdf first. Then examine whether the cdf
has continuous derivative or not. If it does, then a pdf can be obtained
by taking the derivative of the cdf.
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e The (joint) cdf of a multidimensional random vector X = (Xy,..., Xj) is
defined as:

Fx(xk):PF[XlleAXQSQZQ/\"'AXkSJZk].
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Theorem 12.5 (a variant version) Suppose that a function F' : ¥ — R
satisfies:

e (continuous from above) F'(-) is continuous in the sense that 1}5101 F(x, +

hyi, ...,z + hyp) = F(xq, ..., x;) for all 2% € R* and y* € R* with each
y; > 0.

e F(A,) is non-negative for any bounded rectangle A 4, namely, for any a* and
b with a; < b; for 1 <i <k,

F(A4) = 3 (~1F(h) > 0,

For each ¢, x;=either a; or b;

where s(z") is the number of z; equal to a; (an equivalent extension to non-
decreasingness for one dimensional random variable),

o hljm F(hyi, ..., hy) = 0 for y* € R* with each y; > 0;

o }1L1Tm F(hyy, ..., hy,) = 1 for y* € R* with each y; > 0.

Then there exists a unique probability measure whose resultant k-dimensional cdf

is equal to F'(-).
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e The previous theorem indicates the sufficiency of defining multidimensional cdf
for a multidimensional random vector (or probability measure).

e Difference between one-dimensional cdf and multidimensional cdf.

— A one-dimensional cdf can only have countably many discontinuities;

— but a more-than-one-dimensional cdf can have uncountably many dis-
continuities.

e Similarity between one-dimensional cdf and multidimensional cdf.

— Only countably many discontinuous points can have positive probability
mass.



Support and density 20-51

Definition (Lebesgue measure) A Lebesgue measure A over the Borel set B*
is that for any A € BF,

MA) = DA,

and {A;}22, are disjoint bounded rectangles satisfying A = UX;A;, and A(A) is
equal the volume of the bounded rectangle A (namely, Hle(bi — a;), where a”
and b* define the bounded rectangle).

Definition (support) The support of a multidimensional random vector X is
a Borel set H € B* for which Pr[X € H] = 1.

Definition A multidimensional random vector is discrete if it has countable
support.

Definition (probability density function) A random variable X and its
distribution (cdf) have density f with respect to Lebesgue measure, if f is B*-
measurable non-negative function that satisfies

PriX e Al = / f(ZMA(dz") = / f(@")dz"  for every A € B".
A A




Density for a mapping 20-52

Suppose that
e X has density f;

e X has support V;

e g=1(91,...,0r) is a I-to-1 mapping from V onto U, where V and U are open
sets in R*;

e Jy;/0x; exists and is continuous in V' for every 7,j (i.e., g is continuous,

differentiable);

e 07;/0x; exists and is continuous in U for every i,j (ie., T is continuous,
differentiable), where T is the inverse mapping to g;

e the Jocobian determinant

Ory 0Oxo Oxy,
0 0 0
J(x) = Det | 71 2 1 (x) £0 for every x € U.
T 0T ., O
| Jxp Oxg Oxy, |

Then ¢g(X) has density f(T(x))|J(x)|.
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Definition (independence) Random variables X7, ..., X} are independent if
Pr[X1 eH{N---NX, EHk] :Pr[X1 EHl]PT[Xk EHk]

for all linear (sce blow for the definition of lincarity) Borel set H,; € B.

e A Borel set is linear if it is one-dimensional.

e Again,
PriXo e HiA--- ANXj € Hy] =Pr X, € Hy]---Pr[X) € Hy for all linear Borel set H,;
if, and only if,

PriXpy <axi A~ ANXp <ap)=Pr[X; <z Pr[Xi < ay for all real number x;.
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Definition (independence) Random vectors X7, ..., X, are independent if

Pl”[XlEHl/\"'/\XkEHk]:PI[XlEHﬂ"'PT[XkEHk]

for all Borel set H ;.

e Notably, the dimension of each random variable needs not be identical.

e Again,
PriX,eHiAN---NXy € Hi| =Pr[ X, € Hy| - Pr[ X} € Hy for all Borel set H;
if, and only if,

PriX, <z A ANXj <ap] =Pr[X; <ax]---Pr[X; < a for all real vector x;.
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Theorem 20.3 (a rephrased version) If X and Y are independent, then

Pr|(X,Y) e B] —/ Pr|(z,Y) € B]dFx(x),

where X is the support of X.

An exemplified application of Theorem 20.3
Suppose that X and Y are independent and are exponentially distributed random
variables with parameters o and [, respectively. Then

PriY/X > 2] = /OO Pr|Y/x > z]dFx(x)

= / PrlY > zzlae™ “dx
0

:/ (/ ﬂeﬁydy) ae “dx
0 Tz

Qv
if 0;
_are ! z > 0;
1, if z <0.
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If X and Y are not necessarily independent, then

Pr{(X.Y) € B :/ Pr|(z,Y) € B|X =z|dFx(x),

where X is the support of X.
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For independent random variables X and Y,
Fxyiy(z) = PriX +Y <2
_ / Prfz + Y < 2JdFx(z)

o0
0

— / PrlY < z — x]dFx(x)

(0. 9]

_ /Z Fy (= — 2)dFy(x).

If Y has density fy(-), then for fixed z,

R = [ OO Frisas = [ OO filt — 2t

Fov(z) = / Z ( / Oo folt - x)dt) dFy(z)
_ /OO (/Z folt — x)dFX(a:)) dat.

So Z =X +Y has density [ fy(z —z)dFx(z).

which implies

20-57
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In other words, if one of independent random variables X and Y has density,
then X + Y has density.

If, in addition to Y, X has density;,

Fyov(z / fy( — 2)dFx(a / folz = @) fel@)de = (fx o+ f) (2),

Wyn

where “x” denotes the convolution operator.

Example 20.5 Let X,..., X} be independent random variables, each with ex-
ponential density with parameter . Then X; + - - - + X} has density satisfying:

JCX1+---+X;C = fXQ—l-"'—i—Xk * fx-

Then

[xi4ax,(2) = oz(k — 1)!6 :

which can be proved by induction.
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Theorem 20.5
1. If X, converges to X with probability 1, then X, converges to X in probability.
e Convergence in probability is sometimes denoted as p-lim,, ., X,, = X.

2. X, converges to X in probability if, and only if, for each subsequence { X, }7°,
of { X, }72, there exists a further subsequence {X,, }7°; such that X, con-
verges to X with probability 1 as ¢ goes to infinity.

Proof of Theorem 20.5-2.:
(a) Only-if part: X, converges to X in probability means that for any & > 0,
lim Pr{| X, — X|>¢|=0.

n—oo

Hence, for any 4 fixed and any sequence {nj}° .
k:h—>nolo Pr||X,, —X|>¢] =0.
Therefore, with initially ky = 0,
1
k; £ mm{k > k;_q1: Pr [‘X”k —X‘ > 5] < 5}

exists.



Convergence in probability 20-60

We then obtain that k1 < ko < k3 < ---, and

1
Xup, = X| 2 ¢| < .

Pr [ .
2Z

By the first Borel-Cantelli lemma, Z Pr [
i=1
X, converges to X with probability 1.

Xp, — X‘ > 5] < oo implies that

(b) If part: If X, does not converge to X in probability, then there exists ¢ > 0
such that
limsup Pr[| X, — X| > ¢] > 0,

n—o0

or equivalently, there exists a subsequence {n;}7°,
lim Pr[|X,, — X|>¢] >0.
k—ro0

Since {X,, }7°, does not converge to X in probability, no subsequence of
{ X, }72, can converge to X with probability 1. O
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Observations

L If {X,,}22, converges to X in probability, and {X,}°, converges to Y in
probability, then Pr[X = Y] = 1.

2. If {X,,}°°, converges to X in probability, then { f(X,,)}>°, converges to f(X)
in probability for any continuous function f.
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e Relation between an empirical distribution and the respective true distribution
is an essential question to engineers!

e The empirical distribution (cdf) for an i.i.d. sequence Xy, Xy, X3, ... is a
random variable, defined as:

1 n
Fn(x) - n Z[(—oo,a:](Xk)a
k=1

1, if u<u;
where J(—oc.1j(u) = { 0, if u > .
o Since J(_ o 1(X1), [(—o02)(X2), ... are also i.i.d., the strong law of large num-

n
bers indicates — Z I~ o0 21(X3) converges to its marginal mean, that is
n
k=1

E I wn(X1)] = F(z),
with probability 1.

e Can the relation between F',(z) and F'(x) be stronger than that implied by
the strong law of large numbers? Yes, answered by Glivenko-Cantelli.
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e Glivenko-Cantelli Theorem says that the random variable

D,, =sup |F,(x) — F(x)|

TER

converges to 0 with probability 1, a much stronger statement!

In other words,

Pr [lim sup | Fou(z) — F(z)| = 0] =1

n—0o0 zeR

is a stronger statement than

Pr [lim |F,(x) — F(x)| = 0] =1 for any x € R.

n—o0

e We will discuss how fast D,, converges to 0 after the introduction of the Berry-
Esseen Theorem.
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Theorem 20.6 (Glivenko-Cantelli Theorem) Suppose that X7, X5, ... are
i.1.d. Then
D,, =sup |F,(x) — F(x)|

TeR
converges to 0 with probability 1, where

|
Fn(x) — g Z[(—oo,a:](Xk)a
k=1

1, if u<ux;
0, if u> x.

and I(_qg (u) = {

Proof:

e By the strong law of large numbers, the event A, = [hm F,z)=F (az)]

n—o0

has probability 1. In addition, the event B, = [lim F,(z7)=F (CL’_)] has

n—o0

probability 1, where

F(z7)=Pr[X <z|and F,(z") = %Z[(—oo,w)(Xk)°
k=1




— F(p(u)7)
Glivenko-Cantelli Theorem / i’ 20-65

e Define the quantile function p(u) = inflx € R:u < F(x)] for 0 <u < 1.
Then

else if F'(-) is only right-continuous and has a jump at

F(p(w)7) < u < Flpw)). (F(z7) = limgyo F(z — 6))

o Let xy 1 = p(k/m) for m > 1 and 1 < k < m, where the infimum of an
empty set is infinity, and x,, 0 = —oo. Hence,
k—1

(< Flamy) and (Flao, ) <) "=t < Plane),

Flz )< —
(xm,k)—m , m

. (What if 2,51 = 2 i?)

which implies F'(z,, ;) — F(Zp5-1) <
(T p-1) < Fla) < Flz,,).),

1
m
So for x,1-1 < @ < ) (Hence, F(xp, 4

F(xmk)( < F(zp 1)+%) < F(:13)+i and F(ﬂfm,k1)( > F(x mk)

m



Glivenko-Cantelli Theorem 20-66

____________________ m/m
_________________ (m—1)/m
_________________ (m—2)/m

— — 2/m
— — 1/m

Lm,1 Lm,2 Tmm—2 LTmm—1
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e Define Dy, ,, £ max {’Fn(xmk) — F(:ka)

k=1,...m
Then

Fn(xg%k) o F(:C;%k)‘}

)

1
Dn S Dm7n+ _7
m

because for x,, -1 < * < Ty i,

and

or equivalently,

Accordingly,
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1
e 0< D, <D,,+ — indicates that:
m

— it Dy, ,, converges to zero with probability 1 (i.e., Pr [ lim Dy, , = O} = 1),

n—0o0

then Pr [O <limsup D, < 1/m] = 1 for any m.

n—o0

— Therefore, Pr [ lim D, = O] = 1.

n—o0
e Proof of D,,,, converging to 0 with probability I:
As Pr(A, ] =Pr[B,, | =1for1 <k <m,

m

N (A 1B

k=1

Pr = 1.

The above statement is equivalent to saying that for each 1 < k < m,

lim |F (2, 5) — F(xp)| = lim ‘F(%; p) — Flz, )
n—00 ’ ’

n—o0

= ( with probability 1
implies that the finite maximum

D = max {|F (@) = Flang)],

F(%%k) - F(ﬂ%k)‘}

certainly converges to zero with probability 1. O
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e No one can directly claim without proof that D,, = sup |F,(x) — F(x)| con-
reR

verges to 0 with probability 1 simply because for each x € R, |F,,(z) — F(z)|
converges to 0 with probability 1. So, the proof of the Glivenko-Cantelli theo-
rem is not triviall

Let fu(x) =0 for z < n, and 1, for x > n.
Then lim f,(x) = 0 for each x € R.

n—oo

But lim sup f,(z) = 1.

n—0o0 zeER

e In our slides, I intentionally avoid using the inherited probability space, and
only rely on the observation probability space, namely, the cdf itself, since the
observation probability space is what we engineers are more familiar with.

e [rom this, you learn that to rely on the observation probability space is suffi-
cient for most problems of engineering interest; however, I would like to point
out that it is advantageous to learn the role of the intrinsic, inherited probability
space on which a random variable is originally defined.
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Theorem (decomposition of distribution) Any cdf F' can be decomposed
into cdf’s of three distinct types: discrete F);, absolutely continuous Fj,. and
singular F}, each of which is itself a cdf. In other words, for x € R,

F(z) = a1 Fy(z) + agFoc(x) + asFy(z),

where a; + a9 + a3 = 1.

Definition F} is a discrete cdf, if it is a cdf for a discrete random variable.

Definition F. is an absolutely continuous cdf, if it has density, namely, there
exists fu. such that

Foo(x) = /:r fac(t)dt.

(Notably, a discrete cdf does not have density from (rigorous) mathematical stand-
point, unless the Dirac delta function d(-) is acceptable to be a legitimate density
for engineering convenience, which satisfies

0, itt#0;
5(t)_{oo, ift=0 "

and [, 0(t)dt =1if0 € X.)




More properties on cdt 20-71

Definition F; is a singular (and continuous) cdf, if it is not discrete (so the
number of jumps is uncountably many, if it has jumps) and does not have density.

In other words, it is a continuous cdf without density. You may refer to Slide 20-40
for a specific one-dimensional example.

The singular cdf is in fact more easily to construct for multidimensional random
variables. For example, Pr[X; + Xy = 0] = 1, and each of X; and X5 is Gaussian
distributed with mean 0 and variance 1.

Then, the pdf fx, x,(x1, z2) for (X1, Xa) does not exist (even if the cdf Fy, . x,(2)
for X7 + X exists)!
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