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Random Variables 20-1

Definition (random variable) A random variable on a probability space

(Ω,F , P ) is a real-valued function X = X(ω) (i.e., X : Ω → �) with

{ω ∈ Ω : X(ω) ≤ x} ∈ F for every x ∈ �.
• The event space F must be a σ-field. Why? See the next two slides.

• The probability measure P can be treated as a quantitative mechanism for

the probability of occurrence of events.

• {ω ∈ Ω : X(ω) ≤ x} must be an event, otherwise we do not know its proba-

bility of occurrence.

Under this definition, the cdf of X is well defined as:

Pr[X ≤ x] = P ({ω ∈ Ω : X(ω) ≤ x}) .



The Concept of Field/Algebra 20-2

Definition (field/algebra) A set F is said to be a field or algebra of a sample

space Ω if it is a nonempty collection of subsets of Ω with the following properties:

1. ∅ ∈ F and Ω ∈ F ;

• Interpretation: A mechanism to determine whether an outcome lies in

the empty set (impossible) or the sample space (certain).

2. (closure under complement action) A ∈ F ⇒ Ac ∈ F ;

• Interpretation: “having a mechanism to determine whether an outcome

lies in A” is equivalent to “having a mechanism to determine whether an

outcome lies in Ac.”

3. (closure under finite union) A ∈ F and B ∈ F ⇒ A ∪ B ∈ F .

• Interpretation: If one has a mechanism to determine whether an outcome

lies in A, and a mechanism to determine whether an outcome lies in B,

then he can surely determine whether the outcome lies in the union of A

and B.

• Elements of F is referred to as events.



σ-field/algebra 20-3

• To work on a field may cause some problems when a person is dealing with

“limit”.

E.g., Ω = � (the real line) and F is a collection of all open, semi-open and

closed intervals whose two endpoints are rational numbers, including � itself.

Let

Ai = [0, 1. 010010001 . . . 1︸ ︷︷ ︸
i of them

).

Then, does the infinite union ∪∞
i=1Ai belong to F? The answer is NO!

• We therefore need an extension definition of field, which is named σ-field.

Definition (σ-field/σ-algebra) A set F is said to be a σ-field or σ-algebra of

a sample space Ω if it is a nonempty collection of subsets of Ω with the following

properties:

1. ∅ ∈ F and Ω ∈ F ;

2. (closure under complement action) A ∈ F ⇒ Ac ∈ F ;

3. (closure under countable union) Ai ∈ F for i = 1, 2, 3, . . . ⇒
∞⋃
i=1

Ai ∈ F .



Probability measure 20-4

Definition (probability measure) A set function P on a measurable space

(Ω,F) is a probability measure, if it satisfies:

1. 0 ≤ P (A) ≤ 1 for A ∈ F ;

2. P (∅) = 0 and P (Ω) = 1.

3. (countable additivity) if A1, A2, . . . is a disjoint sequence of sets in F ,

then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak).



Merit by defining random variables based on (Ω,F , P )?20-5

Answer 1: (Ω,F , P ) is what truly occurring internally, but possibly non-observable.

• In order to infer what really occurs for this non-observable random outcome

ω, an experiment that results in observable values x that depends on this

non-observable outcome must be performed.

• So x that takes real values is a function of ω ∈ Ω.

• Since ω is random with respect to probability measure P , the probability of

the observation X is defined over the probability on Ω.

• Some books therefore state that X : (Ω,F , P ) → (X(Ω),B, Q) yields an

observation probability space (X(Ω),B, Q), where

X(A) = {X(ω) ∈ � : ω ∈ A},B = {X(A) : A ⊂ F} andQ(X(A)) = P (A).



Merit by defining random variables based on (Ω,F , P )?20-6

Example An atom may spin counterclockwisely or clockwisely, which is not di-

rectly observable. The original true probability space (Ω,F , P ) for this atom is

Ω = {counterclockwise, clockwise},
F =

{
∅, {counterclockwise}, {clockwise}, {counterclockwise, clockwise}

}
,

and 


P (∅) = 0,

P ({counterclockwise}) = 0.4,

P ({clockwise}) = 0.6,

P ({counterclockwise, clockwise}) = 1.

Now an experiment that uses some advanced facility is performed to examine the

spin direction of this atom. (Suppose there is no observation noise in this

experiment; so a 1-1 correspondence mapping from Ω to � can be obtained.) This

results in an observable two-value random variable X , namely,

X(counterclockwise) = 1 and X(clockwise) = −1.
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Answer 2: (Ω,F , P ) may be too abstract and lack of the required mathematical

structure for manipulation, such as ordering (that is required for cdf).

Example

Ω = {�,�,�,�,♦,�}
F = A σ-field collection of subsets of Ω

P = Some assigned probability measure on F
Define a random variable X on (Ω,F , P ) as:

X(�) = 1

X(�) = 2

X(�) = 3

X(�) = 4

X(♦) = 5

X(�) = 6
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Examine what subsets should be included in F .

For x < 1, {ω ∈ Ω : X(ω) ≤ x} = ∅
For 1 ≤ x < 2, {ω ∈ Ω : X(ω) ≤ x} = {�}
For 2 ≤ x < 3, {ω ∈ Ω : X(ω) ≤ x} = {�,�}
For 3 ≤ x < 4, {ω ∈ Ω : X(ω) ≤ x} = {�,�,�}
For 4 ≤ x < 5, {ω ∈ Ω : X(ω) ≤ x} = {�,�,�,�}
For 5 ≤ x < 6, {ω ∈ Ω : X(ω) ≤ x} = {�,�,�,�,♦}
For x ≥ 6, {ω ∈ Ω : X(ω) ≤ x} = {�,�,�,�,♦,�} = Ω

By definition, F must be a σ-field containing the above seven events or sets.

Note that we can sort 1, 2, 3, 4, 5, 6 (to yield the cdf), but we may not be able to

sort �,�,�,�,♦,�, not to mention the manipulation of (� + �) or (�−�).
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Example of a random variable Y without inverse.

Define a random variable Y on (Ω,F , P ) as:

Y (�) = Y (�) = Y (�) = 1

Y (�) = Y (♦) = Y (�) = 2

Examine what subsets must be included in F .

For y < 1, {ω ∈ Ω : Y (ω) ≤ y} = ∅
For 1 ≤ y < 2, {ω ∈ Ω : Y (ω) ≤ y} = {�,�,�}
For y ≥ 2, {ω ∈ Ω : Y (ω) ≤ y} = {�,�,�,�,♦,�} = Ω

Hence, F must be a σ-field containing the above three sets for Y .

The third merit by defining random variables based on (Ω,F , P ) will be deferred

until the introduction of the definition of random processes.



Existence of mean 20-10

• In mathematics, (+∞) + (−∞) is undefined.

• To avoid the occurrence of (+∞) + (−∞), Real Analysis first defines the

integration of a non-negative function f(x), namely, f(x) ≥ 0 for x ∈ �
(either based on Riemann integral or based on Lebesgue integral). See the next

two slides for details.

• Then, the integration of a general (possibly negative) function is defined thr-

ough ∫
f(x)dx =

∫
f+(x)dx−

∫
f−(x)dx,

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.
• An integral does not exist when

∫
f+(x)dx =

∫
f−(x)dx = ∞.

• Similar rule applies to random variableX . Notably, the expectation of X is in-

deed an integration

(
E[X ] =

∫ ∞

−∞
x dPX(x) =

∫ ∞

0

x dPX(x)−
∫ 0

−∞
(−x)dPX(x)

)
.

• This is the reason why people say the mean of a Cauchy distribution does not

exist (and is undefined)!∫ ∞

0

x

(
1

π

1

(1 + x2)

)
dx =

∫ 0

−∞
(−x)

(
1

π

1

(1 + x2)

)
dx = ∞.
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Riemann integral:

Let s(x) represent a step function on [a, b), which is defined as that there exists a

partition a = x0 < x1 < · · · < xn = b such that s(x) is constant during (xi, xi+1)

for 0 ≤ i < n.

If a function f(x) is Riemann integrable,∫ b

a

f(x)dx
�
= sup{

s(x) : s(x)≤f(x)
}
∫ b

a

s(x)dx = inf{
s(x) : s(x)≥f(x)

}∫ b

a

s(x)dx.

Example of a non-Riemann-integrable function:

f(x) = 0 if x is irrational; f(x) = 1 if x is rational.

Then

sup{
s(x) : s(x)≤f(x)

}
∫ b

a

s(x)dx = 0,

but

inf{
s(x) : s(x)≥f(x)

}∫ b

a

s(x)dx = (b− a).
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Lebesgue integral:

Let t(x) represent a simple function, which is defined as the linear combination

of indicator functions for finitely many, mutually disjoint partitions.

For example, let U1, . . . ,Um be the mutually-disjoint partitions of the domain X
and ∪m

i=1Ui = X . The indicator function of Ui is 1(x;Ui) = 1 if x ∈ Ui, and 0,

otherwise.

Then t(x) =
∑m

i=1 ai1(x;Ui) is a simple function (and
∫
t(x) =

∑m
i=1 ai · λ(Ui),

where λ(·) is a Lebesgue measure (cf. Slide 20-36).)

If a function f(x) is Lebesgue integrable, then∫ b

a

f(x)dx = sup{
t(x) : t(x)≤f(x)

}
∫ b

a

t(x)dx = inf{
t(x) : t(x)≥f(x)

} ∫ b

a

t(x)dx.

The previous example is actually Lebesgue integrable, and its Lebesgue integral is

equal to zero.



X+ versus X−
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• Define X+ = max{X, 0} and X− = max{−X, 0}.
• Then X = X+ − X−, and both X+ and X− are non-negative random vari-

ables (so their expectation or integration over its probability measure can be

Riemann-evaluable or Lebesgue-evaluable).

• Define E[X ] = E[X+]− E[X−].

• Similar definition applies to E[X3], E[X5], E[X7], E[f(X)], etc.
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Definition (simple function) A simple function is defined as the linear com-

bination of indicator functions for finitely many, mutually disjoint partitions.

Definition (F/B-measurable) A real-valued function f : (Ω,F) → (�,B) is
F/B-measurable, if {ω ∈ Ω : f(ω) ∈ H} ∈ F for every H ∈ B, where B is the

one-dimensional Borel set.

• Since it is widely adopted that the Borel set is the σ-field for real line �, F/B-
measurable is sometimes abbreviated as F -measurable (or measurable F).

• A Borel set is one that consists of all (countable) intersections and unions of

open, semi-open and closed intervals. In other words, the element in a Borel

set can be obtained by repeating countable (or finite) set-theoretic operations

starting from intervals. So the Borel set is a σ-field.

• The Borel set is usually large enough for all “practical” purposes. However, it

does not contain every subset of the real line! (See the example in the next two

slides.)
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A set of real numbers outside the Borel set (due to Vitali)

We now consider the Borel set of [0, 1), which is obtained by repeating countable

(or finite) set-theoretic operations starting from intervals contained in [0, 1).

Denote by � the operator under [0, 1) as:

x� y = (x + y) mod 1 for two real numbers x, y ∈ [0, 1)

and

A� x = {r ∈ � : r = a� x for some a ∈ A} .
Two real numbers, x and y in [0, 1), are said to be equivalent, denoted by x ∼ y,

if x� r = y for some rational r in [0, 1). Notably, x ∼ y and y ∼ z imply x ∼ z,

because x� r1 = y and y � r2 = z imply z = x� (r1 � r2).

Form a set that consists of all the equivalent points in [0, 1) (there are countable

many elements in this set because rational numbers in [0, 1) are countable),

and for convenience, name such set an equivalent class.

Let H be a subset of [0, 1), consisting of exactly one point from each equivalent

class.

List the countably many sets of H� r for each rational number r.
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Claim: H� r1 and H� r2 are disjoint for any rational numbers, r1 
= r2.
Proof: If there exists a ∈ [0, 1) satisfying a ∈ H � r1 and a ∈ H � r2, then

a ∼ h1 for some h1 ∈ H and a ∼ h2 for some h2 ∈ H, since r1 and r2 are rational

numbers (and h1 
= h2 since a = h1 � r1 = h2 � r2). Hence, h1 and h2 belong to

the same equivalent class, contradicting to the construction of H. �

As a consequence of the above claim, all the sets in the list of H� r are disjoint.

Observe that [0, 1) =
⋃

r∈QH � r, where Q is the set of all rational numbers in

[0, 1), since every point in [0, 1) belongs to some equivalent class.

Now ifH is contained in the Borel set B[0, 1) of [0, 1), then by forming a probability

space ([0, 1),B[0, 1), P ) with P (A) =
∫
x∈A dx for A ∈ B[0, 1), we yield:∫

x∈[0,1)
dx =

∑
r∈Q

∫
x∈H�r

dx. (20.1)

Apparently,
∫
x∈H dx =

∫
x∈H�r dx for any rational r ∈ [0, 1). Thus, if

∫
x∈H dx =

λ > 0, then (20.1) gives 1 =
∑

r∈Q λ = ∞, and if
∫
x∈H dx = 0, (20.1) gives

1 =
∑

r∈Q 0 = 0. Accordingly, H is not contained in B[0, 1).
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Can we form a setH that consists of exactly one point from each of the uncountably

many equivalent classes?

• Give a sequence of set {Aε}ε>0, where the union of them is the sample space.

•
⋂
ε>0

⋃
α>ε

Aα consists of all the elements that appears in {Aε}ε>0 infinitely many

times (could be countably or uncountably many).

I.e., ω ∈
⋂
ε>0

⋃
α>ε

Aα implies ω ∈
⋃
α>ε

Aα for every ε > 0.

Hence, for any ε > 0, there exists α > ε such that this ω ∈ Aα.

(Such choices of ε as well as α can be of uncountably many.)

•
⋃
ε>0

⋂
α>ε

Ac
α consists of all the elements that appears in {Aε}ε>0 finitely many

times.

• Now if {Aε}ε>0 are mutually disjoint, then
⋃
ε>0

⋂
α>ε

Ac
α consists of all the ele-

ments that appears in {Aε}ε>0 exactly one time.
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Theorem 13.5 If a real-valued function f : Ω → � is F -measurable, then there

exists a sequence of F -measurable simple functions fn : Ω → � such that{
0 ≤ fn(ω) ↑ f(ω) for those ω satisfying f(ω) ≥ 0;

0 ≥ fn(ω) ↓ f(ω) for those ω satisfying f(ω) ≤ 0.

Proof: Define mutually disjoint sets as:

Ak =




{ω ∈ Ω : n ≤ f(ω)}, if k = n2n + 1;

{ω ∈ Ω : (k − 1)2−n ≤ f(ω) < k2−n}, if − n2n + 1 ≤ k ≤ n2n;

{ω ∈ Ω : f(ω) < −n}, if k = −n2n.

Then

fn(ω) =




n, if ω ∈ An2n+1;

(k − 1)2−n, if ω ∈ Ak for 1 ≤ k ≤ n2n;

k2−n, if ω ∈ Ak for − n2n + 1 ≤ k ≤ 0;

−n, if ω ∈ A−n2n

is one of the required function sequences. �
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�

�

... ...

...
...

−n
−n + 2−n

−2 · 2−n
−2−n
0
2−n
2 · 2−n

n− 2−n

n

f(ω)
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Definition (simple random variables) A simple random variable takes only

finitely many values.

Theorem 13.5a If a random variable X : Ω → � is F -measurable under

probability space (Ω,F , P ), then there exists a sequence of F -measurable simple

random variables Xn : Ω → � such that X+
n ↑ X+ and X−

n ↑ X−.(
Equivalently,

{
0 ≤ Xn(ω) ↑ X(ω) for those ω satisfying X(ω) ≥ 0;

0 ≥ Xn(ω) ↓ X(ω) for those ω satisfying X(ω) ≤ 0.

)

Proof: Defining Xn = fn according to X = f in Theorem 13.5 satisfies the need.

(Since Ω may be an abstract and non-real-valued set, we cannot partition Ω using

“≥” or “≤”. This is another reason why we have to partition over X(ω) ∈ �.) �

• This theorem provides a merit of generalizing theorems that originally apply

to simple random variables.

• Notably, a simple random variable only takes finitely many values; hence, all

moments of a simple random variable are bounded (and hence, exist). There-

fore, all moments of a simple random variable can be determined by taking the

derivatives of its moment generating function.
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Definition (random vectors) A random vector on a probability space

(Ω,F , P ) is a real-valued function X : Ω → �k with {ω ∈ Ω : X(ω) = xk} ∈ F .

• A random vector is a finite collection of random variables. In fact, each dimen-

sion of X(ω) = (X1(ω), X2(ω), . . . , Xk(ω)) is itself a random variable.

• Hence, an equivalent definition of random vectors is:

Definition (random vectors) A random vector is a finite collection of

random variables, each of which is defined on the same probability space.

• Another equivalent definition that can be seen in the literature is:

Definition (random vectors) A random vector is an indexed family of

random variables {Xi, i ∈ I}, in which each Xi is defined on the same proba-

bility space, and the index set I is finite.
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• Why requiring each Xi to be defined on the same probability

space?

Because, it is through “the same probability space” that the joint distribution

of two (or three, four,. . ., etc) random variables can be well-defined.

Pr[Xi ≤ xi and Xj ≤ xj]

= P ({ω ∈ Ω : Xi(ω) ≤ xi and Xj(ω) ≤ xj})
= P ({ω ∈ Ω : Xi(ω) ≤ xi} ∩ {ω ∈ Ω : Xj(ω) ≤ xj}) .

Then, it can be proved that:

Ai � {ω ∈ Ω : Xi(ω) ≤ xi} ∈ F because Xi defined over (Ω,F , P )

Aj � {ω ∈ Ω : Xj(ω) ≤ xj} ∈ F because Xj defined over (Ω,F , P )

Ac
i ∈ F F closure under complement action

Ac
j ∈ F F closure under complement action

Ac
i ∪Ac

j ∈ F F closure under countable union

(Ac
i ∪ Ac

j)
c = Ai ∩Aj ∈ F F closure under complement action

Hence, P (Ai ∩Aj) is probabilistically measurable (for any xi and xj).

It can be proved from closures under complement action and countable union that

F is closure under countable intersection.
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Example

Ω = {�,�,�,�,♦,�}
F = A σ-field collection of subsets of Ω

P = A probability measure on F
Define a random vector {Xi, i ∈ {1, 2}} as:

X1(�) = 1; X1(�) = 2; X2(�) = 1; X2(�) = 2

X1(�) = 2; X1(♦) = 1; X2(�) = 1; X2(♦) = 2

X1(�) = 1; X1(�) = 2; X2(�) = 1; X2(�) = 2

Examine what subsets should be included in F .

For x1 < 1, {ω ∈ Ω : X1(ω) ≤ x1} = ∅
For 1 ≤ x1 < 2, {ω ∈ Ω : X1(ω) ≤ x1} = {�,�,♦}
For x1 ≥ 2, {ω ∈ Ω : X1(ω) ≤ x1} = {�,�,�,�,♦,�} = Ω

For x2 < 1, {ω ∈ Ω : X2(ω) ≤ x2} = ∅
For 1 ≤ x2 < 2, {ω ∈ Ω : X2(ω) ≤ x2} = {�,�,�}
For x2 ≥ 2, {ω ∈ Ω : X2(ω) ≤ x2} = {�,�,�,�,♦,�} = Ω

Hence, F must be a σ-field containing the above six sets.
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We can further extend the random vector to a possibly (uncountably) infinite

collection of random variables all defined on the same probability space.

Definition (random process) A random process is an indexed family of ran-

dom variables {Xt, t ∈ I}, in which each Xt is defined on the same probability

space.

• Under such definition, all finite dimensional distributions are well-defined be-

cause[
Xt1 ≤ x1 and Xt2 ≤ x2 and · · · and Xtk ≤ xk

]
=

{
ω ∈ Ω : Xt1(ω) ≤ x1 and Xt2(ω) ≤ x2 and · · · and Xtk(ω) ≤ xk

}
=

k⋂
i=1

{ω ∈ Ω : Xti(ω) ≤ xi}

is surely an event by the σ-field properties, and hence, is probabilistically mea-

surable.
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• Third merit by defining random processes based on (Ω,F , P ):

– All finite dimensional joint distributions are well-defined without the tedious

process of listing all of them.

• The converse however is not true, i.e., it is not necessarily valid that

the statistical properties of a real random process are completely determined

by providing all finite-dimensional distributions for samples.

– See the counterexample in the next slide.
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Example Define random processes {Xt, t ∈ [0, 1)} and {Yt, t ∈ [0, 1)} as

Xt(ω) =

{
1, ω 
= t;

0, ω = t,
and Yt(ω) = 1,

where ω ∈ Ω = [0, 1). Let P (A) =
∫
A dα for any A ∈ F . Then,

Pr

[
min
t∈[0,1)

Xt < 1

]
= P

({
ω ∈ Ω : min

t∈[0,1)
Xt(ω) < 1

})
= P (Ω) = 1,

but

Pr

[
min
t∈[0,1)

Yt < 1

]
= P

({
ω ∈ Ω : min

t∈[0,1)
Yt(ω) < 1

})
= P (∅) = 0.

Thus, Xt and Yt have different statistical properties; however, Xt and Yt have

exactly the same multi-dimensional distribution for any samples at t1, t2, . . . , tk
and any k:

Pr[Xt1 ≤ x1 and Xt2 ≤ x2 and · · · and Xtk ≤ xk]

= P

(
k⋂

i=1

{ω ∈ Ω : Xti(ω) ≤ xi}
)

=

{
1, min1≤i≤k xi ≥ 1;

0, otherwise

= Pr[Yt1 ≤ x1 and Yt2 ≤ x2 and · · · and Ytk ≤ xk].
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We are more interested in the associated sub-event space ofX , which is named

the σ-field generated by random variable X and is denoted by σ(X).

(Remember that the event space has to be a σ-field; otherwise, the “limit” may

not be probabilistically measured.)

Note that those events that are not “probabilistically measurable” are of no interest

through the random experiment X .

Definition (σ-field generated by X) The σ-field generated by X is the

smallest σ-field with respect to which it is probabilistically measurable.

Theorem 20.1 Let X = (X1, . . . , Xk) be a random vector.

1. The σ-field σ(X) = σ(X1, . . . , Xk) consists exactly of all the sets {ω ∈ Ω :

X(ω) ∈ H} for H ⊂ Bk.

2. A random variable Y is σ(X)-measurable if, and only if, there exists a Bk/B-
measurable function f : �k → � (cf. Slides 20-14 and 20-30 for the definition

of Bk/B-measurable function) such that Y (ω) = f(X1(ω), . . . , Xk(ω)) for

all ω ∈ Ω, where Bk and B are k-dimensional and 1-dimensional Borel sets,

respectively.
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Example

1. Define a real-valued function X(a) = X(b) = 1 and X(c) = −1. Is X a random

variable defined on (Ω,F , P ), where

• Ω = {a, b, c},

• F =

{
∅, {a}, {b, c}, {a, b, c}

}
• P (∅) = 1− P ({a, b, c}) = 0, P ({a}) = 0.4 and P ({b, c}) = 0.6?

Answer: No, because {ω ∈ {a, b, c} : X(ω) = 1} = {a, b} is not an event.

2. Is X a random variable defined on (Ω,F , P ), where

• Ω = {a, b, c},

• F =

{
∅, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}

}
• P (∅) = 1 − P ({a, b, c}) = 0, P ({a}) = P ({b}) = P ({c}) = 1/3 and

P ({a, b}) = P ({b, c}) = P ({c, a}) = 2/3?

Answer: Yes, since {ω ∈ {a, b, c} : X(ω) ∈ H} ∈ F for every H ⊂ B.
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An easier way to validate that X is a random variable defined on (Ω,F , P ) is to

examine {ω ∈ {a, b, c} : X(ω) ≤ x} ∈ F for every x ∈ �, namely, to examine

whether the cdf of X exists or not.

{ω ∈ {a, b, c} : X(ω) ≤ x} =




∅, if x < −1;

{c}, if − 1 ≤ x < 1;

{a, b, c}, if x ≥ 1.

3. What is σ(X) in Problem 2?

Answer from Theorem 20.1: Any H containing neither 1 nor −1 gives {ω ∈ Ω :

X(ω) ∈ H} = ∅. Any H containing 1 but not −1 gives {ω ∈ Ω : X(ω) ∈ H} =

{a, b}. Any H contains −1 but not 1 gives {ω ∈ Ω : X(ω) ∈ H} = {c}. Any H
containing both 1 and −1 gives {ω ∈ Ω : X(ω) ∈ H} = {a, b, c}.
Alternative answer: A set consists of all complements, intersections and unions of

{ω ∈ {a, b, c} : X(ω) ≤ x}, i.e.,{
∅, {c}, {a, b}, {a, b, c}

}
,

since {a, b} = {c}c.
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Definition (F/G-measurable) A function f : (Ω,F) → (Θ,G) is F/G-
measurable, if {ω ∈ Ω : f(ω) ∈ G} ∈ F for every G ∈ G.
Definition (Bk/B-measurable) A function f : (�k,Bk) → (�,B) is Bk/B-
measurable, if {xk ∈ �k : f(xk) ∈ G} ∈ Bk for every G ∈ B.

Proof of Theorem 20.1

1. Any set of the form AH = {ω ∈ Ω : X(ω) ∈ H} must be an element of σ(X).

Hence, S � {B ⊂ Ω : B = AH for some H ∈ Bk} ⊂ σ(X).

By definition, σ(X) is the smallest σ-field with respect to whichX is probabilis-

tically measurable, and S is apparently a σ-field for whichX is probabilistically

measurable. Thus, S = σ(X).

(a) ∅ ∈ S by taking H = ∅; Ω ∈ S by taking H = �k.

(b) AH ∈ S ⇒ Ac
H = AHc ∈ S .

(c)
⋃∞

i=1AHi
= A∪∞

i=1Hi
∈ S .
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2. If there exists such Bk/B-measurable f , then for every G ∈ B, we have:
H � {xk ∈ �k : f(xk) ∈ G} ∈ Bk,

and

{ω ∈ Ω : Y (ω) ∈ G} = {ω ∈ Ω : f(X1(ω), . . . , Xk(ω)) ∈ G}
= {ω ∈ Ω : (X1(ω), . . . , Xk(ω)) ∈ H}
= {ω ∈ Ω : X(ω) ∈ H}
∈ σ(X).

To prove the necessity, suppose Y is a simple random variable, and is σ(X)-

measurable. Let y1, y2, . . . , ym be all the distinct values that Y can take.

Then by the first part of Theorem 20.1, Ai = {ω ∈ Ω : Y (ω) = yi} ∈ σ(X) =

S implies that Ai = {ω ∈ Ω : X(ω) ∈ Hi} for some Hi ∈ Bk.

Define f(xk) �
∑m

i=1 yi 1(x
k;Hi), where 1(x

k;Hi) equals one if x
k ∈ Hi, and

zero, otherwise. Apparently, {xk ∈ �k : f(xk) ∈ G} for a given G ∈ B can

be formed by finite unions of {Hi}, and hence, is contained in Bk for every

G ∈ B, which indicates f is Bk/B-measurable.

Since {Ai}mi=1 are disjoint, no X(ω) lies in more than one Hi. Accordingly,

f(X(ω)) = Y (ω)
(
= yi if X(ω) ∈ Hi

)
.
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Theorem 13.5a If a random variable X : Ω → � is F -measurable under

probability space (Ω,F , P ), then there exists a sequence of F -measurable simple

random variables Xn : Ω → � such that X+
n ↑ X+ and X−

n ↑ X−.

Now suppose Y is not necessary simple, but is still σ(X)-measurable. Then

by Theorem 13.5a, there exists a sequence of simple random variables Yn such

that Yn(ω) → Y (ω) for every ω ∈ Ω.

The previous proof shows that there exists Bk/B-measurable fn such that

Yn(ω) = fn(X(ω)) for all ω ∈ Ω.

Define f(xk) = lim sup
n→∞

fn(x
k). Then f is also Bk/B-measurable.

The limit of Bk/B-measurable functions is also Bk/B-measurable, since we can

surely form the “limit set” by countably many set-theoretical operations, and Bk

and B are σ-fields. (Cf. Theorem 13.4)

lim sup
n→∞

fn(x
k) = lim

n→∞ sup
q≥n

fq(x
k) = inf

n≥1
sup
q≥n

fq(x
k).

As a result, f(X(ω)) = lim sup
n→∞

fn(X(ω)) = lim sup
n→∞

Yn(ω) = Y (ω). �
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In this discussion, we drop the mathematical notion of line measure µ that is used

in Billingsley’s book, and focus more on the engineering notion of “distributions”.

Definition (distribution function) The distribution function of a random

variable X is defined as FX(x) � Pr[X ≤ x].

Properties of FX(·)
• non-decreasing

• right-continuous

• the number of discontinuous points is countable

Since FX(∞) = 1 and FX(−∞) = 0, the number of “jumps” that exceeds

1/2 is at most 2 (index them by 1 and 2); the number of “jumps” that exceeds

1/3 but are less than 1/2 is at most 3 (index them by 3, 4 and 5); the number

of “jumps” that exceeds 1/4 but are less than 1/3 is at most 4 (index them

by 6, 7, 8 and 9); · · · . So we can index these discontinuous points countably.

Theorem 14.1 If a function F (·) is non-decreasing, right-continuous and satisfies
lim

x↓−∞
F (x) = 0 and lim

x↑∞
F (x) = 1, then there exists a random variable and a pro-

bability space such that the cdf of the random variable defined over the probability

space is equal to F (·).
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Theorem 14.1 releases us with the burden of referring to a probability space before

our defining a random variable. We can indeed define a random variableX directly

by its cdf, i.e., Pr[X ≤ x]. Nevertheless, it is better to keep in mind (and learn) that

a formal mathematical notion of random variables is defined over some probability

space.

Notably, Theorem 14.1 only proves the “existence” but not the “uniqueness”.

Definition (support) The support of a random variable X is a Borel set H for

which Pr[X ∈ H] = 1.

• Since we can only well-define the probability of an event in Borel set, the

support of X must be a Borel set (cf. Slide 20-36).

Definition (discrete random variables) If the support of a random variable

X is discrete, then X is called a discrete random variable.
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1. Binomial distribution: Pr[X = r] =

(
n

r

)
pr(1− p)n−r for r = 0, 1, . . . , n.

Example of the probability space which X is defined on.


Ω = {0, 1, 2, . . . , n},
F = 2Ω,

P (A) =
∑

i∈A P [X = i],

X(ω) = ω.

2. Poisson distribution: Pr[X = r] = e−λλ
r

r!
for r = 0, 1, 2, . . ..

How about the support of X cannot be made discrete? Then the probability den-

sity function of X may exist.
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Definition (Lebesgue measure) A Lebesgue measure λ over the Borel set B
is that for any A ∈ B,

λ(A) =
∞∑
i=1

λ(Ii),

and {Ii}∞i=1 are disjoint intervals satisfying A = ∪∞
i=1Ii, and λ(I) is equal to the

right-margin of interval I minus the left-margin of the same interval.

Definition (probability density function) A random variable and its distri-

bution (cdf) have density f with respect to Lebesgue measure, if f is B-measurable

(i.e., f : (�,B) �→ (�,B)) non-negative function that satisfies

Pr[X ∈ A] =

∫
A
f(x)λ(dx) =

∫
A
f(x)dx for every A ∈ B.

Proposition (uniqueness of density) If λ ({x ∈ � : f(x) 
= g(x)}) = 0,

then both f and g can be the density of the same random variable.

• It may not be easy to examine the existence of density by means of the above

definition. So we need an equivalent examinable condition.
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Theorem Let FX(x) = Pr[X ≤ x]. Then

Pr[X ∈ A] =

∫
A
f(x)λ(dx) =

∫
A
f(x)dx for every A ∈ B.

if, and only if,

FX(b)− FX(a) =

∫ b

a

f(x)dx for every a, b ∈ �.

• FX(x) is differentiable for every x ∈ � except for a set of Lebesgue measure

zero (cf. Slide 20-36).

• Note that FX(x) is not necessarily differentiable on every x for such f(·) to
exist.

• If such f exists, then F ′
X(x) = f(x) for every x ∈ � except for a set of Lebesgue

measure zero.

• If such f exists, and is continuous, then F ′
X(x) = f(x) for every x ∈ �.
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1. Exponential distribution: The probability density function (pdf) of expo-

nential distribution with parameter α > 0 is:

f(x) =

{
αe−αx, if x ≥ 0;

0, otherwise.

Its cdf is then equal to:

F (x) =

∫ x

−∞
f(y)dy =

{
1− e−αx, if x ≥ 0;

0, otherwise.

2. Normal distribution: The pdf of normal distribution with parameters m

and σ > 0 is:

f(x) =
1√
2πσ2

e−(x−m)2/(2σ2) for x ∈ �.
No close-form formula exists for its cdf.

3. Standard normal distribution: Normal distribution withm = 0 and σ = 1.



Examples of (continuous) pdf 20-39

4. Uniform distribution A uniform distribution has pdf equal to:

f(x) =




1

b− a
, if a ≤ x < b;

0, otherwise.

Its cdf is then equal to:

F (x) =

∫ x

−∞
f(y)dy =




0, if x < a;
x− a

b− a
, if a ≤ x < b;

1, otherwise.
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It is easy to construct a random variable whose support cannot be made discrete.

But a more interesting case would be the random variable having continuous cdf

but no pdf!

In other words, F (b)−F (a) > 0 for b > a for every a and b (in the smallest closure

of the set that gathers unit probability mass), but there exists no f(·) such that

F (b)− F (a) =
∫ b

a f(x)dx.

Example Let X =
∑∞

n=1Bn2
−n, where {Bi}∞i=1 are i.i.d. with Pr[Bn = 0] = p

and Pr[Bn = 1] = 1− p and p ∈ (0, 1/2). Since X is a binary representation of a

number in [0, 1), the support of X is equal to [0, 1).

For any x = .b1b2b3 . . ., where bj ∈ {0, 1},
FX(x) = Pr[X ≤ x]

= Pr [(B1 < b1) ∨ (B1 = b1 ∧B2 < b2) ∨ (B1 = b1 ∧B2 = b2 ∧ B3 < b3) ∨ · · · ]
= Pr [B1 < b1] + Pr [B1 = b1 ∧ B2 < b2] + Pr [B1 = b1 ∧B2 = b2 ∧ B3 < b3] + · · ·
= Pr [B1 < b1] + Pr [B1 = b1] Pr [B2 < b2] + Pr [B1 = b1] Pr [B2 = b2] Pr [B3 < b3] + · · ·
= b1p + [(1− 2p)b1 + p]b2p + [(1− 2p)b1 + p][(1− 2p)b2 + p]b3p + · · ·

=
∞∑
k=1

bkp

(
k−1∏
�=1

[(1− 2p)b� + p]

)
, where we assume

0∏
�=1

[(1− 2p)b� + p] = 1.
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For any x̂ > x = .b1b2b3 · · · , let j be the smallest integer such that b̄j = 1, where

.b̄1b̄2b̄3 · · · is the binary representation of (x̂−x). Denote i the largest integer such

that bi = 0 among {b0, b1, b2, · · · , bj}, where b0 = 1. Put x + 2−j = .b̃1b̃2b̃3 · · · .
Note that bibi+1 · · · bj =

{
011 · · · 11, i < j;

0, i = j,
b̃ib̃i+1 · · · b̃j =

{
100 · · · 00, i < j;

1, i = j,

bk = b̃k for k < i and k > j, and x̂ ≥ x + 2−j > x.

Example (Assume binary number system.)

x = 0.11 and x̂ = 0.11101 ⇒ (x̂− x) = 0.00101 = .b̄1b̄2b̄3 · · · ⇒ j = 3

{b0, b1, b2, · · · , bj} = {b0, b1, b2, b3} = {1, 1, 1, 0} ⇒ i = 3

x + 2−j = .b̃1b̃2b̃3 · · · = 0.11 + 2−3 = 0.111

x̂ = 0.11101 ≥ x + 2−j = 0.111 > x = 0.11 and bibi+1 · · · bj = b3 = 0,

b̃ib̃i+1 · · · b̃j = b̃3 = 1, and bk 
= b̃k only for 3 = i ≤ k ≤ j = 3.

Example (Assume binary number system.)

x = 0.011 and x̂ = 0.100 ⇒ (x̂− x) = 0.001 = .b̄1b̄2b̄3 · · · ⇒ j = 3

{b0, b1, b2, · · · , bj} = {b0, b1, b2, b3} = {1, 0, 1, 1} ⇒ i = 1

x + 2−j = .b̃1b̃2b̃3 · · · = 0.011 + 2−3 = 0.100

x̂ = 0.100 ≥ x + 2−j = 0.100 > x = 0.011 and bibi+1 · · · bj = b1b2b3 = 011,

b̃ib̃i+1 · · · b̃j = b̃1b̃2b̃3 = 100, and bk 
= b̃k for 1 = i ≤ k ≤ j = 3.
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We then derive

FX(x̂)− FX(x) ≥ FX(x + 2−j)− FX(x)

=

∞∑
k=1

b̃kp

(
k−1∏
�=1

[(1− 2p)b̃� + p]

)
−

∞∑
k=1

bkp

(
k−1∏
�=1

[(1− 2p)b� + p]

)

=
∞∑
k=i

b̃kp

(
k−1∏
�=1

[(1− 2p)b̃� + p]

)
−

∞∑
k=i

bkp

(
k−1∏
�=1

[(1− 2p)b� + p]

)

=

(
i−1∏
�=1

[(1− 2p)b� + p]

)[ ∞∑
k=i

b̃kp

(
k−1∏
�=i

[(1− 2p)b̃� + p]

)
−

∞∑
k=i

bkp

(
k−1∏
�=i

[(1− 2p)b� + p]

)]

=

(
i−1∏
�=1

[(1− 2p)b� + p]

)
p + ∞∑

k=j+1

b̃kp


(1− p)pj−i

k−1∏
�=j+1

[(1− 2p)b̃� + p]




−
j−i−1∑
k=0

p2(1− p)k −
∞∑

k=j+1

bkp


p(1− p)j−i

k−1∏
�=j+1

[(1− 2p)b� + p]






=

(
i−1∏
�=1

[(1− 2p)b� + p]

)
p(1− p)j−i +

∞∑
k=j+1

bkp


 k−1∏

�=j+1

[(1− 2p)b� + p]


(

(1− p)pj−i − p(1− p)j−i

)
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where we assume
∏k−1

�=i [(1 − 2p)b� + p] = 1 for k = i. This implies that FX(x) is

strictly increasing for x ∈ [0, 1).

In addition, for any x ∈ [0, 1),

Pr[X = x] = Pr [B1 = b1 ∧B2 = b2 ∧ B3 = b3 ∧ · · · ]
= Pr [B1 = b1] Pr [B2 = b2] Pr [B3 = b3] · · ·
=

∞∏
i=1

[(1− 2p)bi + p]

≤
∞∏
i=1

max(p, 1− p)

= 0,

which indicates FX(·) is continuous over [0, 1).
Theorem 31.2 A nondecreasing function is differentiable almost everywhere (i.e.,

except on a set of Lebesgue measure 0), and its derivative is non-negative.
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Thus, from Theorem 31.2, FX(·) is differentiable almost everywhere, namely,

lim sup
ε↓0

FX(x + ε)− FX(x)

ε
= lim inf

ε↓0

FX(x + ε)− FX(x)

ε

= lim sup
ε↓0

FX(x)− FX(x− ε)

ε
= lim inf

ε↓0

FX(x)− FX(x− ε)

ε
= F ′(x),

and F ′
X(x) ≥ 0.

Theorem 31.3 If f is non-negative and integrable, and if F (x) =
∫ x
−∞ f(t)dt,

then F ′(x) = f(x) except on a set of Lebesgue measure 0.

Now suppose there exists f(x) (nonnegative and integrable) such that FX(x) =∫ x
−∞ f(t)dt. Then by Theorem 31.3, F ′

X(x) = f(x) except on a set of Lebesgue
measure 0. However, F ′

X(x) = 0 for every x ∈ [0, 1) at which FX(x) is
differentiable (See the proof below). Hence, f(x) = 0 except on a set of Lebesgue
measure 0; a contradiction is thus obtained since FX(x) > 0 but

∫ x
−∞ f(y)dy = 0

for any x ∈ [0, 1). !
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Suppose F ′
X(x) = c > 0 for some x ∈ [0, 1). Let kn � �x2n�, kn2−n �

∑n
i=1 ui2

−i,

where ui ∈ {0, 1}, and
an � FX((kn + 1)2−n)− FX(kn2

−n)

= Pr
[
kn2

−n < X ≤ (kn + 1)2−n
]

= Pr
[
kn2

−n ≤ X < (kn + 1)2−n
]

(since Pr(X = kn2
−n) = Pr(X = (kn + 1)2−n) = 0)

=

n∏
i=1

[(1− 2p)ui + p]

Then,

F ′
X(x) = lim

n→∞
FX((kn + 1)2−n)− FX(kn2

−n)

2−n
= lim

n→∞
an
2−n

= c,

which implies an+1/an → 1/2. However, an+1/an = [(1− 2p)un+1 + p] 
→ 1/2, a

contradiction.
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• It can be shown that

FX(x) =

{
pFX(2x), if 0 ≤ x ≤ 1/2;

p + (1− p)FX(2x− 1), if 1/2 ≤ x ≤ 1

So by FX(0) = 0 and FX(1) = 1, we can obtain FX(1/2) = p, FX(1/4) = p2

and FX(3/4) = p + (1− p)p, . . .
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• If g(·) is strictly increasing , then T (·) = g−1(·) exists.

Then

Pr[g(X) ≤ x] = Pr[X ≤ T (x)] = FX(T (x)).

Now if FX(·) has continuous derivative f(·), and T (·) is differentiable, then the

pdf of g(X) is equal to:

f(T (x))T ′(x).

• Now how about general g(·)? We can still have:

Pr[g(X) ≤ x] = Pr[X ∈ Gx]

where Gx = {r ∈ � : g(r) ≤ x}.
– It is always suggestive to derive cdf first. Then examine whether the cdf

has continuous derivative or not. If it does, then a pdf can be obtained

by taking the derivative of the cdf.
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• The (joint) cdf of a multidimensional random vector X = (X1, . . . , Xk) is

defined as:

FX(xk) = Pr [X1 ≤ x1 ∧X2 ≤ x2 ∧ · · · ∧Xk ≤ xk] .
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Theorem 12.5 (a variant version) Suppose that a function F : �k → �
satisfies:

• (continuous from above) F (·) is continuous in the sense that lim
h↓0

F (x1 +

hy1, . . . , xk + hyk) = F (x1, . . . , xk) for all x
k ∈ �k and yk ∈ �k with each

yi > 0.

• F (∆A) is non-negative for any bounded rectangle ∆A, namely, for any ak and

bk with ai ≤ bi for 1 ≤ i ≤ k,

F (∆A) =
∑

For each i, xi=either ai or bi

(−1)s(x
k)F (xk) ≥ 0,

where s(xk) is the number of xi equal to ai (an equivalent extension to non-

decreasingness for one dimensional random variable),

• lim
h↓−∞

F (hy1, . . . , hyk) = 0 for yk ∈ �k with each yi > 0;

• lim
h↑∞

F (hy1, . . . , hyk) = 1 for yk ∈ �k with each yi > 0.

Then there exists a unique probability measure whose resultant k-dimensional cdf

is equal to F (·).
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• The previous theorem indicates the sufficiency of defining multidimensional cdf

for a multidimensional random vector (or probability measure).

• Difference between one-dimensional cdf and multidimensional cdf.

– A one-dimensional cdf can only have countably many discontinuities;

– but a more-than-one-dimensional cdf can have uncountably many dis-

continuities.

• Similarity between one-dimensional cdf and multidimensional cdf.

– Only countably many discontinuous points can have positive probability

mass.
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Definition (Lebesgue measure) A Lebesgue measure λ over the Borel set Bk

is that for any A ∈ Bk,

λ(A) =

∞∑
i=1

λ(∆i),

and {∆i}∞i=1 are disjoint bounded rectangles satisfying A = ∪∞
i=1∆i, and λ(∆) is

equal the volume of the bounded rectangle ∆ (namely,
∏k

i=1(bi − ai), where ak

and bk define the bounded rectangle).

Definition (support) The support of a multidimensional random vector X is

a Borel set H ∈ Bk for which Pr[X ∈ H] = 1.

Definition A multidimensional random vector is discrete if it has countable

support.

Definition (probability density function) A random variable X and its

distribution (cdf) have density f with respect to Lebesgue measure, if f is Bk-

measurable non-negative function that satisfies

Pr[X ∈ A] =

∫
A
f(xk)λ(dxk) =

∫
A
f(xk)dxk for every A ∈ Bk.
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Suppose that

• X has density f ;

• X has support V ;

• g = (g1, . . . , gk) is a 1-to-1 mapping from V onto U , where V and U are open

sets in �k;

• ∂gi/∂xj exists and is continuous in V for every i, j (i.e., g is continuous,

differentiable);

• ∂Ti/∂xj exists and is continuous in U for every i, j (i.e., T is continuous,

differentiable), where T is the inverse mapping to g;

• the Jocobian determinant

J(x) = Det




∂T1
∂x1

∂T1
∂x2

· · · ∂T1
∂xk

∂T2
∂x1

∂T2
∂x2

· · · ∂T2
∂xk

... ... · · · ...
∂Tk
∂x1

∂Tk
∂x2

· · · ∂Tk
∂xk


 (x) 
= 0 for every x ∈ U.

Then g(X) has density f(T (x))|J(x)|.



Independence 20-53

Definition (independence) Random variables X1, . . ., Xk are independent if

Pr [X1 ∈ H1 ∧ · · · ∧Xk ∈ Hk] = Pr [X1 ∈ H1] · · ·Pr [Xk ∈ Hk]

for all linear (See blow for the definition of linearity) Borel set Hj ∈ B.
• A Borel set is linear if it is one-dimensional.

• Again,

Pr [X1 ∈ H1 ∧ · · · ∧Xk ∈ Hk] = Pr [X1 ∈ H1] · · ·Pr [Xk ∈ Hk] for all linear Borel set Hj

if, and only if,

Pr [X1 ≤ x1 ∧ · · · ∧Xk ≤ xk] = Pr [X1 ≤ x1] · · ·Pr [Xk ≤ xk] for all real number xj.
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Definition (independence) Random vectors X1, . . ., Xu are independent if

Pr [X1 ∈ H1 ∧ · · · ∧Xk ∈ Hk] = Pr [X1 ∈ H1] · · ·Pr [Xk ∈ Hk]

for all Borel set Hj.

• Notably, the dimension of each random variable needs not be identical.

• Again,

Pr [X1 ∈ H1 ∧ · · · ∧Xk ∈ Hk] = Pr [X1 ∈ H1] · · ·Pr [Xk ∈ Hk] for all Borel set Hj

if, and only if,

Pr [X1 ≤ x1 ∧ · · · ∧Xk ≤ xk] = Pr [X1 ≤ x1] · · ·Pr [Xk ≤ xk] for all real vector xj.
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Theorem 20.3 (a rephrased version) If X and Y are independent, then

Pr
[
(X,Y ) ∈ B] = ∫

X
Pr
[
(x,Y ) ∈ B]dFX(x),

where X is the support of X .

An exemplified application of Theorem 20.3

Suppose thatX and Y are independent and are exponentially distributed random

variables with parameters α and β, respectively. Then

Pr[Y/X ≥ z] =

∫ ∞

0

Pr[Y/x ≥ z]dFX(x)

=

∫ ∞

0

Pr[Y ≥ xz]αe−αxdx

=

∫ ∞

0

(∫ ∞

xz

βe−βydy

)
αe−αxdx

=

{ α

α + βz
, if z > 0;

1, if z ≤ 0.
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If X and Y are not necessarily independent, then

Pr
[
(X,Y ) ∈ B] = ∫

X
Pr
[
(x,Y ) ∈ B∣∣X = x

]
dFX(x),

where X is the support of X .



Convolution for independent random variables 20-57

For independent random variables X and Y ,

FX+Y (z) = Pr[X + Y ≤ z]

=

∫ ∞

−∞
Pr[x + Y ≤ z]dFX(x)

=

∫ ∞

−∞
Pr[Y ≤ z − x]dFX(x)

=

∫ ∞

−∞
FY (z − x)dFX(x).

If Y has density fY (·), then for fixed x,

FY (z − x) =

∫ z−x

−∞
fY (s)ds =

∫ z

−∞
fY (t− x)dt,

which implies

FX+Y (z) =

∫ ∞

−∞

(∫ z

−∞
fY (t− x)dt

)
dFX(x)

=

∫ z

−∞

(∫ ∞

−∞
fY (t− x)dFX(x)

)
dt.

So Z = X + Y has density
∫∞
−∞ fY (z − x)dFX(x).
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In other words, if one of independent random variables X and Y has density,

then X + Y has density.

If, in addition to Y , X has density,

fX+Y (z) =

∫ ∞

−∞
fY (z − x)dFX(x) =

∫ ∞

−∞
fY (z − x)fX(x)dx = (fX ∗ fY ) (z),

where “∗” denotes the convolution operator.

Example 20.5 Let X1, . . . , Xk be independent random variables, each with ex-

ponential density with parameter α. Then X1 + · · · +Xk has density satisfying:

fX1+···+Xk
= fX2+···+Xk

∗ fX1.

Then

fX1+···+Xk
(z) = α

(αz)k−1

(k − 1)!
e−αz,

which can be proved by induction.
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Theorem 20.5

1. IfXn converges toX with probability 1, thenXn converges toX in probability.

• Convergence in probability is sometimes denoted as p- limn→∞Xn = X .

2. Xn converges toX in probability if, and only if, for each subsequence {Xnk}∞k=1

of {Xn}∞n=1, there exists a further subsequence {Xnki
}∞i=1 such that Xnki

con-

verges to X with probability 1 as i goes to infinity.

Proof of Theorem 20.5-2.:

(a) Only-if part: Xn converges to X in probability means that for any ε > 0,

lim
n→∞Pr [|Xn −X| ≥ ε] = 0.

Hence, for any i fixed and any sequence {nk}∞k=1,

lim
k→∞

Pr
[|Xnk −X| ≥ ε

]
= 0.

Therefore, with initially k0 = 0,

ki � min

{
k > ki−1 : Pr

[|Xnk −X| ≥ ε
]
<

1

2i

}
exists.
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We then obtain that k1 < k2 < k3 < · · · , and

Pr
[∣∣∣Xnki

−X
∣∣∣ ≥ ε

]
<

1

2i
.

By the first Borel-Cantelli lemma,
∞∑
i=1

Pr
[∣∣∣Xnki

−X
∣∣∣ ≥ ε

]
< ∞ implies that

Xnki
converges to X with probability 1.

(b) If part: If Xn does not converge to X in probability, then there exists ε > 0

such that

lim sup
n→∞

Pr [|Xn −X| ≥ ε] > 0,

or equivalently, there exists a subsequence {nk}∞k=1,

lim
k→∞

Pr
[|Xnk −X| ≥ ε

]
> 0.

Since {Xnk}∞k=1 does not converge to X in probability, no subsequence of

{Xnk}∞k=1 can converge to X with probability 1. �
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Observations

1. If {Xn}∞n=1 converges to X in probability, and {Xn}∞n=1 converges to Y in

probability, then Pr[X = Y ] = 1.

2. If {Xn}∞n=1 converges to X in probability, then {f(Xn)}∞n=1 converges to f(X)

in probability for any continuous function f .
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• Relation between an empirical distribution and the respective true distribution

is an essential question to engineers!

• The empirical distribution (cdf) for an i.i.d. sequence X1, X2, X3, . . . is a

random variable, defined as:

F n(x) =
1

n

n∑
k=1

I(−∞,x](Xk),

where I(−∞,x](u) =

{
1, if u ≤ x;

0, if u > x.

• Since I(−∞,x](X1), I(−∞,x](X2), . . . are also i.i.d., the strong law of large num-

bers indicates
1

n

n∑
k=1

I(−∞,x](Xk) converges to its marginal mean, that is

E
[
I(−∞,x](X1)

]
= F (x),

with probability 1.

• Can the relation between F n(x) and F (x) be stronger than that implied by

the strong law of large numbers? Yes, answered by Glivenko-Cantelli.
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• Glivenko-Cantelli Theorem says that the random variable

Dn = sup
x∈�

|F n(x)− F (x)|

converges to 0 with probability 1, a much stronger statement!
In other words,

Pr

[
lim
n→∞

sup
x∈�

|F n(x)− F (x)| = 0

]
= 1

is a stronger statement than

Pr
[
lim
n→∞ |F n(x)− F (x)| = 0

]
= 1 for any x ∈ �.

• We will discuss how fast Dn converges to 0 after the introduction of the Berry-

Esseen Theorem.
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Theorem 20.6 (Glivenko-Cantelli Theorem) Suppose thatX1, X2, . . . are

i.i.d. Then

Dn = sup
x∈�

|F n(x)− F (x)|
converges to 0 with probability 1, where

F n(x) =
1

n

n∑
k=1

I(−∞,x](Xk),

and I(−∞,x](u) =

{
1, if u ≤ x;

0, if u > x.

Proof:

• By the strong law of large numbers, the event Ax =
[
lim
n→∞F n(x) = F (x)

]
has probability 1. In addition, the event Bx =

[
lim
n→∞

F n(x
−) = F (x−)

]
has

probability 1, where

F (x−) = Pr[X < x] and F n(x
−) =

1

n

n∑
k=1

I(−∞,x)(Xk).
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• Define the quantile function ϕ(u) = inf[x ∈ � : u ≤ F (x)] for 0 ≤ u ≤ 1.

Then

F (ϕ(u)−) ≤ u ≤ F (ϕ(u)).

By the right-continuity of F (·), {x ∈ � : u ≤ F (x)} = [ϕ(u),∞).

So if F (·) is continuous at x = ϕ(u), then F (ϕ(u)−) = u = F (ϕ(u));

else if F (·) is only right-continuous and has a jump at x = ϕ(u), we have

F (ϕ(u)−) ≤ u ≤ F (ϕ(u)). (F (x−) � limδ↓0 F (x− δ))

�

�

x

F (x)

������� �

������

� �

F (ϕ(u)−)

F (ϕ(u))
u

• Let xm,k = ϕ(k/m) for m ≥ 1 and 1 ≤ k ≤ m, where the infimum of an

empty set is infinity, and xm,0 = −∞. Hence,

F (x−m,k) ≤
k

m

( ≤ F (xm,k)
)

and
(
F (x−m,k−1) ≤

) k − 1

m
≤ F (xm,k−1),

which implies F (x−m,k)− F (xm,k−1) ≤ 1

m
. (What if xm,k−1 = xm,k?)

So for xm,k−1 ≤ x < xm,k (Hence, F (xm,k−1) ≤ F (x) ≤ F (x−m,k).),

F (x−m,k)

(
≤ F (xm,k−1)+

1

m

)
≤ F (x)+

1

m
and F (xm,k−1)

(
≥ F (x−m,k)−

1

m

)
≥ F (x)− 1

m
.
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�

�

xm,1 xm,2 xm,m−2 xm,m−1

... ...

1/m

2/m

(m− 2)/m

(m− 1)/m

m/m
F (x)



Glivenko-Cantelli Theorem 20-67

• Define Dm,n � max
k=1,...,m

{∣∣F n(xm,k)− F (xm,k)
∣∣, ∣∣F n(x

−
m,k)− F (x−m,k)

∣∣}.
Then

Dn ≤ Dm,n +
1

m
,

because for xm,k−1 ≤ x < xm,k,

F n(x) ≤ F n(x
−
m,k) ≤ F (x−m,k) +Dm,n ≤ F (x) +

1

m
+Dm,n

and

F n(x) ≥ F n(xm,k−1) ≥ F (xm,k−1)−Dm,n ≥ F (x)− 1

m
−Dm,n.

Hence,

− 1

m
−Dm,n ≤ F n(x)− F (x) ≤ 1

m
+Dm,n,

or equivalently,

|F n(x)− F (x)| ≤ 1

m
+Dm,n.

Accordingly,

Dn = sup
x∈�

|F n(x)− F (x)| ≤ 1

m
+Dm,n.
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• 0 ≤ Dn ≤ Dm,n +
1

m
indicates that:

– ifDm,n converges to zero with probability 1
(
i.e., Pr

[
lim
n→∞Dm,n = 0

]
= 1

)
,

then Pr

[
0 ≤ lim sup

n→∞
Dn ≤ 1/m

]
= 1 for any m.

– Therefore, Pr
[
lim
n→∞Dn = 0

]
= 1.

• Proof of Dm,n converging to 0 with probability 1:

As Pr[Axm,k
] = Pr[Bxm,k

] = 1 for 1 ≤ k ≤ m,

Pr

[
m⋂
k=1

(
Axm,k

⋂
Bxm,k

)]
= 1.

The above statement is equivalent to saying that for each 1 ≤ k ≤ m,

lim
n→∞ |F (xm,k)− F (xm,k)| = lim

n→∞

∣∣∣F (x−m,k)− F (x−m,k)
∣∣∣ = 0 with probability 1

implies that the finite maximum

Dm,n = max
k=1,...,m

{
|F (xm,k)− F (xm,k)| ,

∣∣∣F (x−m,k)− F (x−m,k)
∣∣∣}

certainly converges to zero with probability 1. �
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• No one can directly claim without proof that Dn = sup
x∈�

|F n(x)− F (x)| con-
verges to 0 with probability 1 simply because for each x ∈ �, |F n(x)− F (x)|
converges to 0 with probability 1. So, the proof of the Glivenko-Cantelli theo-

rem is not trivial!

Let fn(x) = 0 for x < n, and 1, for x ≥ n.

Then lim
n→∞ fn(x) = 0 for each x ∈ �.

But lim
n→∞ sup

x∈�
fn(x) = 1.

• In our slides, I intentionally avoid using the inherited probability space, and

only rely on the observation probability space, namely, the cdf itself, since the

observation probability space is what we engineers are more familiar with.

• From this, you learn that to rely on the observation probability space is suffi-

cient for most problems of engineering interest; however, I would like to point

out that it is advantageous to learn the role of the intrinsic, inherited probability

space on which a random variable is originally defined.
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Theorem (decomposition of distribution) Any cdf F can be decomposed

into cdf’s of three distinct types: discrete Fd, absolutely continuous Fac and

singular Fs, each of which is itself a cdf. In other words, for x ∈ �,
F (x) = α1Fd(x) + α2Fac(x) + α3Fs(x),

where α1 + α2 + α3 = 1.

Definition Fd is a discrete cdf, if it is a cdf for a discrete random variable.

Definition Fac is an absolutely continuous cdf, if it has density, namely, there

exists fac such that

Fac(x) =

∫ x

−∞
fac(t)dt.

(Notably, a discrete cdf does not have density from (rigorous) mathematical stand-

point, unless the Dirac delta function δ(·) is acceptable to be a legitimate density

for engineering convenience, which satisfies

δ(t) =

{
0, if t 
= 0;

∞, if t = 0
,

and
∫
X δ(t)dt = 1 if 0 ∈ X .)
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Definition Fs is a singular (and continuous) cdf, if it is not discrete (so the

number of jumps is uncountably many, if it has jumps) and does not have density.

In other words, it is a continuous cdf without density. You may refer to Slide 20-40

for a specific one-dimensional example.

The singular cdf is in fact more easily to construct for multidimensional random

variables. For example, Pr[X1 +X2 = 0] = 1, and each of X1 and X2 is Gaussian

distributed with mean 0 and variance 1.

Then, the pdf fX1,X2(x1, x2) for (X1, X2) does not exist (even if the cdf FX1+X2(z)

for X1 +X2 exists)!
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