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How fast (X1 +X2 + · · · +Xn)/n converges to mean 9-1

• After the validation of the strong law, the next question is naturally “how fast

(X1 +X2 + · · · +Xn)/n converges to marginal mean?”

• More specifically, we concern that how fast

Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]
converges to zero.

• This concern brings up an interesting research subject—large deviations, which

uses the technique of moment generating function and Markov’s inequality.
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Definition (Moment generating function) The moment generating func-

tion of a random variable X is defined as

M(t) = E[exp(tX)] =

∫ ∞

−∞
etxdF (x),

for all t for which this is finite, where F (·) is the cumulative distribution function

(cdf) of the random variable X .

• A general representation for integration w.r.t. a (cumulative) distribution func-

tion F (·) is ∫X ·dF (x), which is named the Stieltjes integral.

• Such a representation can be applied for both discrete support and continu-

ous support. We will use this convention to free the burden of differentiating

discrete random variables from continuous random variables.
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The Taylor expansion of exp{tx} is equal to
∞∑
k=0

tk

k!
xk for all real x.

Hence, exp{tX} =

∞∑
k=0

tk

k!
Xk, which gives that

E [exp{tX}] = E

[ ∞∑
k=0

tk

k!
Xk

]
=

∞∑
k=0

tk

k!
E[Xk].

if all moments of X exist.

Question: What if some moments of X do not exist? See the next example.

Example If the pdf of X is 1/(x + 1)2 for x ≥ 0, and zero, otherwise, then

E[Xk] = ∞ for k ≥ 1. In such case, E[etX ] =




1 + te−t
∫∞
−t s

−1e−sds, if t < 0;

1, if t = 0;

∞, if t > 0.

But

∞∑
k=0

tk

k!
E[Xk] = 1 +

∞∑
k=1

tk

k!
· ∞ is apparently not a well-defined function.

Therefore, we cannot write E [exp{tX}] =
∞∑
k=0

tk

k!
E[Xk].
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Lemma ([A29]) If f(x) =

∞∑
k=0

akx
k converges for every |x| < r for some r > 0,

then f(·) is differentiable for |x| < r, and

f ′(x) =
df(x)

dx
=

∞∑
k=1

k ak x
k−1.

From the lemma, it is clear that a1 = f ′(0).

If f ′(x) =

∞∑
k=1

k ak x
k−1 also converges for |x| < r for some r > 0, then a2 =

1
2!
f ′′(0).

. . . . . .

We can repeat the process to obtain all the coefficients, if “convergence-for-some-r”

keeps valid.



How moment generating function gets its name? 9-5

• Thus, if E[|Xk|] < Ak for some A (which, for example, is valid when X is a

bounded random variable), then E[etX ] =
∞∑
k=0

tk

k!
E[Xk] (and also every order

of its derivatives) converges for |t| < 1/A.

• Accordingly, for k ≥ 1,

E[Xk] = M (k)(0) =
dkM(t)

dtk

∣∣∣∣
t=0

.

This concludes that the moment of X can be obtained by successive differen-

tiation, whence M(t) gets its name.

• For convenience, we assume throughout (these slides) unless

stated otherwise that all moments of the concerned random vari-

ables exist, and these moments can be obtained by taking suc-

cessive derivative of the moment generating function.
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Not necessarily, even if all moments exist! We need “positive radius of convergence”

for the below power series.

Theorem 30.1 Suppose all moments of X exist. Then if the power series
∞∑
k=0

tk

k!
E[Xk] has a positive radius of convergence (i.e., convergence for |t| < r

for some r), the distribution is uniquely determined by the moments.

Application of the distribution-determined-by-its-moments property

Example 9.2 If X1, . . . , Xn are i.i.d. with Pr[Xn = 1] = 1 − Pr[Xn = 0] = p.

Determine the distribution of Sn = X1 + · · · +Xn by means of Theorem 30.1.
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Solution: The moment generating function of Sn is:

E[etSn] = E[et(X1+···+Xn)] =
n∏

j=1

E[etXj ] (by independence)

= (pet + (1− p))n =

n∑
k=0

[(
n

k

)
pk(1− p)k

]
etk (by binomial expansion).

Since all moments of Sn exist (by E[|Sk
n|] ≤ nk < ∞), and∣∣∣∣∣

∞∑
k=0

tk

k!
E[Sk

n]

∣∣∣∣∣ ≤
∞∑
k=0

|t|k
k!

E[|Sn|k] ≤
∞∑
k=0

|t|k
k!

nk =
∞∑
k=0

|tn|k
k!

= e|tn| < ∞

for every t ∈ �, the distribution of Sn shall equal Pr[Sn = k] =

(
n

k

)
pk(1− p)k.�
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Definition (Cumulant generating function) The cumulant generating

function is defined as:

C(t) = logM(t),

where M(t) is the moment generating function.

Polynomial approximate to cumulant generating function

• The Taylor expansion of log(x + 1) is
∞∑
v=1

(−1)v+1

v
xv.

Hence, if M(t) =

∞∑
k=0

tk

k!
E[Xk],

C(t) = logM(t)

= log[(M(t)− 1) + 1]

=
∞∑
v=1

(−1)v+1

v
(M(t)− 1)v

=
∞∑
v=1

(−1)v+1

v

( ∞∑
k=1

tk

k!
E[Xk]

)v

≡
∞∑
i=1

ci
i!
ti,

where {ci}∞i=1 are cumulants of X .
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Equating coefficients leads to

C(1)(0) = c1 = E[X ]

C(2)(0) = c2 = E[X2]− E2[X ] = Var[X ]

C(3)(0) = c3 = E[X3]− 3E[X ][X2] + 2E3[X ]

C(4)(0) = c4 = E[X4]− 4E[X ]E[X3]− 3E2[X2] + 12E2[X ]E[X2]− 6E4[X ]
...

In case E[X ] = 0,

C(1)(0) = c1 = 0

C(2)(0) = c2 = E[X2] = Var[X ]

C(3)(0) = c3 = E[X3]

C(4)(0) = c4 = E[X4]− 3E2[X2]
...
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Property 1 CSn(t) = CX1(t) + CX2(t) + · · · + CXn(t) for Sn =
∑n

j=1Xj with

independent {Xj}nj=1.

Proof: Taking logarithms converts the product relation into additive relation.

So, for independent random variables X1, X2, . . . , Xn, the cumulant generating

function of Sn = X1 +X2 + · · · +Xn equal:

CSn(t) = CX1(t) + CX2(t) + · · · + CXn(t).

�

By this, we can easily confirm that the variance (c2) of sum of independent

samples equal the sum of individual variances (c2) by taking the 2nd derivatives.

This can be extended to any order of cumulants.

Property 2 CX−x(t) = CX(t)− t x.

Proof:

CX−x(t) = logE
[
et(X−x)

]
= logE

[
etX
]− tx = CX(t)− tx.

�
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• Observe that

Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]

= Pr

[
1

n
(X1 +X2 + · · · +Xn)−m ≥ ε

]
+ Pr

[
1

n
(X1 +X2 + · · · +Xn)−m ≤ −ε

]
.

• By letting Y = (X1 + X2 + · · · + Xn)/n and y = ε + m for the first term,

and letting Y = −(X1 + X2 + · · · + Xn)/n and y = ε − m for the second

term, the concerned “probability” becomes the estimate (or find a bound for)

Pr[Y ≥ y].

• Can we provide a nice bound to Pr[Y ≥ y] by moments of Y , as moments are

“easier” to obtain in practice? For example, for noise in communications, only

the first two moments are assumed known usually!

• (One of the) Answer(s): Markov’s inequality if Y is non-negative random

variable.

• What if Y may have negative values.
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• Solution: Estimate Pr[Y ≥ y] in terms of Pr[etY ≥ ety] for any positive t. In

other words, since etY is non-negative, Markov’s inequality gives that

Pr[Y ≥ y] = Pr
[
et

′Y ≥ et
′y
]
≤

E
[
(et

′Y )k
]

(et′y)k
=

E
[
etY
]

ety
=

MY (t)

ety
= e−[ty−CY (t)].

• Therefore, we can provide an upper bound for Pr[Y ≥ y] in terms of the

cumulant generating function as:

Pr[Y ≥ y] ≤ exp{−[ty − CY (t)]} = exp{CY−y(t)} for t ≥ 0.

– Hence the best exponent is inft≥0CY−y(t). For E[Y ] ≤ 0, we will see later

that inft≥0CY−y(t) = inft∈�CY−y(t).

– Function IY (y) = sup
t∈�

[ty − CY (t)] = − inf
t∈�

CY−y(t) is called the large de-

viation rate function. We will learn that the large deviation rate function

provides the rate of convergence very shortly.
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It suffices to derive theorems on Pr[Ȳ ≥ 0], since we can treat [Y ≥ y] as [Ȳ =

Y − y ≥ 0], and still yield the same bound. I.e.,

Pr[Y ≥ y] = Pr[(Y − y) ≥ 0]

= Pr[Ȳ ≥ 0]

≤ exp{−[t · 0− CȲ (t)]} (= MȲ (t))

= exp{−[t · 0− C(Y−y)(t)]}
= exp{−[ty − CY (t)]} for t ≥ 0.

• Although the above formula is always valid, it becomes trivial if [ty−CY (t)] ≤
0.

• Question is under what condition the bound becomes non-trivial.

Answer: If E[Ȳ ] < 0, then Pr[Ȳ ≥ 0] ≤ exp{CȲ (t)]} = MȲ (t) < 1.
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Claim: E[Y 2] > 0 ⇒ (∀t ∈ �)M ′′
Y (t) > 0. Proof: Suppose M ′′

Y (t) = E[Y 2etY ] =

0 for some t = s. Then Pr[Y 2esY ≥ 0] = 1 and E[Y 2esY ] = 0 jointly imply that

Pr[Y 2esY = 0] = 1. Therefore, Pr[Y = 0] = 1, which contradicts to E[Y 2] > 0.

Observation 1 M ′
Y (0) = E[Y ] < 0 and M ′′

Y (0) = E[Y 2] ≥ E2[Y ] > 0 imply

that MY (t) is strictly convex and has minimum at some t = τ > 0, where

ρ = MY (τ ) < 1.

�

�

1

ρ

τ

Observation 2 The minimum τ can possibly be infinity, if Pr[Y > 0] = 0.

�

�

1

Example for Observation 2 Suppose Pr[Y = −1] = Pr[Y = 0] = 1/2. Then

Pr[Y > 0] = 0, MY (t) = (e−t + 1)/2, τ = ∞, and ρ = Pr[Y = 0] = 1/2.
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• Billingsley’s book assumes that Pr[Y > 0] > 0. Indeed, Pr[Y > 0] > 0

implies MY (t) → ∞ as t → ∞, which in turns implies τ < ∞, which is

actually what desires by the subsequent derivations.

• Notably, τ = ∞ implies Pr[Y > 0] = 0. So Pr[Y ≥ 0] = Pr[Y = 0], a trivial

case of little interest!

• In addition, under τ < ∞ and −∞ < E[Y ] < 0 (and implicitly, τ > 0),

ρ = MY (τ ) > 0 because if MY (τ ) = E[eτY ] = 0, then Pr[eτY = 0] = 1, which

implies Pr[Y = −∞] = 1, a contradiction to E[Y ] > −∞.

• Billingsley’s book did not assume that E[Y ] > −∞. But this case is actually

implicitly included (by assuming simple random variable) in the proof.

Example Pr[Y = −n] = 3/(π2n2) for n ≥ 1, and Pr[Y = 0] = Pr[Y = 1] = 1/4.

Then E[Y ] = −∞ and MY (t) =
3

π2

∞∑
k=1

e−kt

k2
+

1 + et

4
=




∞, for t < 0

1, for t = 0

MY (t), for t > 0
Notably, in this example, the moments cannot be determined by taking the deriva-

tives of MY (t).
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• So we have an upper bound inf
t∈�

MY (t) = MY (τ ) on Pr[Y ≥ 0] under the

condition that all moments exist and the moments can be obtained by taking

the successive derivative of the moment generating function.

• Is the upper bound tight? How to obtain a lower bound to Pr[Y ≥ 0]?

Answer: The bound is tight exponentially. This can be validated by providing

a lower bound to Pr[Y ≥ 0] in terms of the twisting distribution technique.
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Definition (Twisted distribution) The twisted distribution of PY (y) with

twisted parameter t is defined as:

dPY (t)(y) =
etydPY (y)∫
Y
ety

′
dPY (y

′)
=

etydPY (y)

MY (t)
.

• For discrete random variable, the above equation can be rewritten as:

Pr[Y (t) = y] =
ety Pr[Y = y]∑

y′∈Y
ety

′
Pr[Y = y′]

=
ety Pr[Y = y]

MY (t)
.
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Answer: To facilitate a probability estimation.

• In principle,

Pr[Y ≥ 0] =

∫ ∞

0

dPY (y) =

∫ ∞

0

MY (t)e
−tydPY (t)(y) = MY (t)

∫ ∞

0

e−tydPY (t)(y).

• Suppose Pr[Y ≥ 0] is very, very small (so it is uneasy to make an accurate

estimate of it). Then choose t such that MY (t) � 1 immediately gives that(∫ ∞

0

e−tydPY (t)(y)

)
� Pr[Y ≥ 0].

• Conceptually, measuring a big quantity (e.g., 0.32113 or
(∫∞

0 e−tydPY (t)(y)
)
)

is easier than measuring an infinitely small quantity (e.g., 0.0 . . . 032113 or

Pr[Y ≥ 0]).

• Such a “reversible probability amplifying technique” by moment generating

function helps us to make a better estimate on the perhaps very small Pr[Y ≥
0]. (Note: The technique has to be “reversible”; otherwise, we still know little

about Pr[Y ≥ 0].)

• Question: How to enlarge
(∫∞

0 e−tydPY (t)(y)
)
to the extreme? Take t = τ

that gives the smallest MY (t).
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• By convention, denote by Y (t) the random variable having PY (t)(·) as its dis-
tribution.

• The moment generating function of Y (t) is:

MY (t)(s) = E
[
esY

(t)
]

=

∫
Y
esydPY (t)(y)

=

∫
Y
esy

ety

MY (t)
dPY (y)

=
MY (s + t)

MY (t)
.

• The moments of Y (t) become:

E

[(
Y (t)

)k]
=

dkMY (t)(s)

dsk

∣∣∣∣
s=0

=
M

(k)
Y (s + t)

MY (t)

∣∣∣∣∣
s=0

=
M

(k)
Y (t)

MY (t)
.

So E
[
Y (τ)

]
=

M ′
Y (τ )

MY (τ )
= 0. In other words, τ—the largest amplifier—has

twisted themean to the concerned margin, i.e., zero. This enlarges the “desire-

to-estimate probability” to the extreme.
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Now we have an upper bound:

Pr[Y ≥ 0] = MY (τ )

∫ ∞

0

e−τydPY (τ)(y)

≤ MY (τ )

∫ ∞

0

dPY (τ)(y) (since τ > 0 )

= MY (τ ) · Pr
[
Y (τ) ≥ 0

]
≤ MY (τ ).

Is the upper bound close to the true probability? In other words, is the upper

bound an overestimate of the true probability?

A straightforward approach to substantiate the tightness of an upper bound is to

find a lower bound that is close to the upper bound.

The twisting distribution is especially useful in finding a lower bound.
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Let dPW (y) =
dPY (τ)(y)

Pr
[
Y (τ) ≥ 0

] be a distribution with support {y ∈ � : y ≥ 0}, and
denote its associated random variable by W .

From Slide 9-20, Pr[Y (τ) ≥ 0] ≥ Pr[Y ≥ 0]/MY (τ ). As 0 < MY (τ ) < 1, we must

have Pr[Y (τ) ≥ 0] > 0 because if it were not true, Pr[Y ≥ 0] = 0 leads to τ = ∞.

In fact, Pr[Y ≥ 0] = 0 already gives us what we demand to derive, i.e., the

probability of Pr[Y ≥ 0]! So the subsequent derivation is unnecessary for such a

trivial case.

Pr[Y ≥ 0] = MY (τ )

∫ ∞

0

e−τydPY (τ)(y)

= MY (τ ) · Pr
[
Y (τ) ≥ 0

] ∫ ∞

0

e−τy dPY (τ)(y)

Pr
[
Y (τ) ≥ 0

]
= MY (τ ) · Pr

[
Y (τ) ≥ 0

] ∫ ∞

0

e−τwdPW (w)

= MY (τ ) · Pr
[
Y (τ) ≥ 0

]
E[e−τW ].

(Jensen’s Inequality) For a convex function ϕ(·), ϕ(E[X ]) ≤ E[ϕ(X)].

By Jensen’s inequality with ϕ(x) = e−τx,

e−τE[W ] = ϕ(E[W ]) ≤ E[ϕ(W )] = E
[
e−τW

]
.
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This gives that:

Pr[Y ≥ 0] ≥ MY (τ ) · Pr
[
Y (τ) ≥ 0

]
e−τE[W ].

Observe that

E[W ] =

∫ ∞

0

w dPW (w)

=

∫ ∞

0

y
dPY (τ)(y)

Pr
[
Y (τ) ≥ 0

]
≤ 1

Pr
[
Y (τ) ≥ 0

] ∫ ∞

−∞
|y| dPY (τ)(y)

=
1

Pr
[
Y (τ) ≥ 0

]E [∣∣∣Y (τ)
∣∣∣]

≤ 1

Pr
[
Y (τ) ≥ 0

]E1/2

[(
Y (τ)

)2]
(by Lyapounov’s ineq.)

We can then conclude that if −∞ < E[Y ] < 0 and τ < ∞, then

MY (τ ) ≥ Pr[Y ≥ 0] ≥ MY (τ ) · Pr
[
Y (τ) ≥ 0

]
exp

{
− τ

Pr
[
Y (τ) ≥ 0

]E1/2

[(
Y (τ)

)2]}
.
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To replace Pr[Y (τ) ≥ 0] in the previous inequality by moments of Y (τ), we need a

lower bound to it.

Theorem 9.2 If E[U ] = 0 and E[U2] > 0, then

Pr[U ≥ 0] ≥ E2[U2]

4E[U4]
.

(Schwarz’s inequality) E[|XY |] ≤ E1/2[X2]E1/2[Y 2]

(Hölder’s inequality) E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q] for p > 1, q > 1 and

1/p + 1/q = 1

Proof:

• Let U+ = U · I[U≥0] and U− = −U · I[U<0], where I[·] is an indicator random

variable that equals 1 when the event is true, and 0 when the event is false.

By their definitions, U+ and U− are both non-negative.

• Then by Schwarz’s inequality,

E
[
(U+)2

]
= E

[
U2 · I[U≥0]

] ≤ E1/2
[
U4
]
E1/2

[
I2[U≥0]

]
= E1/2

[
U4
]
E1/2

[
I[U≥0]

]
,
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and by Hölder’s inequality,

E
[
(U−)2

]
= E

[∣∣U−∣∣2/3 ∣∣U−∣∣4/3]
≤ E1/(3/2)

[(∣∣U−∣∣2/3)3/2] E1/3

[(∣∣U−∣∣4/3)3]
= E2/3

[∣∣U−∣∣] E1/3
[∣∣U−∣∣4]

≤ E2/3
[
U−] E1/3

[
U4
]
.

Also by Hölder’s inequality, together with E[U ] = 0 and U = U+ − U−,

E[U−] = E[U+]

= E[U · I[U≥0]]

= E[|U · I[U≥0]|]
≤ E1/4[U4]E3/4[I

4/3
[U≥0]]

= E1/4[U4]E3/4[I[U≥0]].
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Hence,

E[U2] = E[(U+)2] + E[(U−)2]
≤ E1/2

[
U4
]
E1/2

[
I[U≥0]

]
+ E2/3

[
U−] E1/3

[
U4
]

≤ E1/2
[
U4
]
E1/2

[
I[U≥0]

]
+
(
E1/4[U4]E3/4[I[U≥0]]

)2/3
E1/3

[
U4
]

= E1/2
[
U4
]
E1/2

[
I[U≥0]

]
+ E1/2

[
U4
]
E1/2

[
I[U≥0]

]
= 2E1/2

[
U4
]
E1/2

[
I[U≥0]

]
= 2E1/2

[
U4
]
(Pr[U ≥ 0])1/2 ,

which immediately validates the theorem. �
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E[(Y (τ))2] > 0 ⇒ Pr[Y (τ) ≥ 0] ≥ E2[(Y (τ))2]

4E[(Y (τ))4]

E[(Y (τ))2] = 0 ⇒ Pr[Y (τ) = 0] = 1 ⇒ Pr[Y = 0] = 1 because Y (τ) has

the same support as Y ⇒ E[Y ] = 0, a contradiction to the assumption that

−∞ < E[Y ] < 0.

⇒ MY (τ ) ≥ Pr[Y ≥ 0] ≥ MY (τ ) · Pr
[
Y (τ) ≥ 0

]
exp

{
− τ

Pr
[
Y (τ) ≥ 0

]E2[(Y (τ))2]

}

≥ MY (τ ) · E
2[(Y (τ))2]

4E[(Y (τ))4]
exp



− τ

E2[(Y (τ))2]

4E[(Y (τ))4]

E1/2[(Y (τ))2]




= MY (τ ) · E
2[(Y (τ))2]

4E[(Y (τ))4]
exp

{
−4τE[(Y (τ))4]

E3/2[(Y (τ))2]

}

where {
E[(Y (τ))2] = C ′′

Y (τ)(0) = C ′′
Y (τ )

E[(Y (τ))4] = C
(4)

Y (τ)(0) + 3E2[(Y (τ))2] = C
(4)
Y (τ ) + 3 (C ′′

Y (τ ))
2
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• Recall that what we concern is:

Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]

= Pr

[
1

n
(X1 +X2 + · · · +Xn)−m ≥ ε

]

+Pr

[
1

n
(X1 +X2 + · · · +Xn)−m ≤ −ε

]

= Pr
[
(X1 −m− ε) + (X2 −m− ε) + · · · + (Xn −m− ε) ≥ 0

]
+Pr

[
(m−X1 − ε) + (m−X2 − ε) + · · · + (m−Xn − ε) ≥ 0

]
= Pr[Y ≥ 0] + Pr[Ŷ ≥ 0],

where

Y = (X1 −m− ε) + (X2 −m− ε) + · · · + (Xn −m− ε)

and

Ŷ = (m−X1 − ε) + (m−X2 − ε) + · · · + (m−Xn − ε).

• Assume {Xi}ni=1 are i.i.d.
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MY (τ ) ≥ Pr[Y ≥ 0] ≥ MY (τ ) · E
2[(Y (τ))2]

4E[(Y (τ))4]
exp

{
−4τE[(Y (τ))4]

E3/2[(Y (τ))2]

}
.

• −∞ < E[Y ] = n(E[X ]−m− ε) = −nε < 0.

• MY (t) =

n∏
i=1

M(Xi−m−ε)(t) = Mn
(X−m−ε)(t)

⇒ M ′
Y (t) = nM ′

(X−m−ε)(t)M
n−1
(X−m−ε)(t)

⇒ τ satisfies M ′
(X−m−ε)(τ ) = 0, which is assumed finite.

Or equivalently, we can say τ satisfies C ′
(X−m−ε)(τ ) = 0.

Notably, τ is independent of n.

• Let ρ = M(X−m−ε)(τ ). Since ρ is the minimizer for M(X−m−ε)(t) that has

negative mean −ε and τ < ∞, we have 0 < ρ < 1.

• We then obtain:

ρn ≥ Pr[Y ≥ 0]
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MY (τ ) ≥ Pr[Y ≥ 0] ≥ MY (τ ) · E
2[(Y (τ))2]

4E[(Y (τ))4]
exp

{
−4τE[(Y (τ))4]

E3/2[(Y (τ))2]

}
.

• MY (t) = Mn
(X−m−ε)(t)

⇒ MY (τ )= Mn
(X−m−ε)(τ ) =ρ

n

• CY (t) = nC(X−m−ε)(t) = n[CX(t)− (m + ε)t]

• E[(Y (τ))2] = C ′′
Y (τ)(0) = C ′′

Y (τ ) = nC ′′
X(τ ) = nλ2,

where λ2 = C ′′
X(τ ).

• E[(Y (τ))4] = C
(4)

Y (τ)(0) + 3E2[(Y (τ))2] = C
(4)
Y (τ ) + 3n2λ2

2

= nC
(4)
X (τ ) + 3n2λ2

2 = nλ4 + 3n2λ2
2,

where λ4 = C
(4)
X (τ ).

• ⇒ E2[(Y (τ))2]

4E[(Y (τ))4]
=

E2[(Y (τ))2]/n2

4E[(Y (τ))4]/n2
=

λ2
2

4(λ4/n + 3λ2
2)

=
1

12 + 4λ4/(λ2
2n)
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• 4τE[(Y (τ))4]

E3/2[(Y (τ))2]
=

4τ [nλ4 + 3n2λ2
2]

n3/2λ
3/2
2

= 4τλ
1/2
2

[
3 + λ4/(λ

2
2n)
]√

n

Pr[Y ≥ 0] ≥ MY (τ ) · E
2[(Y (τ))2]

4E[(Y (τ))4]
exp

{
−4τE[(Y (τ))4]

E3/2[(Y (τ))2]

}

= ρn · 1

12 + 4λ4/(λ2
2n)

exp
{
−4τλ

1/2
2

[
3 + λ4/(λ

2
2n)
]√

n
}

• As proved in Slide 9-26, λ2 = E[(Y (τ))2]/n > 0.

• nλ4 + 3n2λ2
2 = E[(Y (τ))4] ≥ E2[(Y (τ))2] = n2λ2

2 implies λ4 ≥ −2nλ2
2. How-

ever, λ4 is not necessarily positive.
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This concludes:

ρn ≥ Pr[Y ≥ 0] ≥ ρn · 1

12 + 4λ4/(λ2
2n)

exp
{
−4τλ

1/2
2

[
3 + λ4/(λ

2
2n)
]√

n
}
,

where


τ is the unique, positive, finite solution to C ′
X(τ ) = (m + ε), independent of n

log ρ = CX(τ )− (m + ε)τ

λ2 = C ′′
X(τ )

λ4 = C
(4)
X (τ )

Both the upper and lower bounds can be improved up to C√
n
ρn (See J. A. Fill

and M. J. Wichura, “The convergence rate for the strong law of large numbers:

General lattice distributions,” Probab. Th. Rel. Fields, 81:189-212, 1989). But the

current bounds are sufficient for our present goal.

How about Pr[Ŷ ≥ 0]? The same technique can be applied.
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MŶ (τ̂ ) ≥ Pr[Ŷ ≥ 0] ≥ MŶ (τ̂ ) ·
E2[(Ŷ (τ̂ ))2]

4E[(Ŷ (τ̂))4]
exp

{
−4τ̂E[(Ŷ (τ̂))4]

E3/2[(Ŷ (τ̂))2]

}
.

• −∞ < E[Ŷ ] = n(m− E[X ]− ε) = −nε < 0.

• MŶ (t) =

n∏
i=1

M(m−Xi−ε)(t) = Mn
(m−X−ε)(t)

⇒ M ′
Ŷ
(t) = nM ′

(m−X−ε)(t)M
n−1
(m−X−ε)(t)

⇒ τ̂ satisfies M ′
(m−X−ε)(τ̂ ) = 0, which is assumed finite.

Or equivalently, we can say τ̂ satisfies C ′
(m−X−ε)(τ̂ ) = 0.

Notably, τ̂ is independent of n.

• Let ρ̂ = M(m−X−ε)(τ̂ ). Since ρ̂ is the minimizer for M(m−X−ε)(t) that has

negative mean −ε and τ̂ < ∞, 0 < ρ̂ < 1.

• We then obtain:

ρ̂n ≥ Pr[Ŷ ≥ 0]
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MŶ (τ̂ ) ≥ Pr[Ŷ ≥ 0] ≥ MŶ (τ̂ ) ·
E2[(Ŷ (τ̂ ))2]

4E[(Ŷ (τ̂))4]
exp

{
−4τ̂E[(Ŷ (τ̂))4]

E3/2[(Ŷ (τ̂))2]

}
.

• MŶ (t) = Mn
(m−X−ε)(t)

⇒ MŶ (τ̂ )= Mn
(m−X−ε)(τ̂ ) =ρ̂

n

• CŶ (t) = nC(m−X−ε)(t) = n[CX(−t) + (m− ε)t]

• E[(Ŷ (τ̂))2] = C ′′
Ŷ (τ̂ )(0) = C ′′

Ŷ
(τ̂ ) = nC ′′

X(−τ̂) = nλ̂2,

where λ̂2 = C ′′
X(−τ̂ ).

• E[(Ŷ (τ̂))4] = C
(4)

Ŷ (τ̂ )(0) + 3E2[(Ŷ (τ̂ ))2] = C
(4)

Ŷ
(τ̂ ) + 3n2λ̂2

2

= nC
(4)
X (−τ̂) + 3n2λ̂2

2 = nλ̂4 + 3n2λ̂2
2,

where λ̂4 = C
(4)
X (−τ̂).

• ⇒ E2[(Ŷ (τ̂))2]

4E[(Ŷ (τ̂ ))4]
=

E2[(Ŷ (τ̂ ))2]/n2

4E[(Ŷ (τ̂))4]/n2
=

1

12 + 4λ̂4/(λ̂2
2n)
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• 4τ̂E[(Ŷ (τ̂))4]

E3/2[(Ŷ (τ̂ ))2]
=

4τ̂ [nλ̂4 + 3n2λ̂2
2]

n3/2λ̂
3/2
2

= 4τ̂ λ̂
1/2
2

[
3 + λ̂4/(λ̂

2
2n)
]√

n

Pr[Ŷ ≥ 0] ≥ MŶ (τ̂ ) ·
E2[(Ŷ (τ̂ ))2]

4E[(Ŷ (τ̂))4]
exp

{
−4τ̂E[(Ŷ (τ̂))4]

E3/2[(Ŷ (τ̂))2]

}

= ρ̂n · 1

12 + 4λ̂4/(λ̂2
2n)

exp
{
−4τ̂ λ̂

1/2
2

[
3 + λ̂4/(λ̂

2
2n)
]√

n
}

• As proved in Slide 9-26, λ̂2 = E[(Ŷ (τ̂ ))2]/n > 0.

• nλ̂4 + 3n2λ̂2
2 = E[(Ŷ (τ̂ ))4] ≥ E2[(Ŷ (τ̂))2] = n2λ̂2

2 implies λ̂4 ≥ −2nλ̂2
2. How-

ever, λ̂4 is not necessarily positive.



Chernoff’s Theorem 9-35

This concludes to:

ρ̂n ≥ Pr[Ŷ ≥ 0] ≥ ρ̂n · 1

12 + 4λ̂4/(λ̂2
2n)

exp
{
−4τ̂ λ̂

1/2
2

[
3 + λ̂4/(λ̂

2
2n)
]√

n
}
,

where


τ̂ is the unique, positive, finite solution to C ′
X(−τ̂) = (m− ε), independent of n

log ρ̂ = CX(−τ̂) + (m− ε)τ̂

λ̂2 = C ′′
X(−τ̂)

λ̂4 = C
(4)
X (−τ̂)

Both the upper and lower bounds can be improved up to C√
n
ρn (See J. A. Fill

and M. J. Wichura, “The convergence rate for the strong law of large numbers:

General lattice distributions,” Probab. Th. Rel. Fields, 81:189-212, 1989). But the

current bounds are sufficient for our present goal.
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To summarize,

ρn + ρ̂n ≥ Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]

≥ ρn · 1

12 + 4λ4/(λ2
2n)

e−4τ[3+λ4/(λ
2
2n)]

√
λ2n + ρ̂n · 1

12 + 4λ̂4/(λ̂2
2n)

e−4τ̂ [3+λ̂4/(λ̂
2
2n)]

√
λ̂2n

where


ρ = inf
t∈�

M(X−m−ε)(t) = inf
t∈�

e−tεe−tmMX(t)

= exp

{
− sup

t∈�
[t(m + ε)− CX(t)]

}
= exp {−IX(m + ε)}

ρ̂ = inf
t∈�

M(m−X−ε)(t) = inf
t∈�

e−tεetmMX(−t) (Set s = −t)

= inf
s∈�

esεe−smMX(s) = exp

{
− sup

s∈�
[s(m− ε)− CX(s)]

}
= exp {−IX(m− ε)}

where IX(x) = sup
t∈�

[tx− CX(t)] is the large deviation rate function.
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Observation How fast

Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ > ε

]

converges to zero, if X1, X2, . . ., Xn are i.i.d.?

Answer Exactly exponentially fast (we have both upper and lower bounds). And

the exponential rate can be determined by the large deviation rate function of the

marginal X .
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Suppose we wish to estimate the variance σ2 of a zero-mean Gaussian noise by

successive observations N1, N2, . . ., Nn. Then

Pr

{∣∣∣∣N2
1 +N2

2 + · · · +N2
n

n
− σ2

∣∣∣∣ > ε

}
≤ ρn + ρ̂n,

where ρ = exp
{−IN2(σ2 + ε)

}
and ρ̂ = exp

{−IN2(σ2 − ε)
}
.

MN2(t) = E[etN
2
] =

∫ ∞

−∞
etu

2 1√
2πσ2

e−u2/(2σ2)du =




1√
1− 2σ2t

, if t < 1/(2σ2);

∞, otherwise.

⇒ CN2(t) =

{
−1

2
log(1− 2σ2t), if t < 1/(2σ2);

∞, otherwise.

⇒ IN2(x) = sup
t∈�

[tx− CN2(t)] = sup
t<1/(2σ2)

[
tx +

1

2
log(1− 2σ2t)

]

=




∞, if x ≤ 0;(
1

2σ2
− 1

2x

)
x +

1

2
log

(
1− 2σ2

(
1

2σ2
− 1

2x

))
, if x > 0

=

{∞, if x ≤ 0;
1

2

( x

σ2
− 1
)
− 1

2
log
( x

σ2

)
, if x > 0
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Hence, if ε = 0.01σ2, then


− log(ρ) = IN2(σ2 + ε) =
1

2
(0.01)− 1

2
log(1 + 0.01) = 2.48346× 10−5

− log(ρ̂) = IN2(σ2 − ε) = −1

2
(0.01)− 1

2
log(1− 0.01) = 2.51679× 10−5

So, if we desire that

Pr

{∣∣∣∣N2
1 +N2

2 + · · · +N2
n

n
− σ2

∣∣∣∣ > 0.01σ2

}
≤ ρn + ρ̂n ≤ 10−5 + 10−5,

it is safer to have the sample number satisfying:

n ≥ max

{
log(10−5)

log(ρ)
,
log(10−5)

log(ρ̂)

}
= max{463583, 457444} = 463583.

�

Observations

• When the required degree of accuracy is higher (i.e., ε smaller), more samples

are needed!

• The above required sample number has nothing to do with σ2.
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CN2(t) =

{
−1

2
log(1− 2σ2t), if t < 1/(2σ2);

∞, otherwise

⇒ τ =
ε

2σ2(σ2 + ε)
and ρ =

1

σ
(σ2 + ε)1/2e−ε/(2σ2)

⇒ λ2 = C ′′
N2(τ ) = 2(σ2 + ε)2

⇒ λ4 = C
(4)

N2(τ ) = 48(σ2 + ε)4

⇒ τ̂ =
ε

2σ2(σ2 − ε)
and ρ̂ =

1

σ
(σ2 − ε)1/2eε/(2σ

2)

⇒ λ̂2 = C ′′
N2(−τ̂) = 2(σ2 − ε)2

⇒ λ̂4 = C
(4)

N2(−τ̂) = 48(σ2 − ε)4

⇒ λ4/λ
2
2 = λ̂4/λ̂

2
2 = 12 and τλ

1/2
2 = τ̂ λ̂

1/2
2 = ε/(

√
2σ2)

Pr

{∣∣∣∣N2
1 +N2

2 + · · · +N2
n

n
− σ2

∣∣∣∣ > 0.01σ2

}
≥ (ρn + ρ̂n)

e−0.06(1+4/n)
√
2n

12(1 + 4/n)

= 6.64514× 10−27 (ρn + ρ̂n) for n = 463853 and ε = 0.01σ2.
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Suppose we wish to estimate the head-appearing probability of a coin flip by suc-

cessive trials X1, X2, . . ., Xn, where Xi = 1 represents a head appearance. Then

Pr

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ > ε

}
≤ ρn + ρ̂n,

where ρ = exp {−IX(p + ε)} and ρ̂ = exp {−IX(p− ε)}.
MX(t) = E[etX ] =

∫ ∞

−∞
etxdPX(x) = etp + 1− p

⇒ CX(t) = log(etp + 1− p)

⇒ IX(x) = sup
t∈�

[tx− CX(t)] = sup
t∈�

[
tx− log(etp + 1− p)

]

=




x log

(
x

p

)
+ (1− x) log

(
1− x

1− p

)
, if 0 < x < 1;

− log(p), if x = 1;

− log(1− p), if x = 0;

∞, otherwise

Hence, if p = 0.1 and ε = 0.01p = 10−3, then


− log(ρ) = IX(p + ε) = 0.101 log
0.101

0.1
+ 0.899 log

0.899

0.9
= 5.53918× 10−6

− log(ρ̂) = IX(p− ε) = 0.099 log
0.099

0.1
+ 0.901 log

0.901

0.9
= 5.5721× 10−6
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So, if we desire that

Pr

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ > 0.01p

}
≤ ρn + ρ̂n ≤ 10−5 + 10−5,

it is safer to have the sample number satisfying:

n ≥ max

{
log(10−5)

log(ρ)
,
log(10−5)

log(ρ̂)

}
= max{2.07845×106, 2.06617×106} = 2078450.

�

Observation

• When p = 0.5 and ε = 0.005, − log(ρ) = − log(ρ̂) = 5.00008× 10−5. Hence,

the required number of samples becomes 230255. Accordingly, it is easier to

“ensure” a fair coin than a biased coin.

• From the two examples, you shall learn that what the law of large numbers

concern is really a large number.
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CX(t) = log(etp + 1− p)

⇒ τ = log
(1− p)(p+ ε)

p(1− p− ε)
and ρ =

(
1− p

1− p− ε

)1−p−ε(
p

p + ε

)p+ε

⇒ λ2 = C ′′
X(τ ) = (p + ε)(1− p− ε)

⇒ λ4 = C
(4)
X (τ ) = (p + ε)(1− p− ε)[1− 6(p + ε) + 6(p + ε)2]

⇒ τ̂ = log
p(1− p + ε)

(1− p)(p− ε)
and ρ̂ =

(
1− p

1− p + ε

)1−p+ε(
p

p− ε

)p−ε

⇒ λ̂2 = C ′′
X(−τ̂ ) = (p− ε)(1− p + ε)

⇒ λ̂4 = C
(4)
X (−τ̂ ) = (p− ε)(1− p + ε)[1− 6(p− ε) + 6(p− ε)2]

Pr

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ > 0.01p

}
≥ (7.52188× 10−27)ρn + (7.5219× 10−27)ρ̂n

for n = 2078450, p = 0.1, ε = 0.01p, τ = 0.0110621, λ2 = 0.090799, λ4 = 0.0413322

τ̂ = 0.0111608, λ̂2 = 0.089199, λ̂4 = 0.0414602
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Pr

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ > 0.01p

}
≥ (8.20011× 10−27)ρn + (8.20011× 10−27)ρ̂n

for n = 230255, p = 0.5, ε = 0.01p, τ = 0.0200007, λ2 = 0.249975, λ4 = −0.12495

τ̂ = 0.0200007, λ̂2 = 0.249975, λ̂4 = −0.12495
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Theorem If

∞∑
n=1

Pr

[ ∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]
< ∞ for any ε > 0

arbitrarily small, then the strong law holds.

Theorem If {Xj}∞j=1 are i.i.d., and all moments ofXi exist and can be determined

by taking the derivatives of the moment generating function, then

∞∑
n=1

Pr

[ ∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]
≤

∞∑
n=1

(ρn + ρ̂n) < ∞

for any ε > 0 arbitrarily small; hence, the strong law holds.

Proof: Choose 0 < τ < ∞ such that M(X−m−ε))(τ ) < 1 and choose 0 < τ̂ < ∞
such that M(m−X−ε)(τ̂ ) < 1. (Note that τ and τ̂ need not to be the minimizers.)

Pr[(X1 −m− ε) + · · · + (Xn −m− ε) ≥ 0] = Pr
[
eτ [(X1−m−ε)+···+(Xn−m−ε)] ≥ 1

]
≤ En[eτ(X−m−ε)] (by Markov’s inequality)

= Mn
(X−m−ε)(τ ),
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and

Pr[(m−X1 − ε) + · · · + (m−Xn − ε) ≥ 0] = Pr
[
eτ [(m−X1−ε)+···+(m−Xn−ε)] ≥ 1

]
≤ En[eτ(m−X−ε)] (by Markov’s inequality)

= Mn
(m−X−ε)(τ ).

�

Note that the validity of the upper bound only requires the assumption of “mean

being negative.”
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Theorem 9.3 (Chernoff’s Theorem) Let X1, X2, . . . be independent and iden-

tically distributed random variables satisfying E[Xn] < 0 (and E[Xn] > −∞),

P [Xn > 0] > 0 (or inf
t∈�

MX(t) = MX(τ ) for some finite τ ) and all moments of X

exists and can be determined by taking the derivative of its moment generating func-

tion. Then

lim
n→∞−1

n
log Pr

[
X1 +X2 + · · · +Xn

n
> 0

]
= − inf

t∈�
logMX(t) = − inf

t∈�
CX(t) = IX(0),

where IX(x) = sup
t∈�

[tx− CX(t)].

Theorem (Cramér’s Theorem) Let X1, X2, . . . be independent and identically

distributed random variables satisfying MX(t) < ∞ for all t. Then

inf
x≥a

IX(x) ≤ lim inf
n→∞ −1

n
log Pr

[
X1 +X2 + · · · +Xn

n
> a

]

≤ lim sup
n→∞

−1

n
log Pr

[
X1 +X2 + · · · +Xn

n
> a

]
≤ inf

x>a
IX(x)
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• The previous discussion introduces the rate of convergence for Pr[X1 + X2 +

· · · +Xn > 0] for i.i.d. {Xj}nj=1 and −∞ < E[Xj] < 0.

• We are thus confident that 1
n(X1+· · ·+Xn) converges to its mean exponentially

fast (in the sense that the probability of 1
n
(X1 + · · · +Xn) deviating from its

mean decreases to zero exponentially fast).

• The above result is obtained by twisting the original distribution with a spe-

cially chosen factor τ , resulting a larger Pr[Y (τ) > 0] with E[Y (τ)] = 0.

Notably, if Y = X1 +X2 + · · · +Xn, then Y (τ) = X
(τ)
1 +X

(τ)
2 + · · · +X

(τ)
n ,

and {X (τ)
i }ni=1 are also i.i.d.

Claim: (i) {Xj}2j=1 i.i.d. (ii) Define a random variable Y = X1 +X2. (iii) Define

new i.i.d. variables {Zj}2j=1, where Zj has distribution PX(τ). (iv) Define a new

random variable W = Z1 + Z2.

Then, Y (τ) and W have exactly the same distribution. I.e., to compute Pr[Y (τ) ∈
A] for any measurable set A can be implemented by Pr[X

(τ)
1 +X

(τ)
2 ∈ A].
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Proof:

Pr[Y (τ) ≤ b] =

∫ b

−∞
dPY (τ)(y) =

∫ b

−∞

eτy

MY (τ )
dPY (y) =

1

M 2
X(τ )

∫ b

−∞
eτydPY (y)

Pr[W ≤ b] =

∫ ∞

−∞

∫ b−x1

−∞
dPX(τ)(x2)dPX(τ)(x1)

=

∫ ∞

−∞

∫ b−x1

−∞

eτx2

MX(τ )
dPX(x2)

eτx1

MX(τ )
dPX(x1)

=
1

M 2
X(τ )

∫ ∞

−∞

∫ b−x1

−∞
eτ(x1+x2)dPX(x2)dPX(x1)

The equality of the above two terms can then be proved by noting that for a

function f(·),∫ b

−∞
f(y)dPY (y) =

∫ ∞

−∞

∫ b−x1

−∞
f(x1 + x2)dPX(x2)dPX(x1).

�

• We then provide a lower bound to Pr[Y (τ) > 0] = Pr[X
(τ)
1 +X

(τ)
2 +· · ·+X

(τ)
n >

0], where E[X
(τ)
j ] = 0 for 1 ≤ j ≤ n. See Slide 9-29.
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• Question: Can we say more about X
(τ)
1 +X

(τ)
2 + · · ·+X

(τ)
n with {X (τ)

j }nj=1

i.i.d. and E[X
(τ)
j ] = 0?
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If {Xj}∞j=0 are i.i.d. with zero mean and finite variance σ2 (and implicitly all mo-

ments of X exist and can be determined by taking the derivatives of the moment

generating function), then

1. Pr

[
lim
n→∞

X1 +X2 + · · · +Xn

n
= 0

]
= 1 (Strong law of large numbers)

2. Pr

[
lim sup
n→∞

X1 +X2 + · · · +Xn

σ
√

2n log log(n)
= 1

]
= 1 (Law of iterated logarithm)

3. lim
n→∞Pr

[
X1 +X2 + · · · +Xn

σ
√
n

≤ y

]
= Φ(y) (Central limit theorem)

where Φ(·) is the cdf of the zero-mean unit-variance Gaussian distribution.

ImplicationThe law of the iterated logarithm tells us that sum of all i.i.d. samples,

normalized by σ
√
2n log log(n), always approaches 1 infinitely often, regardless of

the marginal distribution!
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• lim sup
n→∞

an = a if, and only if, (∀ ε > 0)(∃ N)(∀ n > N) an − a < ε and

(∀ ε > 0)(∀ N)(∃ n > N) an − a > −ε.

Recall lim
n→∞ an = a if, and only if, (∀ ε > 0)(∃ N)(∀ n > N) an − a < ε and

(∀ ε > 0)(∃ N)(∀ n > N) an − a > −ε.

• Indeed, lim sup
n→∞

an = lim
n→∞ sup{an, an+1, an+2, . . .} = lim

n→∞ sup
k≥n

ak.

Hence, to prove

Pr

[
lim sup
n→∞

X1 +X2 + · · · +Xn

σ
√
2n log log(n)

= 1

]
= 1

it suffices to prove that for every positive ε, (where ε is understood as “countable”

in its range),

P

({
x ∈ �∞ : (∃ N)(∀ n > N)

x1 + x2 + · · · + xn

σ
√
2n log log(n)

− 1 < ε

})
= 1

and

P

({
x ∈ �∞ : (∀ N)(∃ n > N)

x1 + x2 + · · · + xn

σ
√
2n log log(n)

− 1 > −ε

})
= 1.
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Equivalently,

P

( ∞⋃
N=1

∞⋂
n=N

{
x ∈ �∞ :

x1 + x2 + · · · + xn

σ
√

2n log log(n)
− 1 < ε

})
= 1

and

P

( ∞⋂
N=1

∞⋃
n=N

{
x ∈ �∞ :

x1 + x2 + · · · + xn

σ
√
2n log log(n)

− 1 > −ε

})
= 1.

Or equivalently, by De Morgan’s law,

P

( ∞⋂
N=1

∞⋃
n=N

{
x ∈ �∞ :

x1 + x2 + · · · + xn

σ
√
2n log log(n)

− 1 ≥ ε

})
= 0

and

P

( ∞⋂
N=1

∞⋃
n=N

{
x ∈ �∞ :

x1 + x2 + · · · + xn

σ
√
2n log log(n)

− 1 > −ε

})
= 1.
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Or equivalently (as written in Billingsley’s book),

Pr
[
X1 +X2 + · · · +Xn ≥ (1 + ε)σ

√
2n log log(n) i.o.

]
= 0

and

Pr
[
X1 +X2 + · · · +Xn > (1− ε)σ

√
2n log log(n) i.o.

]
= 1.

In order to reduce the confusion, I personally prefer to distinguish between the

“event” and the “set”. That is why I put “Pr[event]” and use “P (set)”, where

the event is defined through some random variables, and the probability of a set is

measured by probability measure P . Billingsley’s book sometimes mixes the two

together, which may be confused for beginners.

Assumption Without loss of generality, we assume that the variance σ2 is unity.
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In order to prove the previous two equalities, we need two preliminary theorems.

Theorem 9.4 Let Sn = X1 + X2 + · · · + Xn, where {Xj}∞j=1 are i.i.d. with

zero mean and unit variance (and implicitly all moments of Xj exist and can be

determined by taking the derivative of the moment generating function). Suppose

that the positive constant sequence a1, a2, . . . , an, . . . satisfies

an → ∞ and
an√
n
→ 0.

Then there exists a sequence ζ1, ζ2, . . . with ζn → 0 such that

P
[
Sn ≥ an

√
n
]
= e−a2n(1+ζn)/2.

Recall Sn/
√
n converges in distribution to zero-mean unit-variance Gaussian. So

P
[
Sn ≥ a

√
n
] →

∫ ∞

a

1√
2π

e−s2/2ds

=
1√
2πa

e−a2/2

(
1− 1

a2
+

1 · 3
a4

− 1 · 3 · 5
a6

+ · · ·
)
,

where the last equality holds for a > 0. In this theorem, we divide Sn by a little

larger quantity than
√
n.
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Proof: Observe that:

Pr[Sn ≥ an
√
n] = Pr[X1 +X2 + · · · +Xn ≥ an

√
n]

= Pr[(X1 − an/
√
n) + (X2 − an/

√
n) + · · · + (Xn − an/

√
n) ≥ 0].

Then by letting Y = (X1 − an/
√
n) + (X2 − an/

√
n) + · · ·+ (Xn − an/

√
n) and

noting that {Xj − an/
√
n}nj=1 are i.i.d., we have −∞ < E[Y ] = −an

√
n < 0 and

for all sufficiently large n,

Pr[Y > 0]

≥ Pr[(X1 − an/
√
n > 0) and (X2 − an/

√
n) > 0 and · · · and (Xn − an/

√
n) > 0]

=
(
Pr[X1 − an/

√
n > 0]

)n
> 0 (The strict positivity is proved below.)

We claim that (∃ ε > 0) Pr[X1 > ε] > 0 because if it were not true, i.e., if

(∀ ε > 0) Pr[X1 > ε] = 0, then Pr[X1 ≤ 0] = 1, which together with E[X1] =

0 implies that Pr[X1 = 0] = 1, which violates E[X2
1 ] = 1. Accordingly, as

an/
√
n → 0, there exists N such that for n > N , an/

√
n < ε, and hence, for

n > N , Pr[X1 > an/
√
n] ≥ Pr[X1 > ε] > 0. �

So we can apply the previously derived upper and lower bounds to Pr[Y ≥ 0].
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Definition (o-notation) Suppose that g(x) �= 0 for all x �= a in some open

interval containing a. Then f(x) is little-oh of g(x) or f(x) is of smaller order

than g(x), denoted by

f(x) = o(g(x)) as x → a,

if

lim
x→a

f(x)

g(x)
= 0.

Definition (O-notation) Suppose that g(x) �= 0 for all x �= a in some open

interval containing a. f(x) is big-oh of g(x) or f(x) is of the same order as g(x),

denoted by

f(x) = O(g(x)) as x → a,

if

lim
ε→0

sup
{x∈�:|x−a|<ε}

∣∣∣∣f(x)g(x)

∣∣∣∣ < ∞.



Proof of Law of the Iterated Logarithm 9-58

MY (τn) ≥ Pr[Y ≥ 0] ≥ MY (τn) · E
2[(Y (τn))2]

4E[(Y (τn))4]
exp

{
−4τnE[(Y (τn))4]

E3/2[(Y (τn))2]

}
.

• Upper bound: MY (t) =
n∏

i=1

M(Xi−an/
√
n)(t) = Mn

(X−an/
√
n)(t)

⇒ M ′
Y (t) = nM ′

(X−an/
√
n)
(t)Mn−1

(X−an/
√
n)
(t)

⇒ τn satisfies M ′
(X−an/

√
n)
(τn) = 0.

Equivalently, τn satisfies C ′
(X−an/

√
n)
(τn) = C ′

X(τn)− an/
√
n = 0.

The zero-mean assumption implies that C ′
X(0) = 0. Also, the strictly positive

second moment indicates the strict convexity of CX(t), which in turn implies

the strict increasingness of C ′
X(t) in t. As a result, an/

√
n → 0 as n → ∞

gives that τn → 0 as n → ∞, because C ′
X(τn) = an/

√
n.

By Taylor expansion,

CX(t) = CX(0) + C ′
X(0)t +

C ′′
X(0)

2!
t2 +O(t3) =

1

2
t2 +O(t3) as t → 0,

from which we obtain (by taking the derivative)

C ′
X(τn) = τn +O(τ 2n) = an/

√
n as τn → 0 (or as n → ∞),
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which implies τn = an/
√
n+O(a2n/n) → 0 as n → ∞; hence, τn is eventually

finite.

lim sup
n→∞

|τn − an/
√
n|

τ 2n
< C implies (∃ N)(∀ n > N)|τn − an/

√
n| < Cτ 2n , or

equivalently,

τn − Cτ 2n < an/
√
n < τn + Cτ 2n.

Let N1 be the smallest n satisfying 1 − Cτn > 1/2 for all n > N1. Then for

n > max{N,N1}, a2n/n > τ 2n(1− Cτn)
2, which concludes that

(∀ n > max{N,N1})|τn − an/
√
n|

a2n/n
<

Cτ 2n
τ 2n(1− Cτn)2

=
C

(1− Cτn)2
< 4C.

(It is the reason why the theorem assumes an/
√
n → 0; the theorem does

require τn → 0.)

Notably, τn is dependent on n.
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log ρn = logM(X−an/
√
n)(τn) = C(X−an/

√
n)(τn) = CX(τn)− anτn/

√
n

=

[
1

2
τ 2n +O(τ 3n)

]
− [τn +O(τ 2n)]τn = −1

2
τ 2n +O(τ 3n) as n → ∞.

We then obtain:

ρnn ≥ Pr[Y ≥ 0]

MY (τn) ≥ Pr[Y ≥ 0] ≥ MY (τn) · E
2[(Y (τn))2]

4E[(Y (τn))4]
exp

{
−4τnE[(Y (τn))4]

E3/2[(Y (τn))2]

}
.

• Lower bound:

– MY (t) = Mn
(X−an/

√
n)
(t)

⇒ MY (τn)= Mn
(X−an/

√
n)
(τn) =ρ

n
n

– CY (t) = nC(X−an/
√
n)(t) = n[CX(t)− ant/

√
n]

– E[(Y (τn))2] = C ′′
Y (τn)

(0) = C ′′
Y (τn) = nC ′′

X(τn) = nλ2,n,

where λ2,n = C ′′
X(τn).
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– E[(Y (τn))4] = C
(4)

Y (τn)
(0) + 3E2[(Y (τn))2]

= C
(4)
Y (τn) + 3n2λ2

2,n

= nC
(4)
X (τn) + 3n2λ2

2,n

= nλ4,n + 3n2λ2
2,n,

where λ4,n = C
(4)
X (τn).

– Then

E2[(Y (τn))2]

4E[(Y (τn))4]
=

E2[(Y (τn))2]/n2

4E[(Y (τn))4]/n2
=

λ2
2,n

4
(
3λ2

2,n + λ4,n/n
) = 1

12 + 4λ4,n/(λ2
2,nn)

and

4τnE[(Y (τn))4]

E3/2[(Y (τn))2]
=

4τn[nλ4,n + 3n2λ2
2,n]

n3/2λ
3/2
2,n

= 4τn
[
3 + λ4,n/(λ

2
2,nn)

]√
λ2,nn

Accordingly,

Pr[Y ≥ 0] ≥ ρnn ·
1

12 + 4λ4,n/(λ2
2,nn)

exp
{
−4τn

[
3 + λ4,n/(λ

2
2,nn)

]√
λ2,nn

}
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This concludes to:

ρnn ≥ Pr[Y ≥ 0] ≥ ρnn ·
1

12 + 4λ4,n/(λ2
2,nn)

exp
{
−4τn

[
3 + λ4,n/(λ

2
2,nn)

]√
λ2,nn

}
,

where (as n → ∞ or t → 0 for the O-notation)


CX(t) =
1

2
t2 + O(t3)

(
=

1

2
t2 +

E[X3]

3!
t3 +O(t4) for the computation of C

(4)
X (t)

)

τn =
an√
n
+O

(
a2n
n

) (
or

an√
n
= τn +O(τ 2n)

)

log ρn = −1

2
τ 2n +O(τ 3n) = −a2n

2n
+O

(
a3n
n3/2

)

λ2,n = C ′′
X(τn) = 1 +O(τn) = 1 +O

(
an√
n

)
λ4,n = C

(4)
X (τn) = O(1)

Hence,
λ4,n

λ2
2,n

=
O(1)[

1 +O

(
an√
n

)]2 = O(1) as n → ∞.
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As a result, by letting Pr[Y ≥ 0] = e−a2n(1+ζn)/2, we obtain (as n → ∞ for the

O-notation)

n log ρn ≥ −1

2
a2n(1 + ζn) ≥ n log ρn − log

(
12 + 4

λ4,n

λ2
2,nn

)
− 4τn

(
3 +

λ4,n

λ2
2,nn

)√
λ2,nn

⇔ −a2n
2
+ O

(
a3n
n1/2

)
≥ −1

2
a2n(1 + ζn) ≥ −a2n

2
+O

(
a3n
n1/2

)

− log

(
12 +O

(
1

n

))
− 4

(
an√
n
+ O

(
a2n
n

))[
3 +O

(
1

n

)]√(
1 +O

(
an√
n

))
n

⇔ O

(
an√
n

)
≤ ζn ≤ O

(
an√
n

)

+
2

a2n
log

(
12 + O

(
1

n

))
+ 8

(
1

an
+O

(
1√
n

))[
3 + O

(
1

n

)]√
1 + O

(
an√
n

)

Thus, if an → ∞ and an/
√
n → 0, then ζn → 0. �
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Theorem 9.6 Let Sn = X1+ · · ·+Xn, where {Xi}∞i=1 are i.i.d. with mean 0 and

variance 1 (and all moments of Xi exist, which can be determined by taking the

derivatives of its moment generating function). Also, let Pr[S0 = 0] = 1. Then for

α ≥ √
2,

Pr

[
max{S0, S1, . . . , Sn}√

n
≥ α

]
≤ 2 Pr

[
Sn√
n
≥ α−

√
2

]
.

Proof: Denote Mn = max{S0, S1, . . . , Sn}. Then Mn is non-negative and non-

decreasing in n.

Pr

[
Mn√
n
≥ α

]
= Pr

[(
Mn√
n
≥ α ∧ Mn−1√

n
< α

)

∨
(
Mn√
n
≥ α ∧ Mn−1√

n
≥ α ∧ Mn−2√

n
< α

)
∨ · · ·

∨
(
Mn√
n
≥ α ∧ Mn−1√

n
≥ α ∧ · · · ∧ M1√

n
≥ α ∧ M0√

n
< α

)]

= Pr

[(
Mn√
n
≥ α >

Mn−1√
n

)
∨
(
Mn−1√

n
≥ α >

Mn−2√
n

)
∨ · · · ∨

(
M1√
n
≥ α >

M0√
n

)]

=
n∑

j=1

Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
.
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Using this result, we can further derive:

Pr

[
Mn√
n
≥ α

]
= Pr

[(
Mn√
n
≥ α

)
∧
(
Sn√
n
≥ α−

√
2

)]

+Pr

[(
Mn√
n
≥ α

)
∧
(
Sn√
n
< α−

√
2

)]

= Pr

[(
Mn√
n
≥ α

)
∧
(
Sn√
n
≥ α−

√
2

)]

+
n∑

j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn√
n
< α−

√
2

)]

≤ Pr

[
Sn√
n
≥ α−

√
2

]

+

n∑
j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn√
n
< α−

√
2

)]
.
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Since

(
Mj√
n
≥ α >

Mj−1√
n

)
implies

Sj√
n
≥ α, we have:

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn√
n
< α−

√
2

)]

≤ Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn√
n
<

Sj√
n
−

√
2

)]

= Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sj − Sn√

n
>

√
2

)]

= Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Pr

[
Sj − Sn√

n
>

√
2

]
(Mj and Mj−1 only depend on X1, . . . , Xj; Sj − Sn only depends on Xj+1, . . . , Xn.

So the above two events are independent.)

≤ Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Pr

[|Sj − Sn|√
n

>
√
2

]

≤ Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
Var[Sn − Sj]

2n
(by Chebyshev’s ineq.)

= Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
(n− j)

2n
≤ 1

2
Pr

[
Mj√
n
≥ α >

Mj−1√
n

]
.
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Consequently,

Pr

[
Mn√
n
≥ α

]
≤ Pr

[
Sn√
n
≥ α−

√
2

]

+
n∑

j=1

Pr

[(
Mj√
n
≥ α >

Mj−1√
n

)
∧
(
Sn√
n
< α −

√
2

)]

≤ Pr

[
Sn√
n
≥ α−

√
2

]
+

1

2

n∑
j=1

Pr

[
Mj√
n
≥ α >

Mj−1√
n

]

= Pr

[
Sn√
n
≥ α−

√
2

]
+

1

2
Pr

[
Mn√
n
≥ α

]
.

�
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Theorem 9.5 (Law of the Iterated Logarithm) Let Sn = X1+ · · ·+Xn,

where {Xi}∞i=1 are i.i.d. with mean 0 and variance 1 (and all moments of Xi

exist, which can be determined by taking the derivatives of its moment generating

function). Then

P

[
lim sup
n→∞

Sn√
2n log log(n)

= 1

]
= 1.

Proof: We shall prove the two equations in Slide 9-53.

1. Pr
[
Sn ≥ (1 + ε)

√
2n log log(n) i.o.

]
= 0.

I have modified the proof in Billingsley’s book so that the proof is more

“straightforward” for engineering major students.

Choose a positive θ such that 1 < θ3 < 1 + ε.

Let nk � �θk� > θk − 1, and

for k ≥ logθ(e
e + 1) (i.e., θk − 1 ≥ ee, which implies log log(nk) ≥ 1),

let xk � θ
√
2 log log(nk) (≥ θ

√
2) ≥ √

2.
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Then Theorems 9.4 and 9.6 give that for k ≥ logθ(e
e+1) and for some ζk → 0,

Pr

[
Mnk√
nk

≥ xk

]
≤ 2 Pr

[
Snk√
nk

≥ xk −
√
2

]
(Theorem 9.6)

= 2 exp

{
−1

2
(xk −

√
2)2(1 + ζk)

}
(Theorem 9.4)

= 2 exp

{
−θ2 log(k)

(xk −
√
2)2(1 + ζk)

2 θ2 log(k)

}
.

Since

lim
k→∞

(xk −
√
2)2(1 + ζk)

2θ2 log(k)
= lim

k→∞
(θ
√

2 log log(θk)−√
2)2

2θ2 log(k)
(Because ζk ↓ 0)

= lim
k→∞

(θ
√

log log(θk)− 1)2

θ2 log(k)

= lim
k→∞

(θ
√

log(k) + log log(θ)− 1)2

θ2 log(k)
= 1,

there exists K such that for k ≥ K,

(xk −
√
2)2(1 + ζk)

2θ2 log(k)
≥ 1

θ
.
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Accordingly, for k ≥ K0 � max{K, logθ(e
e + 1)},

Pr

[
Mnk√
nk

≥ xk

]
≤ 2 exp {−θ log(k)} =

2

kθ
.

Now for n ≥ ee
θ
fixed, there exists k such that nk−1 < n ≤ nk, and√

2n log log(n) ≥
√
2(nk−1 + 1) log log(nk−1 + 1) >

√
2
(nk

θ

)
log log

(nk

θ

)
,

The last strict inequality follows from:

nk−1 = �θk−1� > θk−1 − 1 =
θk

θ
− 1 ≥ �θk�

θ
− 1 =

nk

θ
− 1.

which implies that (This is the only step requiring θ3 < (1 + ε))

(1 + ε)
√
2n log log(n) > θ3

√
2
(nk

θ

)
log log

(nk

θ

)

= θ2
√
2nkθ log log

(nk

θ

)
≥ θ

√
2nk log log (nk) (since θ2 > θ)
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Claim: Given θ > 1, fθ(x) = log log
(x
θ

)
− 1

θ
log log(x) ≥ 0 for x ≥ ee

θ
.

Proof: The claim can be validated by f ′
θ(x) =

(θ − 1) log(x) + log(θ)

xθ log(x)[log(x)− log(θ)]
> 0 for

x ≥ ee
θ
and fθ(e

eθ) = log[eθ − log(θ)]− 1 > 0 for any θ > 1. �

Accordingly,
[
Sn ≥ (1 + ε)

√
2n log log(n)

]
implies that

Mnk

(
≥ Sn ≥ (1 + ε)

√
2n log log(n)

)
≥ θ

√
2nk log log (nk),

where k is the unique integer satisfying �θk−1� < n ≤ �θk� (namely, k =

�logθ(n)�). As a consequence,

Pr
[
Sn ≥ (1 + ε)

√
2n log log(n) i.o. in n

]
≤ Pr

[
Mnk ≥ θ

√
2nk log log (nk) i.o. in k

]
.

Theorem 4.3 (First Borel-Cantelli Lemma) If
∞∑
n=1

P (An) converges (i.e.,

∞∑
n=1

P (An) < ∞), then P

(
lim sup
n→∞

An

)
= P (An i.o.) = 0.
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By the first Borel-Cantelli lemma,

∞∑
k=1

Pr
[
Mnk ≥ θ

√
2nk log log (nk)

]
=

K0∑
k=1

Pr
[
Mnk ≥ θ

√
2nk log log (nk)

]

+

∞∑
k=K0+1

Pr
[
Mnk ≥ θ

√
2nk log log (nk)

]

≤ K0 +
∞∑

k=K0+1

2

kθ

≤ K0 +

∫ ∞

K0

2

xθ
dx

= K0 +
2

(θ − 1)

1

Kθ−1
0

< ∞,

we obtain (The below equality holds without the condition that θ3 < (1+ ε).):

Pr
[
Mnk ≥ θ

√
2nk log log (nk) i.o. in k

]
= 0.

This completes the proof of the first part.
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2. Pr
[
Sn > (1− ε)

√
2n log log(n) i.o.

]
= 1.

Choose ξ satisfying ξ > max{1, 9/ε2}. Take nk � �ξk�.

For any k, let mk = nk − nk−1 and ak =

(
1− 1

ξ

)√
2nk log log(nk)

√
mk

.

Then ak → ∞ and
ak√
mk

→ 0 as k → ∞.

• ak ≥

(
1− 1

ξ

)√
2nk log log(nk)

√
nk

=

(
1− 1

ξ

)√
2 log log(nk) → ∞.

•

lim
k→∞

ak√
mk

= lim
k→∞

(
1− 1

ξ

)√
2nk log log(nk)

mk

= lim
k→∞

(
1− 1

ξ

)√
2ξk log log(ξk)

ξk − ξk−1
= lim

k→∞

√
2 log log(ξk)

ξk
= 0
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Theorem 9.4 then implies:

Pr

[
Snk − Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]
= Pr

[
Xnk−1+1 + · · · +Xnk ≥ ak

√
mk

]
= exp

{
−1

2
a2k(1 + ζk)

}
for some ζk → 0

= exp



−1

2



(
1− 1

ξ

)√
2nk log log(nk)

√
mk




2

(1 + ζk)




= exp

{
−(ξ − 1)2[nk log log(nk)](1 + ζk)

ξ2(nk − nk−1)

}

≥ exp

{
−(ξ − 1)2[ξk log log(ξk)](1 + ζk)

ξ2([ξk − 1]− ξk−1)

}
(since ξk − 1 < nk ≤ ξk and nk−1 ≤ ξk−1)

= exp


− (ξ − 1)2[ξk log log(ξk)](1 + ζk)

ξ2(ξk − ξk−1)

(
1− 1

ξk − ξk−1

)

 = exp


−(ξ − 1) log log(ξk)(1 + ζk)

ξ

(
1− 1

ξk − ξk−1

)


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As ζk → 0, there exists K1 such that ζk <
1

2ξ − 1
for all k ≥ K1.

Also, k ≥ log(ξ) + log(2ξ − 1)− log(ξ − 1)

log(ξ)
if, and only if,

1

ξk − ξk−1
≤ 1

2ξ − 1
.

Hence, for k ≥ K2 � max

{
K1,

log(ξ) + log(2ξ − 1)− log(ξ − 1)

log(ξ)

}
,

Pr

[
Snk − Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]
≥ exp


−(ξ − 1) log log(ξk)(1 + ζk)

ξ

(
1− 1

ξk − ξk−1

)



≥ exp


−

(ξ − 1) log log(ξk)

(
1 +

1

2ξ − 1

)

ξ

(
1− 1

2ξ − 1

)



= exp
{− log log(ξk)

}
=

1

k log(ξ)
.
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Theorem 4.4 (Second Borel-Cantelli Lemma) If {An}∞n=1 forms an inde-

pendent sequence of events for a probability measure P , and
∞∑
n=1

P (An) diverges,

then P

(
lim sup
n→∞

An

)
= 1.

Since

{[
Snk − Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]}∞

k=1

are independent events,

and
∞∑
k=1

Pr

[
Snk − Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]

≥
∞∑

k=K2

Pr

[
Snk − Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)

]

≥
∞∑

k=K2

1

k log(ξ)
= ∞,

it follows from the second Borel-Cantelli lemma that with probability 1, Snk −
Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk) infinitely often in k.
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Now we can let X̄n = −Xn, and let M̄n and S̄n be respectively the counterparts

of Mn and Sn for {X̄n} (and nk = �ξk�), and apply the proof in the first part

with θ =
√
2 to show that (cf. Slide 9-72)(This holds without θ3 < (1 + ε)):

Pr
[
M̄nk ≥ θ

√
2nk log log (nk) i.o. in k

]
= 0.

Hence, it is with probability 1 that−Snk−1
= S̄nk−1

≤ M̄nk−1
< θ

√
2nk−1 log log (nk−1)

for all but finitely many k.

Observe that θ
√

2nk−1 log log (nk−1) ≤ 2√
ξ

√
2nk log log (nk).

The validity of the above inequality follows:

Apply nk−1

(
� �ξk−1� ≤ ξk−1 =

ξk

ξ
≤ nk + 1

ξ

)
≤ 2nk

ξ
for nk−1 outside log log(·).

Apply nk−1 ≤ nk for nk−1 inside log log(·).
As a result, it is with probability 1 that −Snk−1

≤ 2√
ξ

√
2nk log log (nk) for all

but finitely many k.
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To summarize, it is with probability 1 that for infinitely many k,

Snk ≥
(
1− 1

ξ

)√
2nk log log(nk) + Snk−1

≥
(
1− 1

ξ

)√
2nk log log(nk)− 2√

ξ

√
2nk log log (nk)

=

(
1− 1

ξ
− 2√

ξ

)√
2nk log log(nk)

≥
(
1− 1√

ξ
− 2√

ξ

)√
2nk log log(nk)

=

(
1− 3√

ξ

)√
2nk log log(nk)

≥ (1− ε)
√
2nk log log(nk).

�

Final note

• The original statement of the law of the iterated logarithm was due to A. Y. Khinchin

in 1924.

• Another statement of the law of the iterated logarithm was given by A. N. Kol-

mogorov in 1929.


