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The law of large numbers 6-1

• The noise and interference are in fact an aggregated phenomenon of a big

quantity, possibly independent (or dependent).

• The load of a communication system is an aggregated result of a lot of user

behavior.

• Such an aggregation is obtained through “summing” all the small quantities.

• As a consequence, understanding of aggregated statistic phenomenon of a big

population helps the system design.

• This directs us to investigate the law of large numbers.

• In short, the law of large numbers is a simplified statistical model for the

aggregated statistical phenomenon of a big quantity. Such a simplification

makes easy the theoretical study as well as empirical study of a subject like

communications.
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• What is the first statistical quantity that is of general interest for a sequence

of i.i.d. random variables, X1, X2, X3, . . .?

• Answer: Mean, i.e., E[Xn].

• Question: Can we estimate the value of E[Xn] in terms of (X1 +X2 + · · · +
Xn)/n?

The answer to the above question can be used to estimate any func-

tion value of Xn, i.e., Yn = f(Xn), as long as some properties hold for

function f(·).

• What is the first statistical quantity that we are interested in for a sequence

of i.i.d. random variables, Y1 = f(X1), Y2 = f(X2), Y3 = f(X3), . . .?

• Answer: Mean, i.e., E[Yn] = E[f(Xn)].

• Question: Can we estimate the value of E[Yn] = E[f(Xn)] in terms of

Y1 + Y2 + · · · + Yn

n
=

f(X1) + f(X2) + · · · + f(Xn)

n
?

So it suffices to have a theorem on “mean” on X1, X2, X3, · · · ?
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• What is the key difference between the strong law and weak law of large

numbers?

(Strong Law) “limit” is placed inside braces.

Pr

[
lim
n→∞

1

n
(X1 +X2 + · · · +Xn) = m

]
= 1.

(Weak Law) “limit” is placed outside braces.

lim
n→∞Pr

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ < ε

]
= 1 for any ε > 0.

We are interested in the conditions under which the strong law holds, and

under which the weak law is valid.

Variants of theorems on law of large numbers basically provide different con-

ditions under which these laws hold.

† In notations, we will use [ ] to represent an event (for a random variable X), such as

[X > 0]. Pr[ ] will be used to denote the probability of the concerned event, e.g., Pr[X >

0], where the probability is defined through the random variable. Braces are reserved

for sets, e.g., {x ∈ X : x > 0}. The probability of the concerned set under a probability

measure P or PX will be denoted by P ({x ∈ X : x > 0}) or PX ({x ∈ X : x > 0}).
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What is the difference between “placing limit inside” and “plac-

ing limit outside”?

For i, j ∈ N, define a function fi,j(·) over [0, 1) as:

fi,j(ω) =

{
1, if (j − 1)2−i ≤ ω < j2−i;

0, otherwise.

�

�

0 1

Y1 ≡ f1,1

�

�

0 1

Y2 ≡ f1,2

�

�

0 1

Y3 ≡ f2,1

�

�

0 1

Y4 ≡ f2,2

�

�

0 1

Y5 ≡ f2,3

�

�

0 1

Y6 ≡ f2,4

Let Z be uniformly distributed over [0, 1).

Define a sequence of binary random variables Y1, Y2, Y3, . . . as

Yn = fi,j(Z),

where i = �log2(n + 1)� and j = n + 2− 2i.

(I.e., Y1, Y2, Y3, Y4, Y5, Y6, · · · = f1,1(Z), f1,2(Z), f2,1(Z), f2,2(Z), f2,3(Z), f2,4(Z), · · · .)
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– Then as lim
n→∞ f�log2(n+1)�, n+2−2�log2(n+1)�(z) does not exist for any z ∈ [0, 1),

lim
n→∞Yn does not exist; it is therefore meaningless to calculate Pr

[
lim
n→∞Yn = 0

]
.

– However, for 0 < ε < 1,

lim
n→∞Pr[|Yn − 0| < ε] = lim

n→∞Pr
[∣∣∣f�log2(n+1)�, n+2−2�log2(n+1)�(Z)

∣∣∣ < ε
]

= lim
n→∞Pr

[∣∣∣f�log2(n+1)�, n+2−2�log2(n+1)�(Z)
∣∣∣ = 0

]
= lim

n→∞

(
1− 2−�log2(n+1)�

)
= 1.

– In terminology, we say that Yn converges to 0 in probability (limit outside),

but does not converge to 0 with probability one (limit inside).

– From this example, you learn that the strong law is really strong in a sense

that the limit of (X1+X2+ · · ·+Xn)/n has to exist first, while the weak

law only requires the resultant probability “value” for each n to converge.

– The question that remains is how to validate the strong law, as the limit is

placed inside the squared braces? Answer: Borel-Cantelli lemma.
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Theorem 4.3 (The First Borel-Cantelli Lemma) If
∑∞

k=1 P (Ak) con-

verges (i.e.,
∑∞

k=1 P (Ak) < ∞), then

P

(
lim sup
n→∞

An

)
= P (An i.o.) = 0.

• lim sup
n→∞

An ≡
∞⋂
n=1

∞⋃
k=n

Ak, named limit superior of the sequence of sets {An}∞n=1.

• ω ∈ lim sup
n→∞

An ≡ ω belongs to An infinitely often (i.o.)

• Example (Dyadic Expansion)A dyadic expansion of ω ∈ [0, 1) is a binary

representation .d1d2d3 . . . of it, where ω =
∑∞

n=1 dn2
−n. Notably, dn = dn(ω)

is a function of ω for each n. E.g.,

d1(ω) =

{
0, if 0 ≤ ω < 1/2;

1, if 1/2 ≤ ω < 1.

Let An = {ω ∈ [0, 1) : dn(ω) = 0}. Then what is lim sup
n→∞

An?
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Answer:

A1 = {ω ∈ [0, 1) : d1(ω) = 0} = [0, 1/2)

A2 = {ω ∈ [0, 1) : d2(ω) = 0} = [0, 1/4) ∪ [1/2, 3/4)

A3 = {ω ∈ [0, 1) : d3(ω) = 0} = [0, 1/8) ∪ [1/4, 3/8) ∪ [1/2, 5/8) ∪ [3/4, 7/8)
...

As it turns out,
∞⋃
k=n

Ak = [0, 1) for any n. Consequently,

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
k=n

Ak

=
∞⋂
n=1

[0, 1)

= [0, 1).

In other words, any number in [0, 1) lies in {An}∞n=1 infinitely often.
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Proof of The First Borel-Cantelli Lemma:

• lim sup
n→∞

An =
∞⋂

m=1

∞⋃
k=m

Ak ⊂
∞⋃

k=m

Ak

⇒ P

(
lim sup
n→∞

An

)
≤ P

( ∞⋃
k=m

Ak

)
for any m. A ⊂ B ⇒ P (A) ≤ P (B)

• P

( ∞⋃
k=m

Ak

)
≤

∞∑
k=m

P (Ak).

• So if
∞∑
k=1

P (Ak) converges (i.e., finite), then lim
m→∞

∞∑
k=m

P (Ak) = 0, which in

turns proves the theorem. �

Definition (Probability Measure) A set function P on a measurable space (S,F) is a probability measure, if it
satisfies the three Kolmogorov axioms (1936):

1. (non-negativity) P (A) ≥ 0 for A ∈ F .

2. (unit measure) P (S) = 1.

3. (countable additivity or σ-additivity) if A1, A2, . . . is a disjoint sequence of sets in F , then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P (Ak).
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Theorem 4.4 (The Second Borel-Cantelli Lemma) If {An}∞n=1

forms an independent sequence of events for a probability measure P , and

{∑∞
k=n P (Ak)}∞n=1 diverges (i.e.,

∑∞
k=1 P (Ak) = ∞), then P

(
lim sup
n→∞

An

)
= 1.

Proof: For any m,

P

( ∞⋂
k=m

Ac
k

)
=

∞∏
k=m

P (Ac
k) (by independence)

=

∞∏
k=m

[1− P (Ak)]

≤ exp

[
−

∞∑
k=m

P (Ak)

]
(since 1− x ≤ e−x) ∀x ∈ 


= 0 (by divergence of sum)
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Hence,

P

(
lim sup
n→∞

An

)
= P

( ∞⋂
m=1

∞⋃
k=m

Ak

)

= 1− P

( ∞⋃
m=1

∞⋂
k=m

Ac
k

)
(by De Morgan’s law)

≥ 1−
∞∑

m=1

P

( ∞⋂
k=m

Ac
k

)

= 1

�
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Example (Dyadic Expansion, cont.) Let dn be the outcome of the nth

toss of a fair coin, and each toss is independent of all the other tosses; hence,

ω = .d1d2d3 . . . is uniformly distributed over [0, 1). Then

An = {ω ∈ [0, 1) : dn(ω) = 0}
form independent events under such a probability measure.

From the two Borel-Cantelli lemmas, we found that since
∑∞

k=1 P (Ak) either

converges or diverges, so P
(
lim sup
n→∞

An

)
is either 1 or 0, and cannot be any value

inbetween!

Theorem (A simplified theorem of Theorem 4.5: Kolmogrov’s zero-

one law) If A1, A2, . . . are independent events under a probability measure P ,

then P
(
lim sup
n→∞

An

)
is either 1 or 0.

In other words, for a sequence of independent events, set of all “outcomes” that

occur infinitely often is either with probability 1 (certainty) or with probability 0

(impossible)!



Strong Law of Large Numbers: Revisited 6-12

Why introducing Borel-Cantelli Lemma?

Answer: In order to prove the strong law.

Notably, for the strong law, the “limit” is inside the squared braces instead of

outside the squared braces.

Theorem 6.1 If X1, X2, . . . are i.i.d. with bounded fourth central moment, and

E[Xn] = m (for some finite m), then the strong law holds.

Proof:

• lim
n→∞ an = a (for some finite a) if, and only if,

(∀ ε > 0)(∃ N)(∀ n > N)|an − a| < ε.

ε is real and hence is not good for an induction proof. Fortunately, we can

change the statement to:

• lim
n→∞ an = a (for some finite a) if, and only if,

(∀ integer j > 0)(∃ N)(∀ n > N)|an − a| < 1/j.
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• So the set of

{
x = (x1, x2, . . .) ∈ 
∞ : lim

n→∞
1

n
(x1 + x2 + · · · + xn) = m

}
is

equivalent to:{
x ∈ 
∞ : (∀ j > 0)(∃ N)(∀ n > N)

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < 1

j

}

=
∞⋂
j=1

∞⋃
N=1

∞⋂
n=N+1

{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < 1

j

}

=

∞⋂
j=1

∞⋃
N=1

∞⋂
n=N+1

Ac
n(1/j),

where An(ε) �
{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ ≥ ε

}
.
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• Accordingly,{
x ∈ 
∞ : lim

n→∞
1

n
(x1 + x2 + · · · + xn) = m

}c

=
∞⋃
j=1

∞⋂
N=1

∞⋃
n=N+1

An(1/j)

=

∞⋃
j=1

lim sup
n→∞

An(1/j)

• Hence, by the first Borel-Cantelli lemma, if
∞∑
n=1

P (An(1/j)) converges, then

P

(
lim sup
n→∞

An(1/j)

)
= 0, which implies that

P

({
x ∈ 
∞ : lim

n→∞
1

n
(x1 + x2 + · · · + xn) = m

}c)
= P


 ∞⋃

j=1

lim sup
n→∞

An(1/j)




≤
∞∑
j=1

P

(
lim sup
n→∞

An(1/j)

)

(This may not be true for sum of uncountably many zeros.) = 0.
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In summary, any probability space that gives a bounded
∞∑
n=1

P
(
An(ε)

)
satisfies

the strong law!

• (Markov’s inequality) Pr[ |Z| ≥ α] ≤ 1

αk
E[ |Z|k]

(Lyapounov’s inequality) E1/α[ |Z|α] ≤ E1/β[ |Z|β] for 0 < α ≤ β

P (An(ε)) = Pr [ |(X1 −m) + (X2 −m) + · · · + (Xn −m)| ≥ nε ]

≤ 1

n4ε4
E
[
((X1 −m) + (X2 −m) + · · · + (Xn −m))4

]
(by Markov’s ineq.)

=
1

n4ε4


 n∑

i=1

E[(Xi −m)4] +

(
4

2

) n∑
i=1

n∑
j=i+1

E[(Xi −m)2]E[(Xj −m)2]




≤ 1

n4ε4


 n∑

i=1

1 +

(
4

2

) n∑
i=1

n∑
j=i+1

1


E[(X −m)4] (by Lyapounov’s ineq.)

=
(3n− 2)

n3ε4
E[(X −m)4] so it’s summable!

�
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Corollary If

∞∑
n=1

Pr

[ ∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]
< ∞ for any ε > 0

arbitrarily small, then the strong law holds.

After we know how to validate the strong law, the question that

naturally follows is how to validate the weak law.
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Lemma If the strong law holds, then the weak law holds.

Proof:

Pr

[
lim
n→∞

1

n
(X1 +X2 + · · · +Xn) = m

]

= Pr

[
(∀ ε > 0)(∃ N)(∀ n > N)

∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ < ε

]

= P

(⋂
ε>0

∞⋃
N=1

∞⋂
n=N

{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < ε

})

≤ P

( ∞⋃
N=1

∞⋂
n=N

{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < ε

})

= P

( ∞⋃
N=1

BN

)
,

where BN =
∞⋂

n=N

{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < ε

}
.

It can be easily seen that B1 ⊂ B2 ⊂ · · · ⊂ BN ⊂ BN+1 ⊂ · · ·
Hence, BN ↑

∞⋃
N=1

BN .
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Let C1 = B1, and CN = BN \ BN−1 for N > 1. Then {CN}∞N=1 are disjoint. We

finally obtain:

P

( ∞⋃
N=1

BN

)
= P

( ∞⋃
N=1

CN

)

=
∞∑

N=1

P (CN)

= lim
N→∞

N∑
n=1

P (Cn)

= lim
N→∞

P (BN)

= lim
N→∞

P

( ∞⋂
n=N

{
x ∈ 
∞ :

∣∣∣∣1n(x1 + x2 + · · · + xn)−m

∣∣∣∣ < ε

})

≤ lim
N→∞

P

({
x ∈ 
∞ :

∣∣∣∣ 1N (x1 + x2 + · · · + xN)−m

∣∣∣∣ < ε

})

= lim
N→∞

P

[∣∣∣∣ 1N (X1 +X2 + · · · +XN)−m

∣∣∣∣ < ε

]
.
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In summary, we prove that:

Pr

[
lim
n→∞

1

n
(X1 +X2 + · · · +Xn) = m

]
≤ lim

n→∞P

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ < ε

]
.

So if the left-hand-side equals one, so does the right-hand-side.

This completes the proof that strong law implies weak law. �

Note: An alternative statement for this lemma is that convergence with proba-

bility 1 implies convergence in probability.
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Lemma If X1, X2, . . . are i.i.d. with bounded variance, and E[Xn] = m, then the

weak law holds.
Proof: By Chebyshev’s inequality,

P

[∣∣∣∣1n(X1 +X2 + · · · +Xn)−m

∣∣∣∣ ≥ ε

]
≤ Var[X1]

nε2
→ 0.

�

Question: Is the aforementioned condition also necessary under an i.i.d. assump-

tion? (In other words, can we also say “For an i.i.d. random variables X1, X2, . . .,

if the weak law holds, then the variance is bounded.”)

Answer: No. In fact, the bounded-variance condition can be further weakened.
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Can we generalize the weak law (and the strong law) to situations that concern not

necessarily “sample-sum-divided-by-sample-number?”

Here is an example.

• Let the sample space, Ωn, be a set consisting of n! permutations of numbers

1, 2, 3, . . . , n.

• Let 2Ωn, named the power set of Ωn, be the event space. (An event is a subset of

the sample space, whose probability can be evaluated. An event space contains

all the probabilistically evaluable events.)

Interpretation of Event: Given a probability space ({0, 1}, {∅, {0, 1}}, P ), in

which {0, 1} is the sample space, and {∅, {0, 1}} is the event space. We cannot

evaluate P ({0}) since {0} is not an event.

• Let the probability measure Pωn be equally probable over Ωn.

Denote the random variable defined over the above probability space (Ωn, 2
Ωn, Pωn)

by ωn.
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Equivalent representation of a permutation : Transform a permutation

of 1, 2, . . . , n to its equivalent “product-of-cycle” format. For example, permu-

tation ω = (5, 1, 7, 4, 6, 2, 3) can be re-written as:(
1 2 3 4 5 6 7

5 1 7 4 6 2 3

)

So we first observe that 1 maps to 5, which maps to 6, which maps to 2, which

maps back to 1. We then form the first cycle, (1, 5, 6, 2).

The next smallest number that does not appear in the previous cycle is 3, which

maps to 7, which maps back to 3. So we form another cycle, (3, 7).

The next smallest number that does not appear in the previous two cycles is

the self-mapped 4, which gives us the last cycle (4).

Consequently, the equivalent “product-of-cycle” format of ω = (5, 1, 7, 4, 6, 2, 3)

is (1, 5, 6, 2)(3, 7)(4).



Example 6.3: Generalization of Laws 6-23

Number of cycles : Define fn,k(ω) = 1, if the k-position of the equivalent

“product-of-cycle” format of ω ∈ Ωn completes a cycle; otherwise, fn,k(ω) =

0. In the previous example, only f7,4 = f7,6 = f7,7 = 1 (i.e., 2,7,4 in

(1, 5, 6,2)(3,7)(4)), and f7,1 = f7,2 = f7,3 = f7,5 = 0.

Define a random variable Xn,k = fn,k( ωn) for ωn defined over (Ωn, 2
Ωn, Pωn).

• Billingsley’s book, as most porbabilitists do, just saves the effort to directly

define Xn,k = Xn,k(ω).

• My lengthy introduction here is just to show to you that “a random variable

X is a real-valued function on sample space Ω, which maps from Ω to real

line 
, satisfying that {ω ∈ Ω : X(ω) = x} is an event for each real x,”

for which the definition can be found in any fundamental probability books.

• So, the functionXn,k(·) maps each permutation ω in Ωn to a real number, either

0 or 1, as fn,k(·) did. The set of all permutations that causes Xn,k(ω) = 1,

and the set of all permutations that yields Xn,k(ω) = 0 are certainly subsets

of Ωn, and hence they are events in our power-set event space. Since events

are probabilistically evaluable, we can now safely talk about Pr[Xn,k = 1] =

Pωn{ω ∈ Ωn : fn,k(ω) = 1} and Pr[Xn,k = 0].

Accordingly, the number of cycles equals Sn = Xn,1 +Xn,2 + · · · +Xn,n.
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Distributions of {Xn,k}nk=1 : It can be shown that {Xn,k}nk=1 are independent,

and Pr[Xn,k = 1] =
1

n− k + 1
(cf. Example 5.6).

Mean of Sn :

E[Sn] =

n∑
k=1

E[Xn,k]

=

n∑
k=1

Pr[Xn,k = 1]

=

n∑
k=1

1

n− k + 1

=
n∑

k=1

1

k
.
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Generalization of Weak Law :

Pr

[∣∣∣∣ Xn,1 +Xn,2 + · · · +Xn,n

E[Xn,1] + E[Xn,2] + · · · + E[Xn,n]
− 1

∣∣∣∣ ≥ ε

]
(Is this a nice generalization?)

= Pr

[∣∣∣∣Xn,1 +Xn,2 + · · · +Xn,n

E[Sn]
− 1

∣∣∣∣ ≥ ε

]

= Pr

[
|(Xn,1 +Xn,2 + · · · +Xn,n)− E[Sn]| ≥ ε · |E[Sn]|

]

≤
E
[
((Xn,1 +Xn,2 + · · · +Xn,n)− E[Sn])

2
]

ε2E2[Sn]
(by Markov’s ineq.)

=
E
[
((Xn,1 − E[Xn,1]) + (Xn,2 − E[Xn,2]) + · · · + (Xn,n − E[Xn,n]))

2
]

ε2E2[Sn]

=

∑n
j=1Var[Xn,j]

ε2E2[Sn]
(by independence) ≤

∑n
j=1E[X2

n,j]

ε2E2[Sn]
(by variance ≤ second moment)

=

∑n
j=1E[Xn,j]

ε2E2[Sn]

(
by E[Xn,j] = E[X2

n,j]
)

=
E[Sn]

ε2E2[Sn]

=
1

ε2E[Sn]
=

1

ε2
∑n

k=1(1/k)
≤ 1

ε2 log(n + 1)
.
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Question : Does the previous derivation suffice to prove that

Pr

[
lim
n→∞

Sn

E[Sn]
= 1

]
= 1,

by the first Borel-Cantelli lemma? Answer by yourself.

Thinking : Pr

[∣∣∣∣ Sn

E[Sn]
− 1

∣∣∣∣ ≥ ε

]
≤ 1

ε2 log(n)
indicates that

(1− ε)E[Sn] ≤ Sn ≤ E[Sn](1 + ε) with probability at least 1− 1

ε2 log(n)
.

Remember that all the permutations are equally probable.

So we can say most of the permutations (random interleavers) contain

approximately E[Sn] ≈ log(n) cycles!
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Weak-law argument (or Chebyshev’s ineq) has many applications, such as Shan-

non’s coding theory that is introduced in the course of Information Theory.

Here, we introduce two examples: Bernstein’s Theorem, and a refinement of

second Borel-Cantelli lemma.

Theorem 6.2 (Bernstein’s Theorem) If function f(·) is continuous on [0, 1],

then

Bn(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k f

(
k

n

)

converges to f(x) uniformly on [0, 1].

Note 1: Bn(x) is called the Bernstein polynomial of degree n associated with

f(·).
Note 2: The difference between a continuous function on [0, 1] and a continuous

function on (0, 1) is that the former also implies boundedness on [0, 1].

Note 3: gn(x) is said to converge in n to f(x) uniformly on domain X if

lim
n→∞ sup

x∈X
|gn(x)− f(x)| = 0.



Applications of weak-law argument (Chebyshev’s ineq)6-28

Note 4: Bernstein’s result goes further than the Weierstrass approximation the-

orem does (which states that every compact-support continuous function can be

uniformly approximated by polynomials) by specifically specifying (one of) the

approximation polynomials.
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Proof:

• Let M = sup
x∈[0,1]

|f(x)|, and δ(ε) = sup
{(x,y)∈[0,1]2:|x−y|<ε}

|f(x)− f(y)|.

• By the continuity of f(·) over a closed and bounded (hence, compact) set [0, 1],

lim
ε↓0

δ(ε) = 0.

• Let X1, X2, . . . , Xn be independent random variables with

Pr[Xi = 1] = x and Pr[Xi = 0] = 1− x.

Denote Sn = X1 +X2 + · · · +Xn. Then

E

[
f

(
Sn

n

)]
=

n∑
k=0

(
n

k

)
xk(1− x)n−k f

(
k

n

)
= Bn(x).
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• Denoting Nn = {0, 1, 2, . . . , n}, we obtain:

|Bn(x)− f(x)| =

∣∣∣∣E
[
f

(
Sn

n

)]
− f(x)

∣∣∣∣
=

∣∣∣∣E
[
f

(
Sn

n

)
− f(x)

]∣∣∣∣
≤ E

[∣∣∣∣f
(
Sn

n

)
− f(x)

∣∣∣∣
]

=
∑
sn∈Nn

∣∣∣f (sn
n

)
− f(x)

∣∣∣Pr[Sn = sn]

=
∑

{sn∈Nn:|sn/n−x|<ε}

∣∣∣f (sn
n

)
− f(x)

∣∣∣Pr[Sn = sn]

+
∑

{sn∈Nn:|sn/n−x|≥ε}

∣∣∣f (sn
n

)
− f(x)

∣∣∣Pr[Sn = sn]
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≤
∑

{sn∈Nn:|sn/n−x|<ε}
δ(ε) Pr[Sn = sn] +

∑
{sn∈Nn:|sn/n−x|≥ε}

(2M) Pr[Sn = sn]

= δ(ε) Pr

[∣∣∣∣Sn

n
− x

∣∣∣∣ < ε

]
+ (2M) Pr

[∣∣∣∣Sn

n
− x

∣∣∣∣ ≥ ε

]

≤ δ(ε) + (2M)
Var[X1]

nε2
(by Chebyshev’s ineq.)

= δ(ε) + (2M)
x(1− x)

nε2

≤ δ(ε) + (2M)
1

4nε2

= δ(ε) +
M

2nε2
,

for which the upper bound is independent of x (and hence, is a uniform bound). �
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We may replace the “independence assumption” in the second Borel-Cantelli

lemma by another condition as follows.

This can also be smartly proved by weak-law (or Chebyshev’s ineq) argument.

Theorem 4.4 (Second Borel-Cantelli Lemma) If {An}∞n=1 forms an inde-

pendent sequence of events for a probability measure P , and
∞∑
n=1

P (An) diverges,

then P

(
lim sup
n→∞

An

)
= 1.

Theorem 6.3 (Refinement of Second Borel-Cantelli Lemma) For a

probability measure P , if {An}∞n=1 satisfies

lim inf
n→∞

∑n
j=1

∑n
k=1 P (Aj ∩Ak)

(
∑n

k=1 P (Ak))
2 ≤ 1,

and
∞∑
n=1

P (An) diverges, then P

(
lim sup
n→∞

An

)
= 1.
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Proof: Let Z be the random variable having probability measure P .

Xn(Z) =

{
1, if Z ∈ An;

0, if Z �∈ An.

Also, let Sn = X1+X2+ · · ·+Xn, and denote mn = E[Sn] =
∑n

k=1 P (Ak), which

approaches infinity as n goes to infinity.

For convenience, denote

θn =

∑n
j=1

∑n
k=1 P (Aj ∩Ak)

(
∑n

k=1 P (Ak))
2 .

Observe that P

(
lim sup
n→∞

An

)
= P (An i.o.) = Pr

[
sup
k>1

Sk = ∞
]
. Hence, it

suffices to show that Pr

[
sup
k>1

Sk < ∞
]
= 0.

mn nondecreasing, mn ↑ ∞,

mn ≤ n, m2
n

(mn−s)2
→ 1For s < mn, derive

Pr[Sn ≤ s] ≤ Pr[Sn ≤ s or Sn ≥ 2mn − s]

= Pr[Sn −mn ≤ −(mn − s) or Sn −mn ≥ mn − s]

= Pr
[ |Sn −mn| ≥ mn − s

]
≤ E[|Sn −mn|2]

(mn − s)2
(By Markov’s ineq.) =

Var[Sn]

(mn − s)2
,



Refinement of Second Bore-Cantelli Lemma 6-34

and

Var[Sn] = E[S2
n]− E2[Sn]

=
n∑

j=1

n∑
k=1

E[XjXk]−
(

n∑
k=1

E[Xk]

)2

=
n∑

j=1

n∑
k=1

P (Aj ∩Ak)−
(

n∑
k=1

P (Ak)

)2

=

(
n∑

k=1

P (Ak)

)2

(θn − 1) = m2
n(θn − 1),

which implies θn ≥ 1. We therefore obtain that for s < mn,

Pr[Sn ≤ s] ≤ (θn − 1)
m2

n

(mn − s)2
.

The above inequality implies that if lim inf
n→∞ θn ≤ 1 (or equivalently, lim inf

n→∞ (θn−1) =

0), then

lim inf
n→∞ Pr[Sn ≤ s] ≤ lim inf

n→∞

[
(θn − 1)

m2
n

(mn − s)2

]

≤
(
lim inf
n→∞ (θn − 1)

)(
lim sup
n→∞

m2
n

(mn − s)2

)
= 0.
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Consequently, as

Pr

[
sup
k≥1

Sk < s

]
≤ Pr [Sn < s] for any n,

we conclude:

Pr

[
sup
k≥1

Sk < s

]
≤ lim inf

n→∞ Pr [Sn < s] = 0,

which immediately gives:

Pr

[
sup
k≥1

Sk < ∞
]

= Pr

[
sup
k≥1

Sk < 1 or sup
k≥1

Sk < 2 or sup
k≥1

Sk < 3 or · · ·
]

≤
∞∑
s=1

Pr

[
sup
k≥1

Sk < s

]
= 0.

�
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Theorem 4.4′ (Refinement of the Second Borel-Cantelli Lemma)

If {An}∞n=1 forms a pair-wise independent sequence of events for a probability

measure P , and
∞∑
n=1

P (An) diverges, then P

(
lim sup
n→∞

An

)
= 1.

Proof: By P (Aj ∩Ak) = P (Aj)P (Ak) and Theorem 6.3. �


