Induced Order Statistics

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

OR4-2

Let $(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)$ be i.i.d. random vectors.

By sorting the 2-dimensional random vector $\{(X_i, Y_i)\}$ according to ascending $\{Y_i\}$, we obtain:

 $(X_{D(i)}, Y_{(i)}),$

where $X_{D(1)}, X_{D(2)}, \ldots, X_{D(n)}$ are named the *induced order statistics* or *concomi*tants of order statistics.

Example $\phi_1, \phi_2, \ldots, \phi_n$ are received log-likelihood ratios. Form a 2-dimensional vector sequence as $(\phi_1, |\phi_1|), (\phi_2, |\phi_2|), \ldots, (\phi_n, |\phi_n|)$. Then we can sort $\{\phi_i\}$ according to $\{|\phi_i|\}$, when doing the decoding/demodulating process. **Definition** $X_{[1]}, X_{[2]}, \ldots, X_{[n]}$ are absolute order statistics if X_1, \ldots, X_n are sorted according to their absolute values.

Hence,

$$|X_{[1]}| \le |X_{[2]}| \le \dots \le |X_{[n]}|.$$

How to determine the distributions of $\{X_{[i]}\}$?

Proposition Any *symmetric* random variable X satisfies that

 $\Pr\left[X \le x\right] = \Pr\left[G|X| \le x\right],$

where $G \perp X$ and $\Pr[G = -1] = \Pr[G = 1] = 1/2$.

Here, symmetric means that $\Pr[X \leq -|x|] = 1 - \Pr[X \leq |x|]$.

Proposition (Egorov and Nevzorov 1975) For a sequence of symmetric random variables X_1, \ldots, X_k , define $Y_k = |X_k|$. Then

 (X_1,\ldots,X_n) has the same distribution as (B_1Y_1,\ldots,B_nY_n) ,

where B_1, \ldots, B_n are i.i.d. with equal marginal probability over $\{-1, +1\}$, and is independent of Y_1, \ldots, Y_n .

• The above proposition can be generalized to *quasi-symmetric* random variable.

Definition (quasi-symmetric) A random variable X is quasi-symmetric if $p \Pr[X < -|x|] = (1 - p) \Pr[X > |x|],$

for some $0 \le p \le 1$.

- p = 1/2 reduces quasi-symmetric to symmetric.
- p = 1 reduces quasi-symmetric to nonnegative.
- p = 0 reduces quasi-symmetric to nonpositive.

Proposition For a sequence of **quasi-symmetric** random variables X_1, \ldots, X_k with parameter p, define $Y_k = |X_k|$. Then

 (X_1,\ldots,X_n) has the same distribution as (B_1Y_1,\ldots,B_nY_n) ,

where B_1, \ldots, B_n are i.i.d. with

$$\Pr[B_i = +1] = p \text{ and } \Pr[B_i = -1] = 1 - p,$$

and is independent of Y_1, \ldots, Y_n .

• In light of the above proposition, the distribution of $X_{[1]}, \ldots, X_{[n]}$ can be established if the parent distribution is quasi-symmetric.

For x > 0,

$$\begin{split} \Pr[X_{[k]} < -x] &= \Pr[B_k Y_{(k)} < -x] \\ &= \Pr[B_k = +1] \Pr[Y_{(k)} < -x] + \Pr[B_k = -1] \Pr[-Y_{(k)} < -x] \\ &= p \Pr\left[Y_{(k)} < -x\right] + (1-p) \Pr\left[-Y_{(k)} < -x\right] \\ &= p \Pr\left[Y_{(k)} < -x\right] + (1-p) \Pr\left[V_{(n-k+1)} < -x\right], \end{split}$$

and

$$\begin{aligned} \Pr[X_{[k]} < x] &= \Pr[B_k Y_{(k)} < x] \\ &= \Pr[B_k = +1] \Pr[Y_{(k)} < x] + \Pr[B_k = -1] \Pr[-Y_{(k)} < x] \\ &= p \Pr[Y_{(k)} < x] + (1-p) \Pr[-Y_{(k)} < x] \\ &= p \Pr[Y_{(k)} < x] + (1-p) \Pr[V_{(n-k+1)} < x], \end{aligned}$$

where $V_k = -|X_k|$.

For $x \in \Re$, $\Pr[X_{[k]} < x] = p \Pr[Y_{(k)} < x] + (1-p) \Pr[V_{(n-k+1)} < x].$ **Theorem (Egorov and Nevzorov 1976)** Let X_1, \ldots, X_n be i.i.d. with marginal cdf $F(\cdot)$. Assume $F(\cdot)$ has inverse function, and has 1st-order-

differentiable density $f(\cdot)$ satisfying

$$\sup_{\{x \in \Re : f(x) > 0\}} |f'(x)| \le M$$

Then

$$\sup_{x \in \Re} \left| \Pr\left[\frac{f(q_k)(X_{(k)} - q_k)}{\beta_2} < x \right] - \Phi(x) \right| \le C \left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n - k + 1}} + \frac{M\beta_2}{f^2(q_k)} \right)$$

where C is an absolute constant, $q_k = F^{-1}\left(\frac{k}{n+1}\right)$,

$$\beta_2 = \frac{\sqrt{k(n-k+1)}}{(n+1)\sqrt{n+2}}$$

For $x \in \Re$,

$$\Pr[X_{[k]} < x] = p \Pr\left[Y_{(k)} < x\right] + (1-p) \Pr[V_{(n-k+1)} < x].$$

We can apply Egorov-Nevzorov theorem to $Y_{(k)}$ and $V_{(n-k+1)}$ to give an estimate of $\Pr[X_{[k]} < x]$.

Absolute order statistics

Let G(x) and g(x) be the cdf and pdf of |X|, respectively.

Recall that F(x) and f(x) be the cdf and pdf of X, respectively.

Then for x > 0,

$$\begin{aligned} G(x) &= \Pr[|X| < x] \\ &= \Pr[-x < X < x] \\ &= \Pr[X < x] - \Pr[X < -x] \\ &= \Pr[X < x] - \frac{(1-p)}{p} \Pr[X > x] \quad \left(= \left(1 - \frac{p}{1-p} \Pr[X < -x]\right) - \Pr[X < -x] \right) \\ &= \frac{1}{p} \Pr[X < x] - \frac{(1-p)}{p} \quad \left(= 1 - \frac{1}{1-p} \Pr[X < -x] \right) \\ &= \frac{F(x) - (1-p)}{p}, \quad \left(= 1 - \frac{1}{1-p} F(-x) \right) \end{aligned}$$

which implies that

$$g(x) = \frac{1}{p}f(x) = \frac{1}{1-p}f(-x).$$

For x < 0, the cdf $\overline{G}(x)$ and pdf $\overline{g}(x)$ of -|X| are respectively equal to:

$$\bar{G}(x) = \frac{1 - F(-x)}{p} = \frac{1}{1 - p}F(x)$$
 and $\bar{g}(x) = \frac{1}{p}f(-x) = \frac{1}{1 - p}f(x).$

Observe that

$$q_k(G) = G^{-1}\left(\frac{k}{n+1}\right) = F^{-1}\left(1 - \frac{n-k+1}{n+1}p\right)$$

and

$$q_{n-k+1}(\bar{G}) = \bar{G}^{-1}\left(\frac{n-k+1}{n+1}\right) = -F^{-1}\left(1 - \frac{n-k+1}{n+1}p\right).$$

For convenience, let $h = F^{-1}\left(1 - \frac{n-k+1}{n+1}p\right)$ and $\bar{h} = -h$.

Absolute order statistics

By rewriting Egorov and Nevzorov's theorem as $(z = q_k + \beta_2 x/f(q_k))$:

$$\sup_{z \in \Re} \left| \Pr\left[X_{(k)} < z \right] - \Phi\left(\frac{f(q_k)(z - q_k)}{\beta_2} \right) \right| \le C\left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n - k + 1}} + \frac{M\beta_2}{f^2(q_k)} \right),$$

and replacing $X_{(k)}$ in the theorem by $Y_{(k)}$ and $V_{(n-k+1)}$, we obtain:

$$\begin{split} \sup_{z \in \Re} \left| \Pr\left[X_{[k]} < z \right] &- p \Phi\left(\frac{g(h)(z-h)}{\beta_2} \right) - (1-p) \Phi\left(\frac{g(h)(z+h)}{\beta_2} \right) \right| \\ &= \sup_{z \in \Re} \left| p \Pr[Y_{(k)} < z] - p \Phi\left(\frac{g(h)(z-h)}{\beta_2} \right) + (1-p) \Pr[V_{(n-k+1)} < z] - (1-p) \Phi\left(\frac{\bar{g}(\bar{h})(z-\bar{h})}{\beta_2} \right) \right| \\ &\leq p C\left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n-k+1}} + \frac{M\beta_2}{g^2(h)} \right) + (1-p) C\left(\frac{1}{\sqrt{n-k+1}} + \frac{1}{\sqrt{k}} + \frac{\bar{M}\beta_2}{\bar{g}^2(\bar{h})} \right), \end{split}$$

where

$$M = \sup_{\{x \in \Re : g(x) > 0\}} |g'(x)| = \frac{1}{p} \sup_{\{x \ge 0 : f(x) > 0\}} |f'(x)|$$

and

$$\bar{M} = \sup_{\{x \in \Re : \bar{g}(x) > 0\}} \left| \bar{g}'(x) \right| = \sup_{\{z \le 0 : f(-z) > 0\}} \left| -\frac{1}{p} f'(-z) \right| = \frac{1}{p} \sup_{\{x \ge 0 : f(x) > 0\}} \left| f'(x) \right| = M.$$

Absolute order statistics

Consequently,

$$\sup_{z \in \Re} \left| \Pr\left[X_{[k]} < z \right] - p\Phi\left(\frac{g(h)(z-h)}{\beta_2} \right) - (1-p)\Phi\left(\frac{g(h)(z+h)}{\beta_2} \right) \right|$$

$$\leq C\left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n-k+1}} + \frac{M\beta_2}{g^2(h)} \right).$$

The above inequality is useful when taking $k = \alpha n$, where

$$\frac{\beta_2 \sqrt{n}}{\sqrt{\alpha(1-\alpha)}} = \frac{n\sqrt{(1-\alpha)n+1}}{(n+1)\sqrt{(1-\alpha)(n+2)}} = 1 + o(1) \text{ as } n \to \infty$$

and

$$h = h_{p,\alpha} + o(1) = F^{-1} (1 - (1 - \alpha)p) + o(1) \text{ as } n \to \infty$$

the inequality becomes:

$$\sup_{z \in \Re} \left| \Pr\left[X_{[\alpha n]} < z \right] - p \Phi\left(\frac{f(h_{p,\alpha})(z - h_{p,\alpha})}{p\sqrt{\alpha(1 - \alpha)}} \sqrt{n} \right) - (1 - p) \Phi\left(\frac{f(h_{p,\alpha})(z + h_{p,\alpha})}{p\sqrt{\alpha(1 - \alpha)}} \sqrt{n} \right) \right| \le C' \frac{1}{\sqrt{n}}$$

<u>Absolute order statistics</u>

We conclude that as $n \to \infty$,

$$\Pr\left[X_{[\alpha n]} < z\right] = \begin{cases} 0, & \text{if } z < -h_{p,\alpha};\\ 1-p, & \text{if } -h_{p,\alpha} \le z < h_{p,\alpha};\\ 1, & \text{if } z \ge h_{p,\alpha} \end{cases}$$

In other words, $X_{[\alpha n]}$ converges in distribution to a random variable that takes values $-h_{p,\alpha}$ and $h_{p,\alpha}$ with probabilities (1-p) and p.

- The above result was derived for quasi-symmetric parent distributions.
- In 1982, Egorov and Nevzorov further generalized their result to an i.i.d. parent sequence X_1, \ldots, X_n with

$$G(x) = \Pr[|X| \le x]$$

whose inverse function exists.

Theorem Suppose that $k/n \to \alpha$ for $0 < \alpha < 1$ as $n \to \infty$, and let $g_{\alpha} = G^{-1}(\alpha)$. Then for 1st-order-differentiable parent density $f(\cdot)$,

$$\Pr\left[X_{[k]} < x\right] \xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } x \le g_{\alpha};\\ \frac{\lambda_1}{\lambda_1 + \lambda_2}, & \text{if } -g_{\alpha} \le x < g_{\alpha}\\ 1, & \text{if } x \ge g_{\alpha}, \end{cases}$$

where $\lambda_1 = f(g_\alpha)$ and $\lambda_2 = f(-g_\alpha)$, provided that $f'(\pm g_\alpha) < \infty$.