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Let (X1, Y1), (X9, Y2), ..., (X,,Y,) be iid. random vectors.

By sorting the 2-dimensional random vector { (X}, Y;)} according to ascending {Y;},
we obtain:

(Xpa), Yy,
where Xp(1y, Xp(2), - - -, Xpn) are named the induced order statistics or concomi-
tants of order statistics.

Example ¢, @9, ..., @, are received log-likelihood ratios.

Form a 2-dimensional vector sequence as (¢1, |p1]), (2, [@2]), - - -5 (dn, |Onl)-

Then we can sort {¢;} according to {|¢;|}, when doing the decoding/demodulating
process.
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Definition Xy, X, ..., X}, are absolute order statistics if X7,
sorted according to their absolute values.

..., X, are

Hence,

How to determine the distributions of {Xp;}?

Proposition Any symmetric random variable X satisfies that

Pr[X <z]=Pr|G|X| < 2],

where G 1L X and Pr|[G = —1] =Pr|G=1] =1/2.

Here, symmetric means that Pr[X < —|z|] =1 — Pr[X < |z|].
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Proposition (Egorov and Nevzorov 1975) For a sequence of symmetric
random variables X7, ..., X}, define Y}, = | X|. Then

(X1, ..., X,) has the same distribution as (B1Y1, ..., B,Y,),

where By, ..., B, are i.i.d. with equal marginal probability over {—1,41}, and is
independent of Y7, ...,Y,,.

e The above proposition can be generalized to quasi-symmetric random variable.

Definition (quasi-symmetric) A random variable X is quasi-symmetric if
pPriX < —|z|] = (1 = p) Pr[X > [zf],

for some 0 < p < 1.

e p = 1/2 reduces quasi-symmetric to symmetric.
e p = 1 reduces quasi-symmetric to nonnegative.

e p = 0 reduces quasi-symmetric to nonpositive.
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Proposition For a sequence of quasi-symmetric random variables X7, ..., X}
with parameter p, define Y = | X%|. Then

(X1, ..., X,) has the same distribution as (B1Y1, ..., B,Y,),
where By, ..., B, are i.i.d. with

Pr[B;=+4+1]=p and Pr[B;=-1]=1-p,

and is independent of Y7,...,Y,,.

e In light of the above proposition, the distribution of Xy, ..., X, can be es-
tablished if the parent distribution is quasi-symmetric.
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For x > 0,
PriXy < —x] = Pr[BiYy) < —1]
= pPr [Yv(k;) < —33] + (1 — p) Pr [—Yv(k) < —CE}
= pPr Yy < —z] + (1 —p)Pr |V < —z]
and
PI"[X[k] < 33] = PI[B/{YY(k) < CE]
= Pr[Bk = -|—1] PI"[YY(@ < SE] + Pl"[Bk = —1] Pr[—Yv(k) < SE]
= pPr [Y%) < x] + (1 —p) Pr[=Y;) < ]
= pPr [Y( ) < x] + (1 —p) Pr[Viypq1) < 2,
where Vi, = —| X}

Pr
Pr

For x € R,

Pr[Xpyy < 2] = pPr [V < z| + (1 = p) Pr[Vin—i1) < z].
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Theorem (Egorov and Nevzorov 1976) Let Xi,..., X, be iid. with
marginal cdf F(-). Assume F(-) has inverse function, and has Ist-order-
differentiable density f(-) satisfying

sup | f(@)] < M.

{zeR : f(z)>0}
Then
flan) (X — @) ] ( 1 L M )

sup |Pr <z|—-Px) <C + + 7
up [ B; AW AN = == R PN
where C is an absolute constant, g, = F ! (niﬂ),

g, = VEk(n—k+1)

T (n+Dvnt2

For x € R,

Pr[Xpyy < 2] = pPr [V < z| + (1 = p) Pr[Vin—i1) < z].

We can apply Egorov-Nevzorov theorem to Y3y and V{,,_j41) to give an estimate
of Pr| Xy < .
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Let G(x) and g(x) be the cdf and pdf of | X|, respectively.
Recall that F'(z) and f(x) be the cdf and pdf of X, respectively.
Then for z > 0,

G(z) = Pr[|X]| < 7]

[
Prl—z < X < 1]
= Pr[X < z] — Pr[X < —z]
_ ) _
= Pr[X <z] — . Pr[X > z] ( (1 - 1_pPr[X < —x}) — Pr[X < —x})
= lPr[X <:U] _ 0=y ( - 1| X < —x})
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For x < 0, the cdf G(z) and pdf g(z) of —|X| are respectively equal to:
. 1-F(-x) 1 |

Gla) = —— =0 = = F(@) and (o) = —f(=a) = T (a).

k n—=k+1
-G — o
#(G) =G (n+1> ( n+1 p)

Observe that

and kE+1 kE+1
~ ~ n—~r-+ n—~K-+
b1(G) =G ' — | =—F1 (1 ————p].
Gn-1+1(G) (n+1> ( 1 p)
ka1 _
For convenience, let h = F* (l—up) and h = —h.
n—+1
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By rewriting Egorov and Nevzorov’s theorem as (z = g + Sox/ f(qx)):

Slaw)(z — Qk:)) ‘ 1 1 M Py
sup |Pr | X <z—<I>( <C + T 7
eR Koy < 2] 5o VE  vVn—k+1  f(a)
and replacing X ;) in the theorem by Y{;) and V{;,,_;41), we obtain:

ap Pr [ Xy < ] — po (g(h)(;2— h)) —(1—p)® (g(h)(;2+ h)>|

h)(z—h g(h)(z — h
= sup |pPr|Y(;) < 2] — p® (g( ) )> + (1 =p)Pr[Vipsny < 2] — (1 =p)® (g( ) ))|
zeR 62 62
1 1 M62> ( 1 1 Mﬁz)
< pC + + + (1 —p)C + + =,
= (\/E vn—k+1 ¢*h) (=) vn—k+1 Vk g*h)
where !
M= swp |g@)|==sup |[f(2)
{zeR : g(z)>0} P {2>0 : f(x)>0}
and
W —/ 1 / 1 /
M= sup [g(z)[=  sup ——f(=2)|==  sup |[f(z)]=M.
{zeR : g(z)>0} {2<0 : f(=2)>0}| P P {2>0 : f(x)>0}
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Consequently.
ap Pr [ <] o (SUEEE ) - e (R0

1 1 M By
< oty )

The above inequality is useful when taking k = an, where

Bovn _ ny/(1—a)n+1
a(l —a)  (n+1)y/(1-a)(n+2)

=14+o0(l)asn — oo

and
h=hya+o(l)=F (1= (1—a)p)+o(l)asn — oo

the inequality becomes:

Py [X[om] - Z] — D (f(hp,a)(z — hp,a)\/ﬁ> (11— p)d (f(hp,a)(z + h]%a)\/ﬁ) | < C”%.

pyv/a(l —a) pva(l —a)

sup
zeR
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We conclude that as n — oo,

0, if 2 < =Ny
PriXom <z] =4 1=p, if —hpe<2<hp
1, if 2> hya

In other words, Xj,, converges in distribution to a random variable that takes
values —h,, and h,, , with probabilities (1 — p) and p.
e The above result was derived for quasi-symmetric parent distributions.

e [n 1982, Egorov and Nevzorov further generalized their result to an i.i.d. parent
sequence X1, ..., X, with

G(x) = Prf|X]| < 2

whose inverse function exists.
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Theorem Suppose that k/n — «a for 0 < a < 1 as n — oo, and let
go = G 1(a). Then for 1st-order-differentiable parent density f(-),

(

0, if © < go;
n—00 )\1 .
Pr(X; <z] =X ¢ i — g0 <1< g,
Xy < 2] oy Tse<y
1, if ¢ > ga,
\

where Ay = f(g,) and A2 = f(—ga), provided that f'(+g,) < oco.




