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Cumulative sum OR3-2

Notations Let X1, X2, . . . , Xn be a sequence of random variables.

Let Sn = X1 + · · · +Xn, and S0 = 0.

Denote by S(1), S(2), . . . , S(n) the order statistics of S1, S2, . . . , Sn.
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Assumption X1, . . . , Xn are i.i.d. with marginal mean 0 and marginal variance

σ2 > 0.

Theorem 37.7 (Skorohod embedding theorem) Suppose that X1, X2, . . .

are i.i.d. random variables with mean 0 and finite variance.

Let Sn = X1 + · · · +Xn.

Then there is a non-decreasing sequence of stopping times τ 1, τ 2, . . . such that

1. Wτn (Brownian motion) has the same distribution as Sn, and

2. τ 1, τ 2 − τ 1, τ 3 − τ 2, . . . are i.i.d. with

E[τ n − τ n−1] = E[X2
1 ]

and

E[(τ n − τ n−1)
2] ≤ 4E[X4

1 ].
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Define for each integer n a random process {Yt(n), 0 ≤ t ≤ 1} as:

Yt(n) =
S�nt�
σ
√
n
.

Theorem 37.8 if E[X4
1 ] < ∞, there exist {Zt(n), 0 ≤ t ≤ 1} and {Wt(n), 0 ≤

t ≤ 1} such that

1. {Zt(n), 0 ≤ t ≤ 1} and {Yt(n), 0 ≤ t ≤ 1} have the same finite dimensional

distribution;

2. {Wt(n), 0 ≤ t ≤ 1} is a Brownian motion;

3. lim
n→∞Pr

[
sup
0≤t≤1

|Zt(n)−Wt(n)| ≥ ε

]
= 0. (We need to know the joint distri-

bution between Zt(n) and Wt(n) in order to evaluate the mass here.)
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By similar idea of invariance principle,

Ȳt(n) =
S	nt
 + (nt− 	nt
)X	nt
+1

σ
√
n

⇒ Wt for 0 ≤ t ≤ 1,

where Wt is a Wiener process. (This is a broken-line generated by the end-points

of (k/n, Sk/(σ
√
n)).)

The above is useful in the following:

Pr

[
sup
0≤t≤1

Ȳt(n) ≤ x

]
n→∞−→ Pr

[
sup
0≤t≤1

Wt ≤ x

]
or

Pr

[
inf

0≤t≤1
Ȳt(n) ≤ x

]
n→∞−→ Pr

[
inf

0≤t≤1
Wt ≤ x

]
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or

Pr

[
sup
0≤t≤1

Ȳt(n) ≤ x ∧ inf
0≤t≤1

Ȳt(n) ≤ y ∧ Ȳ1(n) ≤ z

]
n→∞−→ Pr

[
sup
0≤t≤1

Wt ≤ x ∧ inf
0≤t≤1

Wt ≤ y ∧W1 ≤ z

]
.

Observe that

S(n)

σ
√
n
= sup

0≤t≤1
Ȳt(n) and

S(1)

σ
√
n
= inf

0≤t≤1
Ȳt(n) and

Sn

σ
√
n
= Ȳ1(n).

This immediately gives that:

Pr
[
S(n) ≤ xσ

√
n ∧ S(1) ≤ yσ

√
n ∧ Sn ≤ zσ

√
n
] n→∞−→ Pr

[
sup
0≤t≤1

Wt ≤ x ∧ inf
0≤t≤1

Wt ≤ y ∧W1 ≤ z

]
.

How about independent but non-identically distributed variables?
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Let σ2
k = Var[Xk] and E[Xk] = 0.

Let s2n = σ2
1 + σ2

2 + · · · + σ2
n.

Then re-define the broken-line process Ȳt(n) by points (s2k/s
2
n, Sk/sn).

In this case, Prohorov proved the invariance principle is also valid, i.e.,

Ȳn(t) ⇒ Wt for 0 ≤ t ≤ 1,

if Sn/sn converges to normal distribution.

Theorem If X1, X2, . . . , Xn are zero-mean independent variables, satisfying the Lindeberg

condition, then

Pr[S(n) ≤ xsn ∧ S(1) ≤ ysn ∧ Sn < zsn]
n→∞−→ Pr

[
sup
0≤t≤1

Wt ≤ x ∧ inf
0≤t≤1

Wt ≤ y ∧W1 ≤ z

]
.
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Can the theorem be further generalized?

Theorem IfX1, X2, . . . , Xn are i.i.d., and Sn/sn converges in distribution to a zero-mean

random variable with characteristic function

ϕ(θ) = exp
{
−σα|θ|α

[
1 + iβ · sign(θ) · tan

(πα
2

)]}
with σ > 0, 0 < α ≤ 2,


|β| < 1, if 0 < α < 1;

β = 0, if α = 1;

|β| ≤ 1, if 1 < α ≤ 2,

and sign(θ) =




1, if θ > 0;

0, if θ = 0;

−1, if θ < 0,

then

Pr
[
S(n) ≤ xsn∧S(n) ≤ ysn∧Sn ≤ zsn

] n→∞−→ Pr

[
sup
0≤t≤1

Zt ≤ x ∧ inf
0≤t≤1

Zt ≤ y ∧ Z1 ≤ z

]
,

where Zt be a stable process with independent increments, where Zt −Zs has charac-

teristic function ϕt−s(θ), and Z0 = 0.
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How to determine Pr

[
sup
0≤t≤1

Wt ≤ x

]
?

Answer: Fix a constant x > 0.

Since Pr[W1 = x] = 0,

Pr

[
sup
0≤t≤1

Wt ≥ x

]
= Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 ≥ x

]
+ Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 ≤ x

]

= Pr [W1 ≥ x] + Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 ≤ x

]
.

Since (over the inherited probability space (Ω,F , P )) path Wt(ω) is continuous in

t, there exists τ (ω) such that{
ω ∈ Ω : sup

0≤t≤1
Wt(ω) ≥ x

}
=
{
ω ∈ Ω : Wτ(ω)(ω) = x

}
.

Therefore, τ is a random variable defined over (Ω,F , P ) such that the two events

below are equivalent: [
sup
0≤t≤1

Wt ≥ x

]
= [Wτ = x] .
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The reflection principle.
For a stopping time τ (non-negative random variable), define

W ′′
t =

{
Wt, if t ≤ τ ;

Wτ − (Wt −Wτ ), if t ≥ τ .

�

�

Wτ

τ

Wt

W ′′
t

As anticipated, W ′′
t is a Brownian motion.



Invariance principle and extreme order statistics OR3-11

By the reflection principle,

Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 ≤ x

]
= Pr [Wτ = x ∧W1 ≤ x]

= Pr [W ′′
τ = x ∧W ′′

1 ≤ x]

= Pr [Wτ = x ∧ 2Wτ −W1 ≤ x]

(Take t = τ for the 1st term, and t = 1 for the 2nd term.)

= Pr [Wτ = x ∧W1 ≥ x]

= Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 ≥ x

]
= Pr [W1 ≥ x] ,

which implies that for x > 0:

Pr

[
sup
0≤t≤1

Wt ≥ x

]
=

{
2 Pr [W1 ≥ x] = 2(1− Φ(x)), x > 0

0, otherwise

where Φ(·) is the unit Gaussian cdf. We conclude that for real x,

Pr

[
sup
0≤t≤1

Wt ≤ x

]
=

{
2Φ(x)− 1, x > 0

0, otherwise
= max{0, 2Φ(x)− 1}
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How to determine Pr

[
sup
0≤t≤1

Wt ≤ x ∧W1 ≤ y

]
?

Answer: Again, use the reflection principle.

Φ(y) = Pr[W1 < y]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 < y

]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr [Wτ = x ∧W1 < y]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr [W ′′

τ = x ∧W ′′
1 < y]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr [Wτ = x ∧ 2Wτ −W1 < y]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr [Wτ = x ∧W1 > 2x− y]

= Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
+ Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 > 2x− y

]
.
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Consequently,

Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
=




Pr

[
sup
0≤t≤1

Wt < x

]
, if y ≥ x > 0;

Φ(y)− Pr

[
sup
0≤t≤1

Wt ≥ x ∧W1 > 2x− y

]
, if y < x

(i.e., 2x− y > x)

=

{
2Φ(x)− 1, if y ≥ x > 0;

Φ(y)− Pr [W1 > 2x− y] , if y < x; (2x− y > x)

=

{
2Φ(x)− 1, if y ≥ x > 0;

Φ(y) + Φ(2x− y)− 1, if y < x.
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How to determine the cdf of inf0≤t≤1Wt?

Using the reflection principle with τ = 0, we have

Pr

[
inf

0≤t≤1
Wt < x

]
= Pr

[
inf

0≤t≤1
W ′′

t < x

]

= Pr

[
inf

0≤t≤1
(−Wt) < x

]

= Pr

[
sup
0≤t≤1

Wt > −x

]

= 1−max{0, 2Φ(−x)− 1}

= min{1, 2Φ(x)}.
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How to determine the cdf of sup0≤t≤1 |Wt|?
Also by repeatedly using the reflection principle (details are omitted here),

Pr

[
sup
0≤t≤1

|Wt| < x

]
= Pr

[
−x < inf

0≤t≤1
Wt ≤ sup

0≤t≤1
Wt < x

]

=
∞∑

k=−∞
(−1)k

[
Φ((2k + 1)x)− Φ((2k − 1)x)

]

= 1− 4

π

∞∑
k=1

(−1)k

2k + 1
exp

{
−π2(2k + 1)k

8x2

}
.
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When the concerned distribution of maximal order statistics is the sum se-

quence S1, S2, . . . , Sn given that Sn = g, a Brownian bridge becomes the limit

process instead of the Brownian motion.

Definition A Brownian bridge {W (a)
t , 0 ≤ t ≤ 1} is a Wiener process Wt condi-

tioned on W1 = a.
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Pr

[
sup
0≤t≤1

Wt < x ∧W1 < y

]
=

{
2Φ(x)− 1, if y ≥ x > 0;

Φ(y) + Φ(2x− y)− 1, if y < x.

Distribution of sup0≤t≤1W
(a)
t .

Pr

[
sup
0≤t≤1

Wt < x

∣∣∣∣ a ≤ W1 < a + ε

]

=
Pr

[
sup0≤t≤1Wt < x ∧ a ≤ W1 < a + ε

]
Pr [a ≤ W1 < a + ε]

=
Pr

[
sup0≤t≤1Wt < x ∧W1 < a + ε

]− Pr
[
sup0≤t≤1Wt < x ∧W1 < a

]
Pr [a ≤ W1 < a + ε]

=




0, if x ≤ a;
2Φ(x)− Φ(a)− Φ(2x− a)

Φ(a + ε)− Φ(a)
, if a < x ≤ a + ε;

Φ(a + ε) + Φ(2x− a− ε)− Φ(a)− Φ(2x− a)

Φ(a + ε)− Φ(a)
, if x > a + ε.

Hence, as ε ↓ 0,

Pr

[
sup
0≤t≤1

W
(a)
t < x

]
= 1− e−2x(x−a) for x > a.


