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Cumulative sum OR3.2

Notations Let X, Xo, ..., X, be a sequence of random variables.
Let S, = X1+ -+ X, and Sy = 0.
Denote by S(1y, S@), - - ., S the order statistics of S, 5s, ..., S,.
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Assumption Xi,..., X, are i.i.d. with marginal mean 0 and marginal variance
2
o > 0.

Theorem 37.7 (Skorohod embedding theorem) Suppose that X, Xo, ...
are 1.i.d. random variables with mean 0 and finite variance.

Let S, = X1+ -+ X,.

Then there is a non-decreasing sequence of stopping times 71, 79, . .. such that

1. W, (Brownian motion) has the same distribution as S,,, and

2. T1,T9g —T1,T3 — T9,...are iid. with

and
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Define for each integer n a random process {Y;(n),0 <t < 1} as:

_ St
o\/n

Yi(n)

Theorem 37.8 if E[X{] < oo, there exist {Z;(n),0 <t < 1} and {W;(n),0 <

t < 1} such that

1. {Z;(n),0 <t <1} and {Yy(n),0 <t < 1} have the same finite dimensional

distribution;

2. {Wi(n),0 <t < 1} is a Brownian motion;

3. lim Pr | sup |Zy(n) — Wi(n)| > | = 0. (We need to know the joint distri-

n—0o0 0<t<1

bution between Z;(n) and Wi(n) in order to evaluate the mass here.)
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By similar idea of invariance principle,

_ S\l + (nt — |nt)) X,
Y;f(n): |nt| ( O-\/Lﬁ J) |nt]+1

where W, is a Wiener process. (This is a broken-line generated by the end-points
of (k/n,Sk/(o/n)).)

The above is useful in the following:

:>Wtfor0§t§1,

I3
-

Pr| sup Yi(n) < r|sup W, <ux
| 0<t<1 i | 0<i<1 i

or

I3
-

Pr| inf Yi(n)<uw r| inf W, <ux
0<i<1 _ 0<i<1 _
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or

Pr | sup Yi(n) <z A int mn)gymm)gz]

L 0<i<1 0<t<1

n—o0 [ .

— Pr|sup Wy <axA inf W, <yAW; Sz] .
| 0<t<1 0<t<1

Observe that

S(n) = sup Yy(n) and &: inf Yy(n) and
oyvn  0<t<1 oy/n  0<t<1 o\/n

This immediately gives that:

Pr [S(n) < zovn A Sy Sya\/ﬁ/\Sngza\/ﬁ] X Pr | sup thx/\oigtlilwtgy/\wl < z|.

0<t<1

How about independent but non-identically distributed variables?
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Let o7 = Var[X}] and E[X}] = 0.

Let 2 =0 +05+ -+ 02

Then re-define the broken-line process Y;(n) by points (s2/s2, Sk/s).
In this case, Prohorov proved the invariance principle is also valid, i.e.,

Y.(t) = W, for 0 <t <1,

if S, /s, converges to normal distribution.

Theorem If X, Xy, ..., X, are zero-mean independent variables, satisfying the Lindeberg
condition, then

Pr(Sy < 25, A Sy < ysn A Sp < 28] X Pr|sup W<z A inf W, <yAW; <z
0<t<1 0<t<1
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Can the theorem be further generalized?

Theorem If X1, Xy, ..., X, arei.id., and S,/s, converges in distribution to a zero-mean
random variable with characteristic function

() = exp {—Oafe‘a [1 +14f - sign(f) - tan (%)] }

witho > 0,0 < a < 2,

6l <1, f0<a<l,; 1, if6>0:
=0, ifa=1; and sign(f) =< 0, if 8 =0;
8 <1, fl<a<2, —1, if 6 <0,

then

Pr [S(n) < x5, AS(n) < YspASy < zsn] T pr sup Zy <ax A\ inf 2, <yNZ <z|),
0<t<1 0<t<1

where Z; be a stable process with independent increments, where Z; — Z has charac-
teristic function ¢'~%(#), and Zy = 0.
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How to determine Pr [ sup W; < SC] 7
0<t<1

Answer: Fix a constant 2 > 0.
Since Pr[W; = x] = 0,

Pr[sup Wth] — Pr[sup WthAW12x1+Pr[sup Wth/\ngx]

0<t<1 0<t<1 0<t<1

— Pr[lex]+Prlsup WtZ:C/\ngsr:].

0<t<1

Since (over the inherited probability space (€2, F, P)) path Wi(w) is continuous in
t, there exists 7(w) such that

{w € Q : sup Wiw)> az} ={weQ : Wyyw) =z}.
0<t<1

Therefore, 7 is a random variable defined over (€2, F, P) such that the two events
below are equivalent:

s W o] = (7, =],

0<t<1
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The reflection principle.

For a stopping time 7 (non-negative random variable), define

W — Wi, ittt <
! WT—(Wt—WT), ift > .

As anticipated, W} is a Brownian motion.
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By the reflection principle,

0<t<1

Pr | sup WtZ:C/\ngsr:] = Pr(Wr =2 AW <z

= Pr(W/ =z AW < 1]
= PI’[WTZI/\QWT—ngﬂi]
(Take t = 7 for the 1st term, and ¢ = 1 for the 2nd term.)
= PriWr.=axAW; > 1]
= Pr[sup Wi>ax AW >

0<t<1

= Pr|[W; > a],

which implies that for z > 0:

Pr[sup Wy > x

0<t<1

] B {2Pr[W12:c]—2(1—q>(x)), >0

0, otherwise

where ®(-) is the unit Gaussian cdf. We conclude that for real x,

0<t<1 0, otherwise

Pr [ sup W, < SC] = {2(1)(3;) —hoe=l max{0, 2P (z) — 1}
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How to determine Pr

0<t<1

sup thx/\Wlﬁy]?

Answer: Again, use the reflection principle.

O (y)

Pr[W1 < y]

Pr

Pr

Pr

Pr

Pr

Pr

sup Wy <x AW;

l0<t<1

sup Wy < x AW,

| 0<t<1

sup Wy <x AW;
0<t<1

sup Wy < x AW,
0<t<1

sup Wy <x AW,
0<t<1

sup Wy < x AW,

L0<t<1

+Pr[sup Wy>ax AW <y
0<t<1
—|—P1”[WT:£U/\W1<y]
+Pr[W! =2z AW/ <y
+ Pr(We =x A2W, — W < 9]

+ Pr[W, =x AWy > 2z —

+Pr|sup Wy >2ax AW > 20—y .
0<t<1
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Consequently,

)
Pr[suth<x], if y >x > 0;

0<t<1

N\

Pr | sup Wt<:€/\W1<y] =

0<t<1

O(y) —Pr|sup Wy >ax AWy >2x—y|, fy<zx

0<t<1

\ (ie., 2x —y > x)
B {2@(33)—1, if y >z >0;

O(y) — Pr (Wi >2x —y], ify<az, (2x—y>ux)
B {2@($)—1, if y>x>0;

Oy) + P2z —y) — 1, if y <.
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How to determine the cdf of infy<;<; W;?

Using the reflection principle with 7 = 0, we have

Pr [ inf W; < CL’] = Pr| inf W/'< SC]

0<t<1 0<t<1

= Pr| inf (=W))< a:]

0<t<1

= Pr| sup Wy > —a:]

0<t<1
= 1 —max{0,20(—x) — 1}

= min{1,20(x)}.
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How to determine the cdf of supy<;-; |[W;|?

Also by repeatedly using the reflection principle (details are omitted here),

Pr|sup [Wy|<a| = Pr|l—z< inf W, < sup W<z
0<t<1 0<t<l 0<t<1
o0

= Y (~DF[@((2k + D)z) — (2K — 1)a)]

k=—o00

o éi (=) exp{_w2(2k+ 1),€}.

812
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When the concerned distribution of maximal order statistics is the sum se-
quence St,S9,...,S, given that S, = ¢, a Brownian bridge becomes the limit
process instead of the Brownian motion.

Definition A Brownian bridge {Wt(a), 0 <t <1} isa Wiener process W, condi-
tioned on W; = a.
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20 () — 1, if y>x>0;

Pr[sup Wt<af/\W1<y] - {@(y)+¢(23;_y)—1, if y < x.

0<t<1

Distribution of supy,<; W,

Pr| sup Wy <z

| 0<t<1
Pr :supogtgl Wi<zANa<W; < a+5]

Pria < W) <a+ ¢

Pr :SUpogtg Wy<zANW) <a-+ 6] — Pr [supogtgl Wy <axz AW < a}
Pria < W) <a+ ¢

a§W1<a+5]

2

0. if ¢ < a;
2@(33)_@(@)—@(23:—@)’ ifa<az<a+e;
= < Ola+e) — P(a)
Plat+e)+P2r—a—¢e)—Pla) —P2xr —a) |
, itz >a+e.
\ P(a+¢e) — Pla)

Hence, as € | 0,

Pr [ sup Wt(a) < SC] = 1 —e 209 for g > q.

0<t<1




