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Distribution of the two-end order statistic OR2-2

Assumption X1, . . . , Xn are i.i.d. with marginal cdf F (·).
Then

F(n)(x) = Pr[X(n) ≤ x]

= Pr[ max
1≤i≤n

Xn ≤ x]

= Pr[X1 ≤ x ∧ · · · ∧Xn ≤ x]

= Pr[X1 ≤ x] · · ·Pr[Xn ≤ x]

= Fn(x).

Likewise,

F(1)(x) = Pr[X(1) ≤ x]

= 1− Pr[X(1) > x]

= 1− (1− F (x))n.

How about the distribution of X(r)?
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F(r)(x) = Pr[X(r) ≤ x]

= Pr[at least r of the Xi are less than or equal to x]

=
n∑
i=r

(
n

i

)
F i(x)[1− F (x)]n−i

= IF (x)(r, n− r + 1).

For a > 0, b > 0 and 0 ≤ p ≤ 1,

Ip(a, b) =

∫ p

0

ta−1(1− t)b−1dt∫ 1

0

ta−1(1− t)b−1dt

is the incomplete beta function.

A well-known result for the incomplete beta function is:

n∑
i=r

(
n

i

)
pi(1− p)n−i = Ip(r, n− r + 1).
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If X has density, then so does X(r).

The density of X(r) is equal to:

f(r)(x) =
dIF (x)(r, n− r + 1)

dx

=
1∫ 1

0

tr−1(1− t)n−rdt

d

dx

∫ F (x)

0

tr−1(1− t)n−rdt

=
1

B(r, n− r + 1)
Fr−1(x)[1− F (x)]n−rf(x),

where

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt =
Γ(a)Γ(b)

Γ(a + b)

is the Euler beta function, and Γ(a) =
∫∞
0 ta−1e−tdt is the Euler gamma function.
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Denote the joint density function ofX(r) andX(s) by the assumed existing f(r,s)(x, y),

where 1 ≤ r < s ≤ n.

f(r,s) can be derived in an explicit way for x < y.

(f(r,s)(x, y) = 0 for x > y!)

In other words,

Pr
[(
x < X(r) ≤ x + δx

) ∧ (
y < X(s) ≤ y + δy

)]
The above event can be described as:

1. (r − 1) of X ’s are less than x;

2. one X ’s lies between x and x + δx;

3. (s− r − 1) of X ’s lies between x + δx and y;

4. one X ’s lies between y and y + δy;

5. (n− s) of X ’s is larger than y + δy.
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r − 1 1 s− r − 1 1 n− s

x x + δx y y + δy

Hence, we can estimate f(r,s)(x, y) for x < y through:

n!

(r − 1)! · 1! · (s− r − 1)! · 1! · (n− s)!
×

Fr−1(x)[F (x+ δx)− F (x)][F (y)− F (x + δx)]s−r−1[F (y + δy)− F (y)][1− F (y)]n−s.

By dividing δx and δy and letting them approaching 0, we obtain that for x < y,

f(r,s)(x, y)

=
n!

(r − 1)! · (s− r − 1)! · (n− s)!
Fr−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s.
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As a result, for x1 < x2 < · · · < xk,

f(n1,...,nk)(x1, . . . , xk)

=
n!

(n1 − 1)!(n2 − n1 − 1)! · · · (n− nk)!

Fn1−1(x1)f(x1)[F (x2)− F (x1)]
n2−n1−1f(x2)[F (x3)− F (x2)]

n3−n2−1 · · · f(xk)[1− F (xk)]
n−nk

= n!


 k∏

j=1

f(xj)




 k∏

j=0

[F (xj+1)− F (xj)]
nj+1−nj−1

(nj+1 − nj − 1)!


 ,

where x0 = −∞, xk+1 = ∞, n0 = 0 and nk+1 = n + 1.



Joint distribution of several order statistics OR2-8

The joint cdf of X(r) and X(s), where 1 ≤ r < s ≤ n, can be derived directly (or

by integrating f(r,s)(x, y)) as that for x < y:

F(r,s)(x, y) = Pr
[
at least r of X ′s ≤ x and at least s of X ′s ≤ y

]
=

n∑
j=s

j∑
i=r

Pr [exactly i of X ′s ≤ x and exactly j of X ′s ≤ y]

=
n∑

j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j,

and for x ≥ y,

F(r,s)(x, y) = Pr
[
at least r of X ′s ≤ x and at least s of X ′s ≤ y

]
= Pr

[
at least s of X ′s ≤ y

]
= F(s)(y).
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Since we have the joint distribution of X(r) and X(s), we can derive the distribution

of range W(r,s) = X(s) −X(r).

f(r,s)(x, y)

=
n!

(r − 1)! · (s− r − 1)! · (n− s)!
Fr−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s.

ω(r,s)(w) =

∫ ∞

−∞
f(r,s)(x, w + x)dx (for w > 0)

f(1,n)(x, y) =
n!

(n− 2)!
f(x)[F (y)− F (x)]n−2f(y).

ω(1,n)(w) =

∫ ∞

−∞

n!

(n− 2)!
f(x)f(w + x)[F (w + x)− F (x)]n−2dx
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The cdf of W(1,n) is:

Ω(1,n)(w) =

∫ w

0

∫ ∞

−∞

n!

(n− 2)!
f(x)f(z + x)[F (z + x)− F (x)]n−2dxdz

=

∫ ∞

−∞

n!

(n− 2)!
f(x)

∫ w

0

f(z + x)[F (z + x)− F (x)]n−2dzdx

=

∫ ∞

−∞

n!

(n− 2)!
f(x)

(
1

n− 1
[F (z + x)− F (x)]n−1

∣∣∣∣w
0

)
dx

=

∫ ∞

−∞
nf(x)[F (w + x)− F (x)]n−1dx.
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Example Suppose f(x) = 1 for 0 ≤ x < 1, and 0, otherwise.

• F(r)(x) = IF (x)(r, n−r+1) = Ix(r, n−r+1) for 0 ≤ x < 1, and 0, otherwise.

• For 0 ≤ x < 1,

f(r)(x) =
1

B(r, n− r + 1)
Fr−1(x)[1− F (x)]n−rf(x)

=
1

B(r, n− r + 1)
xr−1(1− x)n−r

So, X(r) is beta distributed.

• For 1 ≤ r < s ≤ n and 0 ≤ x ≤ y ≤ 1,

f(r,s)(x, y)

=
n!

(r − 1)!(s− r − 1)!(n− s)!
Fr−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s

=
n!

(r − 1)!(s− r − 1)!(n− s)!
xr−1(y − x)s−r−1(1− y)n−s.
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• (0 ≤ x ≤ y = w + x ≤ 1)

ω(r,s)(w) =

∫ 1−w

0

n!

(r − 1)!(s− r − 1)!(n− s)!
xr−1((w + x)− x)s−r−1(1− (w + x))n−sdx

=
n!

(r − 1)!(s− r − 1)!(n− s)!
ws−r−1

∫ 1−w

0

xr−1((1− w)− x))n−sdx

=
n!

(r − 1)!(s− r − 1)!(n− s)!
w(s−r)−1(1− w)n−(s−r)

∫ 1

0

zr−1(1− z)n−sdz

(Let x = z(1− w).)

=
n!

(r − 1)!(s− r − 1)!(n− s)!
w(s−r)−1(1− w)n−(s−r)B(r, n− s + 1)

=
n!

(r − 1)!(s− r − 1)!(n− s)!
w(s−r)−1(1− w)n−(s−r)Γ(r)Γ(n− s + 1)

Γ(n+ r − s + 1)

=
n!

(r − 1)!(s− r − 1)!(n− s)!
w(s−r)−1(1− w)n−(s−r)(r − 1)!(n− s)!

(n + r − s)!

=
n!

((s− r)− 1)!(n− (s− r))!
w(s−r)−1(1− w)n−(s−r),

which is also beta distributed, and is only dependent on s − r and not on

individual r and s. �
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Discrete parents

Assume (without loss of generality) that X takes values over {0, 1, 2, . . .}.
The distribution of X(r) is still:

F(r)(x) = Pr[X(r) ≤ x]

= Pr[at least r of the Xi are less than or equal to x]

=
n∑
i=r

(
n

i

)
F i(x)[1− F (x)]n−i

= IF (x)(r, n− r + 1).

So for non-negative integer x,

Pr[X(r) = x] = F(r)(x)− F(r)(x− 1)

= IF (x)(r, n− r + 1)− IF (x−1)(r, n− r + 1).
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The joint cdf of X(r) and X(s), where 1 ≤ r < s ≤ n, can be derived directly as

that for non-negative integers x < y:

F(r,s)(x, y) = Pr
[
at least r of X ′s ≤ x and at least s of X ′s ≤ y

]
=

n∑
j=s

j∑
i=r

Pr [exactly i of X ′s ≤ x and exactly j of X ′s ≤ y]

=
n∑

j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j,

and for non-negative integers x ≥ y,

F(r,s)(x, y) = Pr
[
at least r of X ′s ≤ x and at least s of X ′s ≤ y

]
= Pr

[
at least s of X ′s ≤ y

]
= F(s)(y).

This gives that for non-negative integers x ≤ y,

Pr[X(r) = x ∧X(s) = y] =




F(r,s)(x, y)− F(r,s)(x− 1, y)− F(r,s)(x, y − 1) + F(r,s)(x− 1, y − 1),

if x ≤ y;

0, if x > y.
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An alternative but equivalent expression for Pr[X(r) = x ∧X(s) = y] is as follows.

For non-negative integers x and y with x < y,

(r − i) ≤ (r − 1)

(r − i)
< x

(i + t)
x · · ·x

(s− u) ≤ (s− 1)

(s− u− (r + t))
> x and < y

(u + j)
y · · · y

(n− (s + j))
> y

Denote Pr[X = x] by px.

Then the probability of the above snapshot case is equal to:

Fr−i(x− 1)pi+t
x [F (y − 1)− F (x)]s−u−r−tpu+j

y [1− F (y)]n−s−j
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Therefore,

Pr[X(r) = x ∧X(s) = y]

=
∑

(r−i)≤(r−1),(s−u)≤(s−1),j≥0,t≥0
r−i≥0,i+t≥1,s−u−(r+t)≥0,u+j≥1,n−(s+j)≥0

Ai,j,u,tF
r−i(x− 1)pi+t

x [F (y − 1)− F (x)]s−u−r−tpu+j
y [1− F (y)]n−s−j

=
r∑

i=1

n−s∑
j=0

s−r∑
u=max{1−j,1}=1

s−r−u∑
t=max{1−i,0}=0

Ai,j,u,tF
r−i(x− 1)pi+t

x [F (y − 1)− F (x)]s−u−r−tpu+j
y [1− F (y)]n−s−j,

where

Ai,j,u,t =
n!

(r − i)!(i + t)!(s− u− r − t)!(u + j)!(n− s− j)!
.
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Observe that

Ai,j,u,t =
n!

(r − i)!(i + t)!(s− u− r − t)!(u + j)!(n− s− j)!

=

(
n!

(r − 1)!(s− r − 1)!(n− s)!

)(
(r − 1)!

(i− 1)!(r − i)!

)(
(n− s)!

j!(n− s− j)!

)
(

(s− r − 1)!

(s− u− r)!(u− 1)!

)(
(s− u− r)!

(s− u− t− r)!t!

)(
(i− 1)!t!

(i + t)!

)(
j!(u− 1)!

(u + j)!

)
= Crs

(
r − 1

i− 1

)(
n− s

j

)(
s− r − 1

u− 1

)(
s− u− r

t

)

×
(∫ 1

0

zi−1(1− z)tdz

)(∫ 1

0

θj(1− θ)u−1dθ

)
,

where Crs =
n!

(r − 1)!(s− r − 1)!(n− s)!
.

For nonnegative integers a and b,∫ 1

0

ta(1− t)bdt =
a!b!

(a + b + 1)!
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Hence,

Pr[X(r) = x ∧X(s) = y]

= Crs

r∑
i=1

n−s∑
j=0

s−r∑
u=1

s−r−u∑
t=0

(
r − 1

i− 1

)(
n− s

j

)(
s− r − 1

u− 1

)(
s− u− r

t

)
Fr−i(x− 1)pi+t

x [F (y − 1)− F (x)]s−u−r−tpu+j
y [1− F (y)]n−s−j(∫ 1

0

∫ 1

0

zi−1(1− z)tθj(1− θ)u−1dzdθ

)

= Crs

∫ 1

0

∫ 1

0

r∑
i=1

n−s∑
j=0

s−r∑
u=1

s−r−u∑
t=0

(
r − 1

i− 1

)(
n− s

j

)(
s− r − 1

u− 1

)(
s− u− r

t

)
Fr−i(x− 1)pi+t

x [F (y − 1)− F (x)]s−u−r−tpu+j
y [1− F (y)]n−s−jzi−1(1− z)tθj(1− θ)u−1dzdθ

= Crs

∫ F (y)

F (y−1)

∫ F (x)

F (x−1)

[
s−r∑
u=1

(
s− r − 1

u− 1

)
[v − F (y − 1)]u−1

×
s−r−u∑
t=0

(
s− u− r

t

)
[F (y − 1)− F (x)]s−u−r−t[F (x)− w]t

×
r∑

i=1

(
r − 1

i− 1

)
Fr−i(x− 1)[w − F (x− 1)]i−1

n−s∑
j=0

(
n− s

j

)
[1− F (y)]n−s−j[F (y)− v]j

]
dwdv,

where v = F (y)− θpy and w = F (x− 1) + zpx.
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Pr[X(r) = x ∧X(s) = y]

= Crs

∫ F (y)

F (y−1)

∫ F (x)

F (x−1)

[
s−r∑
u=1

(
s− r − 1

u− 1

)
[v − F (y − 1)]u−1

s−r−u∑
t=0

(
s− u− r

t

)
[F (y − 1)− F (x)]s−u−r−t[F (x)− w]t

r∑
i=1

(
r − 1

i− 1

)
Fr−i(x− 1)[w − F (x− 1)]i−1

n−s∑
j=0

(
n− s

j

)
[1− F (y)]n−s−j[F (y)− v]j

]
dwdv

= Crs

∫ F (y)

F (y−1)

∫ F (x)

F (x−1)

[
s−r∑
u=1

(
s− r − 1

u− 1

)
[v − F (y − 1)]u−1[F (y − 1)− w]s−r−u

︸ ︷︷ ︸
(v−w)s−r−1

wr−1(1− v)n−s

]
dwdv

= Crs

∫ F (y)

F (y−1)

∫ F (x)

F (x−1)

(v − w)s−r−1(1− v)n−swr−1dwdv

=
n!

(r − 1)!(s− r − 1)!(n− s)!

∫ F (y)

F (y−1)

∫ F (x)

F (x−1)

wr−1(v − w)s−r−1(1− v)n−sdwdv.
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Interesting though, the pmf Pr[X(r) = x ∧ X(s) = y] is the integration over the

region (F (x− 1), F (x))× (F (y − 1), F (y)) for the density:


n!

(r − 1)!(s− r − 1)!(n− s)!
wr−1(v − w)s−r−1(1− v)n−s, for 0 ≤ w ≤ v < 1;

0, otherwise.

This density is the f(r,s)(x, y) in the aforementioned example (cf. Slide OR2-11).

This is similar to do the qnantiles on the cdf of f(r,s)(x, y)

(Recall that f(r,s)(x, y) is the joint density of the order statistics, denoted by U(r)

and U(s), for uniform-over-[0, 1) parent distribution).
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Can we establish a parent-distribution-free theory on order statistics? For example,

x is the medium satisfying F (x) = 1/2. Then,

Pr[X(r) ≤ x < X(s)]

=

x∑
i=0

∞∑
j=x+1

Pr[X(r) = i ∧X(s) = j]

=
x∑

i=0

∞∑
j=x+1

Pr[F (i− 1) ≤ U(r) < F (i) ∧ F (j − 1) ≤ U(s) < F (j)]

=
x∑

i=0

Pr[F (i− 1) ≤ U(r) < F (i) ∧ U(s) ≥ F (x)]

= Pr[U(r) < F (x) ∧ U(s) ≥ F (x)]

= Pr

[
U(r) <

1

2
≤ U(s)

]
,

which has nothing to do with the shape of function F .
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Define the quantile of random variable X as:

Q(p)
�
= sup{x ∈ � : F (x) ≤ p}.

Observation The probability of Q(p) belonging to [X(r), X(s)) for 1 ≤ r < s ≤
n, namely

Pr
[
X(r) ≤ Q(p) < X(s)

]
,

is independent of the distribution of X !

• This observation allows us to construct the distribution-free confidence

intervals for Q(p).
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Observe that

Pr[X(r) ≤ Q(p)] = Pr[X(r) ≤ Q(p) ∧X(s) > Q(p)] + Pr[X(r) ≤ Q(p) ∧X(s) ≤ Q(p)]

= Pr[X(r) ≤ Q(p) < X(s)] + Pr[X(s) ≤ Q(p)],

which implies that if F (·) has inverse function,
Pr[X(r) ≤ Q(p) < X(s)] = Pr[X(r) ≤ Q(p)]− Pr[X(s) ≤ Q(p)]

= IF (Q(p))(r, n− r + 1)− IF (Q(p))(s, n− s + 1)

= Ip(r, n− r + 1)− Ip(s, n− s + 1)

=
n∑
i=r

(
n

i

)
pi(1− p)n−i −

n∑
i=s

(
n

i

)
pi(1− p)n−i

=

s−1∑
i=r

(
n

i

)
pi(1− p)n−i,

which is independent of F (·).
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In case F (·) has no inverse function,

Pr[X(r) < Q(p) < X(s)] ≤
s−1∑
i=r

(
n

i

)
pi(1− p)n−i ≤ Pr[X(r) ≤ Q(p) ≤ X(s)].

Observation The probability that [X(r) ≤ a and X(s) > a] is still dependent on

the distribution of F (·).
For example, if F (·) has inverse function,

Pr[X(r) ≤ a < X(s)] =

s−1∑
i=r

(
n

i

)
F i(a)(1− F (a))n−i.
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Define π(r, s, n, p) =

s−1∑
i=r

(
n

i

)
pi(1− p)n−i.

Definition Confidence intervals with confidence coefficient ≥ 1− α.

• For given n and p, make (s− r) as small as possible subject to π(r, s, n, p) ≥
1− α.

Example For given p = 1/2 (and any n),

π(r, s, n, 1/2) =
s−1∑
i=r

(
n

i

)(
1

2

)n

=

(
1

2

)n s−1∑
i=r

(
n

i

)
.

Then for fixed d = (s − r), π(r, s, n, 1/2) is largest, if r =
⌊
n+1
2

− d
2

⌋
and s =⌊

n+1
2 + d

2

⌋
.

Notably, Q(1/2) is the median.



Distribution-free confidence intervals for quantiles OR2-26

Some researchers approximate (1 − α) confident interval for the median in terms

of normal approximation of binomial distribution, which is accurate at n large.

B1, . . . , Bn are i.i.d., and take values from {0, 1}.
Suppose Pr[B1 = 1] = p.

Then B1 + · · · +Bn is binomial distributed with

Pr[B1 + · · · +Bn = k] =

(
n

k

)
pk(1− p)n−k.

The central limit theorem says that

(B1 + · · · +Bn)− np√
p(1− p)n

⇒ N.
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So

π

(⌊
n + 1

2
− d

2

⌋
,

⌊
n + 1

2
+

d

2

⌋
, n,

1

2

)
= Pr

[⌊
n + 1

2
− d

2

⌋
≤ B1 + · · · +Bn <

⌊
n + 1

2
+

d

2

⌋]
≈ Pr

[
n

2
− d

2
≤ B1 + · · · +Bn <

n

2
+

d

2

]

= Pr

[
− d√

n
≤ (B1 + · · · +Bn)− n/2√

(1/4)n
<

d√
n

]

≈ Φ

(
d√
n

)
− Φ

(
− d√

n

)
.

Hence,

Φ

(
d√
n

)
− Φ

(
− d√

n

)
= 2Φ

(
d√
n

)
− 1 ≥ 1− α implies

d√
n
≥ Φ−1

(
1− α

2

)
,

or equivalently,

d = r − s ≥ √
nΦ−1

(
1− α

2

)
.
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In other words, to have (1− α)-confident interval for the median is obtained by:

• Obtain n random samples.

• Calculate d =
√
nΦ−1

(
1− α

2

)
.

• Let

r =

⌊
n + 1

2
− d

2

⌋
and

s =

⌊
n + 1

2
− d

2

⌋
.

• Then the median should be between X(r) and X(s) with (1− α) confidence.

Namely, (in terms of normal approximation)

Pr
[
X(r) ≤ median < X(s)

] ≥ 1− α.
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Example

• Obtain 100 random samples.

• Calculate d = 10 · Φ−1

(
1− 0.05

2

)
= 10 · 1.96 = 19.6.

• Let

r =

⌊
101

2
− 19.6

2

⌋
= 40

and

s =

⌊
101

2
− 19.6

2

⌋
= 60.

• Then the median should be between X(40) and X(60) with 95% confidence.

Namely, (in terms of normal approximation)

Pr
[
X(40) ≤ median < X(60)

] ≥ 0.95.
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We usually estimate mean by (X1 + · · · +Xn)/n.

But how confident is this estimate?

Rigorously, one should say the mean should lie between

X1 + · · · +Xn

n
− ε and

X1 + · · · +Xn

n
+ ε

with confidence level at least (1− α), where

Pr

[
X1 + · · · +Xn

n
− ε ≤ m <

X1 + · · · +Xn

n
+ ε

]
≥ 1− α,

where m is the true mean.
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How to estimate the standard deviation of a distribution?

Answer: In term of quantile interval estimate.

Lemma For q > p,

Pr
[
X(s) −X(r) ≥ Q(q)−Q(p)

] ≥ Ip(r, n− r + 1)− Iq(s, n− s + 1)

and

Pr
[
X(v) −X(u) ≤ Q(q)−Q(p)

] ≥ Iq(v, n− v + 1)− Ip(u, n− u + 1).

Proof:

Pr
[
X(s) −X(r) ≥ Q(q)−Q(p)

] ≥ Pr
[
X(s) ≥ Q(q) ∧X(r) ≤ Q(p)

]
≥ Pr[X(s) ≥ Q(q)] + Pr[X(r) ≤ Q(p)]− 1

= Pr[X(r) ≤ Q(p)]− Pr[X(s) < Q(q)]

≥ Ip(r, n− r + 1)− Iq(s, n− s + 1),

Pr[X(r) ≤ Q(p)] = IF (Q(p))(r, n− r + 1) ≥ Ip(r, n− r + 1) ≥ Pr[X(r) < Q(p)].
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and therefore,

Pr
[
X(v) −X(u) ≤ Q(q)−Q(p)

]
= Pr

[
X(u) −X(v) ≥ Q(p)−Q(q)

]
≥ Iq(v, n− v + 1)− Ip(u, n− u + 1).

�
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Observation For any α, where 0 < α < 1, there exists one set of integers r, s, u

and v for which

Pr
[
X(s) −X(r) ≥ Q(q)−Q(p)

] ≥ 1− 1

2
α

and

Pr
[
X(v) −X(u) ≤ Q(q)−Q(p)

] ≥ 1− 1

2
α.

Therefore,

Pr
[
X(v) −X(u) ≤ Q(q)−Q(p) ≤ X(s) −X(r)

]
≥ Pr

[
X(s) −X(r) ≥ Q(q)−Q(p)

]
+ Pr

[
X(v) −X(u) ≤ Q(q)−Q(p)

]− 1

≥
(
1− 1

2
α

)
+

(
1− 1

2
α

)
− 1

= 1− α.
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In the proof of the previous lemma, we actually require:

Pr
[
X(s) ≥ Q(q) ∧X(r) ≤ Q(p)

] ≥ 1− 1

2
α.

and

Pr
[
X(u) ≥ Q(p) ∧X(v) ≤ Q(q)

] ≥ 1− 1

2
α.

This can be re-written as:

Pr
[
X(s) ≥ Q(q) > Q(p) ≥ X(r)

] ≥ 1− 1

2
α.

and

Pr
[
Q(q) ≥ X(v) ≥ X(u) ≥ Q(p)

] ≥ 1− 1

2
α.

This is why [X(r), X(s)] and [X(u), X(v)] are named outer and inner confidence

intervals for the quantile interval [Q(p), Q(q)].
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Then for any two constants 0 ≤ β, γ ≤ 1, tolerance interval seeks random variables

L and V such that

Pr [F (V )− F (L) ≥ γ] ≥ β.

Lemma Pr [F (V )− F (L) ≥ γ] is independent of the parent distribution F (·) if,
and only if, L and V are order statistics (such as X(r) and X(s)).

In this lemma, L and V are allowed to be X(0) = −∞ and X(n+1) = +∞.

Idea of the proof.

• F (X(r)) and F (X(s)) can be viewed as U(r) and U(s), where U(r) and U(s) are

simply the order statistics corresponding to a uniform parent distribution in

[0, 1).

• As a consequence, (if F (·) has inverse function)
Pr[F (X(s))− F (X(r)) ≥ γ] = Pr[U(s) − U(r) ≥ γ]

= Pr[W(s,r) ≥ γ]

= 1− Iγ(s− r, n− (s− r) + 1).
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Example Suppose that F has inverse function. For r = 1 and s = n, we have

Pr[F (X(n))− F (X(1)) ≥ γ] = Pr[U(n) − U(1) ≥ γ]

= Pr[W(1,n) ≥ γ]

= 1− Iγ(n− 2, 2)

= 1−
∫ γ

0 zn−2(1− z)dz∫ 1

0 zn−2(1− z)dz

= 1−
1

n−1γ
n−1 − 1

nγ
n

1
n−1 − 1

n

≥ β,

which is equivalent to:

nγn−1 − (n− 1)γn ≤ 1− β.

With the above inequality, we can solve “how large n should be to satisfy

it?” For example, γ = 0.95 and β = 0.9, the minimum n to satisfy the above

inequality is 77.
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Premise: 1 ≤ r < s ≤ n

We already know that for y ≥ x,

f(r,s)(x, y)

=
n!

(r − 1)! · (s− r − 1)! · (n− s)!
Fr−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s,

and

f(r)(x) =
n!

(r − 1)!(n− r)!
Fr−1(x)f(x)[1− F (x)]n−r.

This implies that

fX(s)|X(r)
(y|x) =

fX(r,s)
(x, y)

fX(r)
(x)

=
(n− r)!

(s− r − 1)!(n− s)!

[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s

[1− F (x)]n−r

=
(n− r)!

((s− r)− 1)!((n− r)− (s− r))!

×
(
F (y)− F (x)

1− F (x)

)(s−r)−1(
1− F (y)− F (x)

1− F (x)

)(n−r)−(s−r)(
f(y)

1− F (x)

)
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Observation fX(s)|X(r)
(y|x) over population of size n with parent density f(·) is

nothing but fX̄(s−r)
(·) over population of size (n− r) with parent density

f�(y) =




f(y)

1− F (x)
, for y ≥ x;

0, for y < x



Marcovian of order statistics OR2-39

Premise: 1 ≤ n1 < n2 < · · · < nk ≤ n

We already know that for x1 ≤ x2 ≤ · · · ≤ xk,

f(n1,...,nk)(x1, . . . , xk) = n!


 k∏

j=1

f(xj)




 k∏

j=0

[F (xj+1)− F (xj)]
nj+1−nj−1

(nj+1 − nj − 1)!


 ,

where x0 = −∞, xk+1 = ∞, n0 = 0 and nk+1 = n + 1.

We can similarly prove that:

fX(s)|X(r),X(r−1),...,X(1)
(y|x(r), x(r−1), . . . , x(1)) = fX(s)|X(r)

(y|x(r))

Observation X(1), X(2), . . . , X(n) forms a first-order Markov chain for a parent

distribution with density.
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Example (implication of Markovian) Suppose the parent density is e−x for

x ≥ 0.

Then the joint distribution of X(1), X(2), . . . , X(n) for 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn is

given by:

f(1,...,n)(x1, . . . , xn) = n!


 n∏

j=1

f(xj)




 n∏

j=0

[F (xj+1)− F (xj)]
(j+1)−j−1

((j + 1)− j − 1)!




= n!


 n∏

j=1

e−xj




= n! exp


−

n∑
j=1

xj


 .

Observe that with x0 = 0,

n∑
j=1

(n− j + 1)(xj − xj−1) =




n (x1 − x0)

+ (n− 1) (x2 − x1)

+ (n− 2) (x3 − x2)

· · ·
+ (xn − xn−1)




=
n∑

j=1

xj.
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Hence,

f(1,...,n)(x1, . . . , xn) = n! exp


−

n∑
j=1

(n− j + 1)(xj − xj−1)




= n!

n∏
j=1

exp {−(n− j + 1)(xj − xj−1)}

By defining Yj = (n− j + 1)(X(j) −X(j−1)), where X(0) = 0. I.e.,


Y1

Y2

Y3
...

Yn−1

Yn



=




n 0 0 · · · 0 0

−(n− 1) (n− 1) 0 · · · 0 0

0 −(n− 2) (n− 2) · · · 0 0
... ... ... ... · · · ...

0 0 0 · · · 2 0

0 0 0 · · · −1 1







X(1)

X(2)

X(3)
...

X(n−1)

X(n)



,

which gives that

f(y1, . . . , yn) =
n∏

i=1

exp{−yi} for each yi ∈ [0,∞).

This immediately implies that Y1, Y2, . . . , Yn are i.i.d. with exponential parent density.
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Notably,

f(1,...,n)(x1, . . . , xn) =




n!
n∏

j=1

exp {−xj} , for x1 ≤ x2 ≤ · · · ≤ xn;

0, otherwise.

does not mean that X(1), X(2), . . . , X(n) are i.i.d., even if the pdf is a “product

form”.

Observation 1 In this example, first-order Markovian of X(1), X(2), . . . , X(n) al-

lows us to transform it to an i.i.d. sequence Y1, Y2, . . . , Yn, where

Yi = (n− i + 1)(X(i) −X(i−1))

or equivalently

X(i) = X(i−1) +
Yi

n− i + 1
.

This indicates that X(1), X(2), . . . , X(n) forms an additive Markov chain.

Observation 2 In this example,

X(r) =

r∑
i=1

(X(i) −X(i−1)) =

r∑
i=1

Yi

n− i + 1
.
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Example Suppose the parent density of U(1), . . . , U(n) is uniformly distributed

over (0, 1].

Then − logU(n), . . . ,− logU(1) forms order statistics with exponential parent den-

sity, where − logU(n) ≤ . . . ≤ − logU(1).

Pr[− logU ≤ x] = Pr[U ≥ e−x] = 1− e−x.

The previous example then suggests:

Yn−i+1 = i
[(− logU(i)

)− (− logU(i+1)

)]
= i log

U(i+1)

U(i)

is i.i.d., where U(0) = 1.

This implies that (
U(i+1)

U(i)

)i

= exp {Yn−i+1}
is also i.i.d.

Observation U(i+1) = U(i) · i
√
Zi forms a multiplicative Markov chain, where

{Zi} is i.i.d.
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Example Suppose the parent distribution of X(1), X(2), . . . , X(n) is standard nor-

mal distributed.

Then the joint distribution of X(1), X(2), . . . , X(n) for 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn is

given by:

f(1,...,n)(x1, . . . , xn) = n!


 n∏

j=1

f(xj)




 n∏

j=0

[F (xj+1)− F (xj)]
(j+1)−j−1

((j + 1)− j − 1)!




= n!


 n∏

j=1

1√
2π

e−x2j/2




=
n!

(2π)n/2
exp


−1

2

n∑
j=1

x2j


 .

Observe that with x0 = 0,

n∑
j=1

(n− j + 1)(x2j − x2j−1) =




n (x21 − x20)

+ (n− 1) (x22 − x21)

+ (n− 2) (x23 − x22)

· · ·
+ (x2n − x2n−1)




=
n∑

j=1

x2j.



Marcovian of order statistics OR2-45

Hence,

f(1,...,n)(x1, . . . , xn) =
n!

(2π)n/2
exp


−1

2

n∑
j=1

(n− j + 1)(x2j − x2j−1)




= n!

n∏
j=1

1√
2π

exp

{
−(n− j + 1)

2
(x2j − x2j−1)

}

By defining

Yj = Sj

√
(X2

(j) −X2
(j−1))

1/(n− j + 1)
,

where X(0) = 0 and Pr[Sj = +1] = Pr[Sj = −1] = 1/2 and {Sj} ⊥⊥ {Xj}, we
obtain:

f(y1, . . . , yn) =

n∏
i=1

1√
2π

exp{−y2i /2}.

This immediately implies that Y1, Y2, . . . , Yn are i.i.d. with standard normal parent density.
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Well-known property of i.i.d. (standard normal) Gaussian:

1. X̄ ⊥⊥ (Xi − X̄) for every i.

Proof: Xi − X̄ and X̄ are jointly Gaussian distributed. Hence, uncorrelation

implies independence between them.

E
[
(Xi − X̄)X̄

]
= E




Xi − 1

n

n∑
j′=1

Xj′




1

n

n∑
j=1

Xj






= E


1

n

n∑
j=1

XiXj − 1

n2

n∑
j=1

n∑
j′=1

XjXj′




=
1

n
− 1

n2
n

= 0 = E[(Xi − X̄)]E[X̄ ].

2. X̄ is independent of any function of {(Xi − X̄)}ni=1, such as range W(1,n) =

max1≤j≤n(Xj − X̄)−min1≤j≤n(Xj − X̄).

3. X̄ is independent of W(r,s) = X(s) −X(r).
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Assumption Now suppose X1, X2, . . . , Xn are only independent, but not neces-

sarily identically distributed.

Denote their distributions by F1(·), F2(·), . . . , Fn(·), respectively.
Then

F(n)(x) = Pr[X(n) ≤ x]

= Pr[ max
1≤i≤n

Xn ≤ x]

= Pr[X1 ≤ x ∧ · · · ∧Xn ≤ x]

= Pr[X1 ≤ x] · · ·Pr[Xn ≤ x]

=

n∏
i=1

Fi(x).

Likewise,

F(1)(x) = Pr[X(1) ≤ x]

= 1− Pr[X(1) > x]

= 1− Pr[ min
1≤i≤n

Xn > x]

= 1−
n∏

i=1

(1− Fi(x)).
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F(r)(x) = Pr[X(r) ≤ x]

= Pr[at least r of the Xi are less than or equal to x]

=
n∑
i=r

∑
{(j1,...,jn)∈Pn : j1<···<ji and ji+1<···<jn}

i∏
	=1

Fj�(x)
n∏

	=i+1

[1− Fj�(x)],

where the set Pn consists of all permutations of (1, 2, . . . , n).
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Theorem (Sen 1970) Define F̄ (x) =
1

n

n∑
i=1

Fi(x).

1. For all real y,

Pr

[
X(1) ≤ y

∥∥∥∥(F1, F2, . . . , Fn)

]
≥ Pr

[
X(1) ≤ y

∥∥∥∥(F̄ , F̄ , . . . , F̄ )

]
with equality holding only if F1(y) = F2(y) = · · · = Fn(y) = F̄ (y).

2. For integer 2 ≤ r ≤ n − 1, real x satisfying F̄ (x) ≤ (r − 1)/n and real y

satisfying F̄ (y) ≥ r/n,

Pr

[
x < X(r) ≤ y

∥∥∥∥(F1, F2, . . . , Fn)

]
≥ Pr

[
x < X(r) ≤ y

∥∥∥∥(F̄ , F̄ , . . . , F̄ )

]
,

with equality holding only if F1(x) = F2(x) = · · · = Fn(x) = F̄ (x) and

F1(y) = F2(y) = · · · = Fn(y) = F̄ (y).

3. For all real y,

Pr

[
X(n) ≤ y

∥∥∥∥(F1, F2, . . . , Fn)

]
≤ Pr

[
X(n) ≤ y

∥∥∥∥(F̄ , F̄ , . . . , F̄ )

]
with equality holding only if F1(y) = F2(y) = · · · = Fn(y) = F̄ (y).
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Lemma (Hoeffding) Let pi be the probability of success at the ith trial, and

suppose each trial is independent.

Denote by S the number of success after n trials.

Then

Pr [S ≤ c‖(p1, p2, . . . , pn)] ≤ Pr [S ≤ c‖(p̄, p̄, . . . , p̄)] if 0 ≤ c ≤ np̄− 1,

and

Pr [S ≤ c‖(p1, p2, . . . , pn)] ≥ Pr [S ≤ c‖(p̄, p̄, . . . , p̄)] if np̄ ≤ c ≤ n,

where p̄ = (p1 + p2 + · · · + pn)/n, provided that c is an integer.

• Notably, E[S] = np̄ is the margin point.

Proof of Sen’s Theorem: We first prove Case 2 (in terms of Hoeffding’s

Lemma).

Define a success at the ith trial to be [Xi ≤ y].
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Then

Pr[X(r) ≤ y‖(F1, . . . , Fn)]

= Pr[S > r − 1‖(F1(y), . . . , Fn(y))]

= 1− Pr[S ≤ r − 1‖(F1(y), . . . , Fn(y))]{ ≥ 1− Pr[S ≤ r − 1‖(F̄ (y), . . . , F̄ (y))], if 0 ≤ r − 1 ≤ nF̄ (y)− 1

≤ 1− Pr[S ≤ r − 1‖(F̄ (y), . . . , F̄ (y))], if nF̄ (y) ≤ r − 1 ≤ n


≥ Pr[S > r − 1‖(F̄ (y), . . . , F̄ (y))], if 1 ≤ r︸ ︷︷ ︸
always valid

≤ nF̄ (y)

≤ Pr[S > r − 1‖(F̄ (y), . . . , F̄ (y))], if nF̄ (y) + 1 ≤ r ≤ n + 1︸ ︷︷ ︸
always valid{ ≥ Pr[X(r) ≤ y‖(F̄ , . . . , F̄ )], if F̄ (y) ≥ r/n

≤ Pr[X(r) ≤ y‖(F̄ , . . . , F̄ )], if F̄ (y) ≤ (r − 1)/n
. (1)

Hence, when F̄ (x) ≤ (r − 1)/n and F̄ (y) ≥ r/n and r = 2, . . . , n− 1,

Pr[x < X(r) ≤ y‖(F1, . . . , Fn)]

= Pr[X(r) ≤ y‖(F1, . . . , Fn)]− Pr[X(r) ≤ x‖(F1, . . . , Fn)]

≥ Pr[X(r) ≤ y‖(F̄ , . . . , F̄ )]− Pr[X(r) ≤ x‖(F̄ , . . . , F̄ )]

= Pr[x < X(r) ≤ y‖(F̄ , . . . , F̄ )].
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Inequality (1) has already proved that

Pr[X(1) ≤ y‖(F1, . . . , Fn)] ≥ Pr[X(1) ≤ y‖(F̄ , . . . , F̄ )] for F̄ (y) ≥ 1/n

and

Pr[X(n) ≤ y‖(F1, . . . , Fn)] ≤ Pr[X(n) ≤ y‖(F̄ , . . . , F̄ )] for F̄ (y) ≤ (n− 1)/n.

Here, we need to further prove their validity for all y ∈ �.
The other two cases can be proved as follows.

Pr[X(n) ≤ y‖(F1, . . . , Fn)] =

n∏
i=1

Fi(y)

≤
[
1

n

n∑
i=1

Fi(y)

]n

(Geometric mean ≤ arithmetic mean)

= F̄ n(y)

= Pr[X(n) ≤ y‖(F̄ , . . . , F̄ )],
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and

Pr[X(1) ≤ y‖(F1, . . . , Fn)] = 1− Pr[X(1) > y‖(F1, . . . , Fn)]

= 1−
n∏

i=1

(1− Fi(y))

≥ 1−
[
1

n

n∑
i=1

(1− Fi(y))

]n

= 1− [
1− F̄ (y)

]n
= Pr[X(1) ≤ y‖(F̄ , . . . , F̄ )].

�

Lemma (Sen 1970)∣∣median(X(r)‖(F1, . . . , Fn))−median(X(r)‖(F̄ , . . . , F̄ ))
∣∣ ≤ qr − qr−1,

provided that qr and qr−1 are uniquely defined by F̄ (qr) = r/n and F̄ (qr−1) =

(r − 1)/n, where median(Z) denotes the median of random variable Z.
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Suppose F1, . . . , Fn have densities f1, . . . , fn.

f(r,s)(x, y‖(F1, . . . , Fn)) =
1

(r − 1)!(s− r − 1)!(n− s)!

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(x) F2(x) · · · Fn(x)
... ... · · · ...

F1(x) F2(x) · · · Fn(x)

f1(x) f2(x) · · · fn(x)

F1(y)− F1(x) F2(y)− F2(x) · · · Fn(y)− Fn(x)
... ... · · · ...

F1(y)− F1(x) F2(y)− F2(x) · · · Fn(y)− Fn(x)

f1(y) f2(y) · · · fn(y)

1− F1(y) 1− F2(y) · · · 1− Fn(y)
... ... · · · ...

1− F1(y) 1− F2(y) · · · 1− Fn(y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

there are (r − 1) rows of F1(x), F2(x), . . . , Fn(x),

there are (s− r− 1) rows of F1(y)−F1(x), F2(y)−F2(x), · · · , Fn(y)−Fn(x), and

there are (n− s) rows of 1− F1(y), 1− F2(y), · · · , 1− Fn(y).


