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Distribution of the two-end order statistic

Assumption X1,..., X, are i.i.d. with marginal cdf F(-).

Then
F(n)(:r:) = PF[X(H) < SU]
= Pr[max X,, < z]
1<i<n
Pr(X; <z|---PrlX, <=z
= F"(x).
Likewise,

F(l)(x) = PT[X(l) < z]
= 11— Pl”[X(l) > :C]
— 11— (1= F(2)"

How about the distribution of X7
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Density of X (r)

F(ﬂ(%) = PI[X(T) < QZ]

= Prfat least  of the X; are less than or equal to z]

n

- > (1)Fwn - Fop

1=r

= Ip@)(r,n —1r+1).
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Fora>0,b>0and 0 <p <1,

P
/ t N1 — )t

1
N1 — ) dt
0

[p(av b) =

is the incomplete beta function.
A well-known result for the incomplete beta function is:

n

1=r

2. (::L)p"(l =P =L(rn—r 1),




Density of X (r) OR2-4

[f X has density, then so does X,

The density of X, is equal to:

dlpy(r,n—r+1)
fola) = —& .

1 d [F@
— / N1 — )" dt
0

! d
/ t N1 =) " dt !
0

1 r—1 n—r
T By TR

where
o ! a—1 —1 _F(a)F(b)
B(a,b)—/ot (1—1) dt_F(a+b)

is the Buler beta function, and I'(a) = [, t“"'e~"dt is the Euler gamma function.




Joint distribution of several order statistics OR2.5

Denote the joint density function of X, and X, by the assumed existing f,. 5)(z,y),
where 1 <r < s <n.

Jirs) can be derived in an explicit way for z < y.
(firs)(,y) =0 for z > y!)

In other words,
Pr [(az <Xy <z +5x) A (y < X < y+5y)]

The above event can be described as:

1. (r — 1) of X'’s are less than x;

2. one X's lies between x and x + dx;

3. (s —r — 1) of X’s lies between = + dx and y;

4. one X's lies between y and y + dvy;

5. (n — s) of X's is larger than y + dy.



Joint distribution of several order statistics

r—1 ‘1‘ s—r—1 ‘1‘ n—s
| |

r x4 ox Yy y+doy
Hence, we can estimate f(,. o\(z,y) for x <y through:

n!
(r—1!- 1 (s=—r—1!-1l-(n—s)!

X
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Froi(a)[F(z + 0x) — F(2)|[F(y) — Flz + 0x)]" " [F(y + dy) — F(y)][1 — F(y)]"~.

By dividing 2 and dy and letting them approaching 0, we obtain that for x < v,

f(r,s) (33, y)

n!

- F7 N @) f(@)[Fy) = ) f )l = Fy)",

(r—1!-(s—=r—=1! (n—=s)



Joint distribution of several order statistics OR2-7

As a result, for r1 < xo < -+ < 2y,

(ny — Dl(ng —ny — ) (n—ny)!
F™ ) f (@) [F(w2) — Fla)]"™ ™ f(w2) [Fws) — Fao)]™ 7" flag)[L— Fag)]" ™

)

F Tjt+1 — F X 1=l
H[ (zj41) = F(z))]

(nj1—mn;—1)!




Joint distribution of several order statistics OR2-8

The joint cdf of X,y and Xy, where 1 <7 < s < n, can be derived directly (or
by integrating f(, s(z,y)) as that for x < y:

Fig)(z,y) = Prlat least r of X's < x and at least s of X's < y]

noJ
_ ZZPr[exactlyiofX’sgazand exactly j of X's < y]
jsir
= F'(z)[F(y) — F(2) [l — F(y)]"’
;;Z,]_Z = @IF) = P = Py,

and for x > vy,

Fg(z,y) = Prlat least r of X's <z and at least s of X's < y]
= Pr[at least s of X's < y]



Distribution of the range OR2-9

Since we have the joint distribution of X,y and X(,), we can derive the distribution
of range W(r,s) = X(S) — X(r).

f(r,s) (LC, y)
n!

=Dl (s—r—1l (n— s)!FT_l(x)f(x)[F(y) — F(@) " fy)[l = Fly)]"™.

Wirs) (W) = / fos) (@, w+ x)dr  (for w > 0)

n!

oy @FE) - F (@)]"*f(y)-

f(l,n) (33, y) —

i) = [ @)+ )P+ ) = P




Distribution of the range OR2-10

The cdf of Wiy p)

fz+)[F(z +z) — F(z)]" *dxdz

/ flz+)[F(z+z) — F(2)]" *dzdx

/ (n —2)! ( 1[F(Z+$)—F(fv)]“:)da:
/ F(w+ 1) — F(z)]" da.




Distribution of the range OR2-11

Example Suppose f(x) =1 for 0 <z < 1, and 0, otherwise.
o Fioy(x) = Ip@)(r,n—r+1) = L(r,n—r+1) for 0 <z <1, and 0, otherwise.

e for 0 <z <1,

foy(x) = Birn i - 1)Fr_l(:r;)[l — F(2)]" " f(x)

1

r—1 n—r
- 1 —
B(fr‘,n—r—kl)x ( z)

S0, X, 18 beta distributed.

eforl<r<s<nand0<zx<y<lI,

fors)(@:y)
n!
— TS it @ @IF) - FEITT @l - Pyl
n!

B Py Ak A T



Distribution of the range OR2-12

e <zr<y=w+azx<1)

bw n!
)W) = /0 e (e =) = )

n)

B (r—1)(s — 7".— Dl(n — 5)!ws_r_ /0 7L~ w) —2)de

n! !
— (s—r)—1 1 — n—(s—r) r—1 1 — )54
(r—l)!(s—r—l)!(n—s)!w (1= w) /0 @l = =)z

(Let x = 2(1 — w).)

n! s—r)—1 n—(s—r
B (r—l)!(s—r—l)!(n—s)!w< T w) B = s 4+ 1
_ n! w(s—r)—l(l o w)n—(s—r)F(T)F(n — S+ 1)
(r—1l(s—r—1)!(n-—-s)! (n+r—s+1)
_ n! w(s—r)—l(l o w)n—(s—r) (T _ 1)'(77“ _ S)'
(7‘—1)!(3—7“'— Dl(n—s)! (n4+7r—s)!

_ w(s—r)—l(l o w)n—(s—r)’

(s=r)=Dln—(s—1))

which is also beta distributed, and is only dependent on s — r and not on

individual r and s. o



Order statistics for discrete parents OR2-13

Discrete parents
Assume (without loss of generality) that X takes values over {0,1,2,...}.
The distribution of X, is still:

Fioy(x) = Pr[X) < o]

= Prfat least  of the X; are less than or equal to z]

= > (1) - For

1=r

= [F(x>(7‘,n —7r—+ 1)
So for non-negative integer x,

PI“[X(T) :Jj‘] = F(T)(JS)—F(T>(JS‘—1)
= Ippy(r,n—r+1) = Ipp_y)(r,n —r+1).



Order statistics for discrete parents OR2-14

The joint cdf of X(,) and X (), where 1 < 7 <'s < n, can be derived directly as
that for non-negative integers x < y:

Fig)(z,y) = Prlat least r of X's < x and at least s of X's < y]

noJ
— ZZPr [exactly 7 of X's < x and exactly 7 of X's < 9]

jsir

- S

J=s 1=r

F'(x)[Fy) — F(2)/ "1 = Fy)]"™,

and for non-negative integers = > v,
Fos(z,y) = Pr [at least 7 of X's < x and at least s of X's < y}
= Pr[at least s of X's < y]

This gives that for non-negative integers x < y,
F(r,s)(xa y) _ 17(7”,8)(3j - 17 y) - F(r,s)(xay - 1) + F(r,s)(x - 17y - 1)7

PriX;wyw=a2 A Xy =y = it 2 <y
0, if x> .



Order statistics for discrete parents OR2-15

An alternative but equivalent expression for Pr[X,y = A X(5) = y] is as follows.

For non-negative integers x and y with = < v,

(r—i)<(r—1) (s —u) < (s—1)
(r —1) (i+1) (s—u—(r+1t)) (utj) (n—=(s+])
<x XTI > and <y y-y >y

Denote Pr[X = x] by p,.
Then the probability of the above snapshot case is equal to:

Froe =1)p[Fly — 1) = F(z)) ™7 'py ™[ = F(y)"

X



Order statistics for discrete parents OR2-16

Therefore,
PriX() =2 A X =y
(r—i)<(r—1),(s—u)<(s—1),7>0,t>0
r—i>0,i+t>1,s—u— ( t)>0,u+j>1,n—(s+5)>0

s—u—r—t, u+j

Az‘,j%tFT_i( 1)pzx+t[F(y — 1) — F(x)] P, 11— F(y)]n_s_j

T n—s s—=r S—Ir—u
=1 j=0 y=max{1—j,1}=1t=max{1—i,0}=0
s—u—r—t, u+j

Aijud " (@ = D" [Fy — 1) = F(a)] py L= F(y)]",

where
) n!
ST )G+ (s —u— 7 — O u+ ) (n— s — )




Order statistics for discrete parents OR2-17

Observe that

(r— )i +t)(s I(n—s—j)!
<<r— 1>!<s—?!— 1>!<n—s>!> ((z’ _“1;(:)! z')!) (j!(?gnss.)!j)!)
() () () ()
) _

1

NG R [




Order statistics for discrete parents OR2-18
Hence,

RS ()
(e = g [Py = 1) = PP = Py

( /0 | /0 | 21— 2)'0 (1 - 0)“1dzd9)
e [EEEE ()0

i=1 j=0 u=1 (=0

Pz = 1 Fly — 1)~ P~ P27 (1~ 201 — )" dzdd
F)  pF@) 57 7o oo .
ST T B D oY QRN RV
<X (T Fw -0 - ) - ol
<> (1)) - Fe -0 (M) - PR - va'] dud,

where v = F(y) — 0p, and w = F(x — 1) + zp,.



Order statistics for discrete parents

,T ( B f)F( ~ D~ Fla - 1>]“2 (” ) )

Fly)  pF()

u—1

F(y—1) J F(x—1)

OR2-19

1= Fy)]"[F(y) — v} ] dwdv

ij (8 Y 1) v—Fly—D" ' [Fly—1) —w] " w1 - v)“] dwdv

4

(v_w>s—r—1

Fly)  pF(z)
- Crs/ / (U - w)s—r—1<1 — U)n_swr_ldwdfu
F(y—1) J F(x—1)
n!

/F(y) /F(w) 1( ) 1( |
— w (v —w)TT 1 — )" Pdwdv.
(r =D s —r—=1DUn —3s)! Jry-1) Jrpe)



Order statistics for discrete parents OR2-20

Interesting though, the pmf Pr[X(,y = x A X() = y| is the integration over the
region (F(x — 1), F(x)) X (F(y — 1), F(y)) for the density:
n!

(r—DlYs—r—1)n—s)!
0, otherwise.

w v —w) =), for 0 < w < v < 1

This density is the f;. (2, ) in the aforementioned example (cf. Slide OR2-11).

This is similar to do the gnantiles on the cdf of f, o (z,y)
(Recall that f(, o(z,y) is the joint density of the order statistics, denoted by U
and Uy, for uniform-over-[0, 1) parent distribution).



Order statistics for discrete parents OR2-21

Can we establish a parent-distribution-free theory on order statistics? For example,
x is the medium satisfying F'(z) = 1/2. Then,

Pl”[X(ﬂ <z < X(S)]

— Z Z Pr[X(y = A X(5) = J]

ina:—i—l

— Z Z PriF(i—1) < Uy < FR) ANF(j —1) < Uy < F(j)]

i= 0] il
= PI[U(T) <F( )/\U(s) ZF(CE)]
1
— Pr|U — < U,
r[(T)<2— (S>]7

which has nothing to do with the shape of function F'.




Distribution-free confidence intervals for quantiles  oro2

Define the quantile of random variable X as:

Qp) £ sup{z € R: F(z) < p}.

Observation The probability of Q)(p) belonging to [X(,), X(y)) for 1 <r < s <
n, namely

Pr [ X < Qp) < X(y)
is independent of the distribution of X !

e This observation allows us to construct the distribution-free confidence
intervals for Q(p).




Distribution-free confidence intervals for quantiles  oro2s

Observe that
PrX) < Q(p)] = Pr[X() < Qp) A X(5) > Qp)] + Pr[X) < Qp) A X(5) < Q(p)]

which implies that if F(+) has inverse function,
PT[X(r) < Q(p) < X(s)] — PF[X(T) < Q(p)] - Pr[X(s) < Q(p)]
= IF(Q(p))(Ta n—r-+ 1) — [F(Q(p))(s, n—s+ 1)

= I(rrn—r+1)—1I(s,n—s+1)

n n

=2 (Zb)pi(l )" =) (Zb)pi(l —p)"

1=r 1=S8

s—1

-y (?)p@(l—p)m,

1=r

which is independent of F'(-).



Distribution-free confidence intervals for quantiles  oroa

In case F'(-) has no inverse function,

PriX) < Q(p Z ( ) p)"" < Pr[X() < Qp) < X(y).

Observation The probability that [ X,y < a and X, > a is still dependent on
the distribution of F'(-).

For example, if F'(-) has inverse function,

PI”[X(T) <a< X(S)] — z_: (7;) Fi(a)(l — F(a))n—z‘.

1=r




Distribution-free confidence intervals for quantiles  oro2s

s—1

Define (r, s,n,p) = Z (Zb)pz(l —p)"

1=r

Definition Confidence intervals with confidence coefficient > 1 — «.

e For given n and p, make (s — r) as small as possible subject to 7(r, s,n,p) >
1—a.

Example For given p = 1/2 (and any n),

s S0 - €V EC)

1=r 1=r

Then for fixed d = (s — r), w(r,s,n,1/2) is largest, if r = VTH — gJ and s =
5+ 3]

Notably, Q(1/2) is the median.




Distribution-free confidence intervals for quantiles  oroa

Some researchers approximate (1 — «) confident interval for the median in terms
of normal approximation of binomial distribution, which is accurate at n large.

By, ..., B, are ii.d., and take values from {0, 1}.
Suppose Pr[B; = 1] = p.
Then By + - -+ + B,, is binomial distributed with

Pe[By 4 -+ B, = k] = (”)pm _ )yt

The central limit theorem says that
Bi+---+ B,) —
(Bi+---+B,) —np N
p(l —p)n

N.




Distribution-free confidence intervals for quantiles

OR2-27

So
n+1 d n+1 d 1
7T 5| + y 1y =
2 2 2 2 2
n+1 d n+1
— _ 2| < ..
pr_{ : 2J_Bl+ B, {2 “
‘n d n d
~ Pr|l——=<2B B -
r 5 5 = 1+ + n<2-|—2]
_ Py _d S(Bl+ +Bn)—n/2 d
|V (1/4)n Vn
Mp(i _cp(_i
n Vn
Hence,
d d d

()

or equivalently,

/n

)

d:r—szﬁcb_l(l—g).

NG

)

—121—Ozimplies—2<b—1
n

2




Distribution-free confidence intervals for quantiles  oros

In other words, to have (1 — a)-confident interval for the median is obtained by:

e Obtain n random samples.

o Calculate d = /n &~ (1 — %)

e [t

and

VM—I dJ
s = ——1.
2 2

e Then the median should be between X(,) and X, with (1 — «) confidence.
Namely, (in terms of normal approximation)

Pr [X(T) < median < X(S)} >1—a.



Distribution-free confidence intervals for quantiles  oro2

Example

e Obtain 100 random samples.

0.05
e Calculate d = 10 - d~! (1 — T) = 10-1.96 = 19.6.

o Lot 101 19.6
r = — —— | =40
2 2
and 101 19.6
§ = { — J = 60.
2 2

e Then the median should be between X 49y and X4y with 95% confidence.
Namely, (in terms of normal approximation)

Pr [X(40) S median < X(GO)} Z 0.95.



Distribution-free confidence intervals for quantiles  oras0

We usually estimate mean by (X7 + -+ + X,,)/n.

But how confident is this estimate?

Rigorously, one should say the mean should lie between

X1+ + X, X1+ + X,
—¢& and

+ £
n n

with confidence level at least (1 — «), where

Xi+--+X Xi+-+X
pr | 21 T _e<m< ! "4l >1—-q,
n

where m is the true mean.




Distribution-free confidence intervals for quantiles  oroa

How to estimate the standard deviation of a distribution?

Answer: In term of quantile interval estimate.

Lemma For g > p,
Pr [X(S) —X(T) > Q(q) —Q(p)} > L(r,n—r+1)—I,(s,n—s+1)
and

Pr | X)) — Xw < Qq) — Qp)] > Ijlv,n—v+1) — L(u,n —u+1).

Proof:
Pr X — X > Qg) — Qp)] > Pr[Xy) >Qg) A <Q(p)]
> PifX > Q) - Pr[ < Q) -1
= Pr[X(,) < Q(p)] — Pr[X(5) < Q(q)]
le(rn—fr‘Jr 1) —I,(s,n—s+1),

PF[X(H < Q(p)] = IF(Q(p))(T, n—r-4+ 1) > [p(T, n—r-+ 1) > Pl”[X(r) < Q(p)]




Distribution-free confidence intervals for quantiles  oros

and therefore,

Pr [ X, — Xw < Qg) — Q(p)] Pr | X — Xu > Qp) — Q(q)]

I,(v,n—v+1)—L(u,n—u-+1).

AVARR



Distribution-free confidence intervals for quantiles  oross

Observation For any «, where 0 < a < 1, there exists one set of integers r, s, u
and v for which

and

W

i
e

i
=
|

i
2

1V
TN
| —
|
I
Q
"
_|_
AN
| —
|
DO | —
Q
N~
|
| —

|

—
|

Q



Distribution-free confidence intervals for quantiles  oros

In the proof of the previous lemma, we actually require:

PrXu > QAN Xp <Qlp)] > 1- %a.
and

Pr X0y > Q) A Xy < Q)] > 1- o
This can be re-written as:

Pr[Xe > QM) > Q) > X)) > 1- 2.
and

PrQ(q) > Xp) > X 2 Qp)] 2 1- %04-

This is Why [X(T),X(S)] and [X(

u)s X ()] are named outer and inner confidence
intervals for the quantile interval [Q(p

), Q(q)].



Distribution-free tolerance intervals OR2-35

Then for any two constants 0 < 3,y < 1, tolerance interval seeks random variables
L and V" such that
Pr[F(V) = F(L) = 4] = B,

Lemma Pr [F (V) — F(L) > 7] is independent of the parent distribution F'(-) if,
and only if, L and V' are order statistics (such as X,y and Xy)).

In this lemma, L and V" are allowed to be X ) = —00 and X(,11) = +00.

Idea of the proof.
o (X)) and F'(X(y) can be viewed as U,y and Uy, where U,y and Uy, are

simply the order statistics corresponding to a uniform parent distribution in
0,1).

e As a consequence, (if F'(+) has inverse function)

Pr{F (X)) — F(X(y)) 291 = PrU — Uy 2 7]
= PI[W(SM > 7]

= 1—-IL(s—rn—(s—r)+1).




Distribution-free tolerance intervals OR2-36

Example Suppose that F' has inverse function. For r = 1 and s = n, we have

PrF (X)) — F(Xqy) > 7] = Pr[Uy) —Upny > 7]

Pr[W(l,n) > /7]
= 1—[7(72 2,2
_ ) 21— 2)dz
fol 2"2(1 — 2)dz
1 n—1 1 _.n
1! T
i S
n—1 n
> f,

which is equivalent to:
ny" T = (n—1)y" < 1B

With the above inequality, we can solve “how large n should be to satisfy
it?” For example, v = 0.95 and f = 0.9, the minimum n to satisfy the above
inequality is 77.



Conditional distribution of order statistics OR2-37

Premise: 1 <r<s<n

We already know that for y > x,

j?ns)ttay)
n!

= T Ot @/@IFE) - PP L - Pl

and

n! r—1 n—r
fo) = =t @@l = F@)

This implies that

X 9) (n—r)! [F(y) — F(z)" "' f(y)[l — F(y)]"*

oo W) = =p G T G—r—Dln—s) 1= Fla))"~
(n—r)!
(s =r) = DU(n —7r) = (s = 7))

()




Conditional distribution of order statistics OR2-38

Observation fX(s
nothing but fX(s_r)(') over population of size (n — r) with parent density

f(y)
fly) =4 1-F(z)
0, for y < x

h® (y|z) over population of size n with parent density f(-) is

, fory >




Marcovian of order statistics OR2-39

Premise: 1 <nj<nyg<---<np<n

We already know that for x1 <z < -+ < 2y,

k k njp1—nj—1
fongmp) (@15 2p) = 1 H f(z) H $J+?ij+1 - Efjj)] 31; / |
j=1 j=0
where g = —00, xr11 =00, ng = 0 and nyyq1 =n + 1.
We can similarly prove that:
FX (01X 0 X oy Xy WIT @) Tim)s - 1) = fx g 1x W2 0)
Observation X, Xy),..., X(,) forms a first-order Markov chain for a parent

distribution with density.




Marcovian of order statistics
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Example (implication of Markovian) Suppose the parent density is e~ for

x > 0.

Then the joint distribution of X (1), X(9), ..

given by:

Observe that with xy = 0,

n

j=1

_|_
d tn—j+)(wj—wz) = S +

n! f(x;)

S Xplor 0 <z <oy < <y s

7 [F()41) = F(ay)] V7!
1 (G+1) =51

(z1 — 20)
(z2 — 1)
(T3 — x9)

(xn - xn—l)

’

S

j=1
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Hence,

n

foroom (@) = nlexp =) (n—j+1)(z; — x_1)
j=1

= nl Hexp{—(n —J+ Dz — 1)}

j=1
By defining ¥; = (n — j + 1)(X(j) — X(j_1)), where X ) = 0. Le.,

v [ » 0 0 - 0 0] [ X
Yé —(n—l) (n—l) 0 0 O X(2>
)/3 o 0 —(n—2) (n—2) 0 0 X(g)

Yn—l 0 y 0 2 X(n_1>
Y, 0 0 0 11| | X

which gives that

flyr, . o yn) = H exp{—y;} for each y; € [0, 00).

1=1

This immediately implies that Y7, Ys, ..., Y, arei.i.d. with exponential parent density.
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Notably,

n
n! eXp{—x'} forog <axp < - <z
fa.m@,... z,) = ]1_[1 il .

0, otherwise.

does not mean that X), X(9),..., X(,) are i.i.d., even if the pdf is a “product
form”.

Observation 1 In this example, first-order Markovian of X1y, X2y, ..., X, al-
lows us to transform it to an i.i.d. sequence Y7, Y5, ..., Y, where

Yi=(n—1i+1)(Xu — Xion)

or equivalently
Y,
n—i+1
This indicates that Xy, X(9), ..., X(,) forms an additive Markov chain.

Xii) = Xi-p +

Observation 2 In this example,

r

Y;
X(T) - Z(X(z) - X(z—l)) = Z n——2—|—1

1=1 1=1

<



Marcovian of order statistics OR2.43

Example Suppose the parent density of Uy, ..., Uy is uniformly distributed
over (0, 1].

Then —log U, ..., —log Uy forms order statistics with exponential parent den-
sity, where —log U,y < ... < —logUp).

Pr[—logU <z| = PrlU > e *|=1—¢"".

The previous example then suggests:

U(i—l—l)
Uty

Vi =i [(—logUy) — (—logUpir))]| = ilog

1S i.i.d., where U(o) = 1.

This implies that

U(z’+1)>i
— CXP {Yn—i—l—l}
( Ui

1s also 1.1.d.

Observation U ) = U - \/Z; forms a multiplicative Markov chain, where
{Z;} isiid.
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Example Suppose the parent distribution of X 1), X(2),..., X, is standard nor-
mal distributed.

Then the joint distribution of X1y, X(g),..., Xy for 0 <oy <y <--- <z 08
given by:

n " F(zj4) — Fl(x; U+1)=j-1
faem(@r o za) = nl ] fa)) L[ (((j)Jrl)—(j)]— 1)!

Observe that with xy = 0,

(o0 (@feap) )
Sn—j+ D@ —a2,) =+ -2 (-a3) p=)
jzl ... j:l
+ (zp —27_1) |
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Hence,
n! 1 . . 2 2
f(l ..... n)(xla ce 7xn) = (27‘(‘)”/2 eXp _§ Z(n —J+ 1)(3:] o ajj—l)
j=1
L (n—j+1)
— nl H o exp {— 5 (553 - 5531)}
j=1 "V
By defining
2 2
V. — g (X — Xi-v)
J N1/ n—j5+1)7

where X () = 0 and Pr[S; = +1] = Pr[S; = —1] = 1/2 and {S;} 1L {X;}, we
obtain:

f(yb--.,yn)——:I]:V%ZFGXD{-—y?/Q}-

This immediately implies that Y7, Y5, ..., Y, areii.d. with standard normal parent density.
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Well-known property of i.i.d. (standard normal) Gaussian:
1. X 1L (X; — X) for every 1.

Proof: X; — X and X are jointly Gaussian distributed. Hence, uncorrelation
implies independence between them.

- 1 n 1 n
E[(X,-X)X] = E Xi—gZ;Xj/ E;Xj
= -

_1 n 1 n n
= E|=) XiX;—-5) ) XXy
_n Pt e e
11

2. X is independent of any function of {(X; — X))}, such as range Wiy ,) =
maxi<j<n(X; — X) — mimgj<n(X; — X).

3. X is independent of W, o) = X(5) — X,
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Assumption Now suppose X1, Xo, ..

sarily identically distributed.

., X, are only independent, but not neces-

Denote their distributions by Fi(-), F5(+), ..., F,.(+), respectively.

Then

Fy(x) =

Likewise,

= Pl"[X(l) < ZE]

= 1- Pl“[X(l) > :C]

= 1 —Pr[min X, > 7]
1<i<n

= 1-]](0 - F(x).

1=1
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Foy(x) = Pr[X) < o]

= Prlat least r of the X, are less than or equal to x|

n

=2 > [1F. @) T - Fyla)l,

1= {(J1yedn) €EPn ¢ 1<-<g; and jip1<-<jn} (=1 (=i+1

where the set P, consists of all permutations of (1,2,...,n).
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Theorem (Sen 1970) Define F(z) — % Z Fi(z).
1. For all real v, -
F .Fﬂ

with equality holding only if Fi(y) = Fy(y) = - - -
2. For integer 2 < r < n — 1, real x satisfying F(z) < (r — 1)/n and real y

satisfying F'(y) > r/n,

Pr [.I’ <X(7") SyH(FlaF%aFn)] > Pr [33 <X(r) SyH(F7F7 '7F)]7
with equality holding only if Fi(z) = Fy(z) = -+ = F,(z) = F(z) and
Fi(y) = Fa(y) = -+ = Fuly) = F(y)-
3. For all real y,
F.F Fﬂ

P4Xw§yWEJ%~w&ﬂ§P4XwSyW, o
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Lemma (Hoeffding) Let p; be the probability of success at the ith trial, and
suppose each trial is independent.

Denote by S the number of success after n trials.
Then

Pr(s <cl(p1,p2, .- pa)] < Pr[S <cl|(p,p,...,p)] H0<c<np-—1,
and
Pr [S S CH(Fl,FQ,- 7pn)] Z Pr [S S CH(????" 7p)] if np S C S n,

where p = (p; +p2 + - - + p,)/n, provided that c is an integer.
e Notably, E[S] = np is the margin point.

Proof of Sen’s Theorem: We first prove Case 2 (in terms of Hoeffding’s
Lemma).

Define a success at the ith trial to be [X; < y].
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Then

PriXo) <yll(F, ... F)]
= Pr[S>r—1|(Fy), ..., Fay))]
- 1—Pr[S<7“—1H(F1(y)a Fa(y))]
>1—Pr[S<r—1H(F() ..... Fy)], f 0<r—1<nF(y) -1
{ (F(y ()], f nF(y)<r—1<n
] L<r <nF(y
always valid

<Pr[S>r—1|(Fly),...,F(y)], f nFly)+1<r<n+1

<1—-Pr[S<r—1]
(> Pr[S >r —1||(F(y),.

/\\
~——
-
-
<
~——
~——
-
p—
=

L always valid
{ > PY[X(T) S yH(E1 7777 }?)]7 lf E(y) > ’I“/’I’L (1)
< Pi{Xg) < yl(F,..., F)], if Fly) < (r — 1)/n
Hence, when F(z) < (r—1)/nand F(y) >r/nandr =2,..., n—1

Xy < 9l(Biven s F)) = PrlX) < al| (B, )
Pr|z <X(T) <y|l(F,...,F)].

IRV
}—U
’—1



Independent non-identically distributed variables — orzs

Inequality (1) has already proved that
Pr(X ) <yll(F, ..., F)] > PrXq <y|(F,...,F)] for F(y)>1/n
and

PF[X(n) < ZJH(F1, o o 7Fn)] < Pl“[X(m < yH(F’ e ’Fﬂ for F(?J) < (n_ 1)/”

Here, we need to further prove their validity for all y € R.

The other two cases can be proved as follows.

Pl”[X(n) < yH(F177Fn)] - IE(Q)
=1

i

B n
1 n
< |— Z Fi(y) (Geometric mean < arithmetic mean)
n
i=1

- F'(y)
= Pr{X <yl(F,.... F)
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and

PrX < yll(F1,...,F)] = 1—Pr[Xy) > yl|[(F,..., )]

n

= 1-]J - FE(y)

1=

S )

= 1-[1-F(y)]"

n

Lemma (Sen 1970)
‘median(X(r>H(F1, ..., F)) — median(X || (F, . . ., F))‘ <q— qr_1,

provided that g, and ¢,_; are uniquely defined by F(q,) = r/n and F(q_1) =
(r —1)/n, where median(Z) denotes the median of random variable Z.




f(r.s)(x,y) for independent non-identical densities
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Suppose Fi, ..., F,, have densities fi,..., fn.

where
there are (r — 1) rows of Fi(x),

Fl(SC)

Fl(SC)
fi()

f1(y)
1 — F1(y)

1 F(y)

FQ(SC) .....

(r—Dl(s—r—1)l(n—-s)!

FQ(CE’)
FQ(CL’)
falx)

Fi(y) ;F1(x) Fy(y) ;F2(;,;)

f2(y)
1 — Fz(y)
L - Ry
Fu(x),

faly)

there are (s —r — 1) rows of Fi(y) — Fi(x), F5(y) — Fy(x), - -, Fi(y) — F,(x), and

there are (n — s) rows of 1 — Fi(y),1 — Fy(y),--- , 1 — F,(y).



