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The law of large numbers N1

e The employment of “Strong Low of Large Numbers (SLLN)” is instrumental
to the analysis of system estimation and identification strategies.

e However, the condition (for its validity) such as independence or uncorrelated-
ness of random components is quite restrictive from an engineering standpoint.

e In his paper, Brett Ninness shows that the SLLN is valid even for possibly
non-stationary random components under very general dependence structure.

— B. Ninness, “Strong laws of large numbers under weak assumptions with
applications,” IEEE Trans. Automatic Control, vol. 45, no. 11, pp. 2117—
2122, 2000.
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Theorem Suppose {X,,}>° is a sequence of random variables, not necessarily
zero mean, and with arbitrary correlation structure (not necessarily stationary)
that is characterized by the existence of C' < oo and S > 1 such that

J J
Z Z E[X; X, < C(j — 1)’ for every 0 < i < j.

k=i+1 {=i+1

Then for any o > 3/2,

l < 5
—aE X 250 as n — oo.
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Proof:

e Define S, = > 7 | X, and for any n, choose an integer m = [logy(n)] such

that
oM < p < ML

Then

1
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Refined version of Theorem 12.2 in [P. Billingsley, Convergence of Proba-
bility Measures, John Wiley and Sons, New York, 1968]. For arbitrary ran-
dom variables { X, }2°,, if for some S > 1, there exists a set of non-negative
numbers {u, }°°; such that

; B
j
/5 []Sj — SAQ] < (Zuk> for every 0 <7 <57 < N,
k=i

where S; = i:1 X, and Sy = 0, then there exists a K < oo that is
independent of NV such that for any A > 0,

YN
Pr {Or&%y&y > )\} < 2 <;uk> :

Furthermore, the constant K can be taken as K =4 1 + 27 = | .
(2(5—1)/3_1)

e Taking u, = CY¥ for every n in the above refined theorem yields:
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If for some 8 > 1,

A > 0 and any NV,

.

E [ysj — S

}gC’(j—i)ﬁ for every 0 < < 7,

K
max_|Sy| > )\} CNﬁ
0<(<N A2

then there exists a ' < oo that is only dependent on  such that for any

Hence for A = 2™ and N = 2"+,

Pr { max |k
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since
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for every 0 <1 < 7.
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e As a result, for a > (/2,

KOQ
ZPr{ max |Sk| > 52””} <
0<k<om+l1

By the first Borel-Cantelli lemma, we obtain that with probability 1

1
— max |Sg| >«
2% g<<om+1

20 f)m KC2°
T e2(220F = 1)

< OQ.

is valid only for finitely many m.

Theorem 4.3 (The First Borel-Cantelli Lemma) If Z P(A,) converges,

n=1

then
P (Iim sup An> = P(A, i0.)=0.

n—oo
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e Since € can be made arbitrarily small,

1
limsup—  max |S;| = 0 with probability 1.

m—oo 21V 0<k<2m
The theorem holds by noting that

. 1 . 1 . 1
lim sup —1S,| < lim sup mr—— max |Sk| = limsup —  max  |Sk|.
n—soo MY n—oo  21082(n)]e 0<k<2lloga(n)]+1 m—oo 2% 0<k<2omtl
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o [ect
Yn = 9+Un>

where 6 is an unknown constant to be estimated based upon the observations

of {y,}, and
1+ |n—mlP

Elowtm] = T =l

for some ¢ > 1 and 0 < p < 1.

: j_ 1
e Use the estimator 6 = - >/ | 4.
e Then the estimation error 6, = 0—0= %2221 V.

e Verify by defining S; = vy +vg + - - - 4 v; that for j > ¢,

E(|S; - SiI7] = Z Z Elvgv]

B Lt e—op
_Zz_;lﬂk—é\q m =j =)
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m  k—1
1+ (k—0)P
= 2
m Zzl+(k_g)q
k=1 (=1
m  k—1
2(k — 0)p .
§m+2221+(k_£) (since p > 0)
k=1 (=1
m k-1 D
m :
< m+4; 2T (= 0y (since 12%%1%?2}?—1(/{_6) =(m—1)<m)
m k-1 1
= m+4mpz
iy Gt
- 1
_ p _
= m+4m ;(m u) o
—~ 1
< AmP ! b —u<mforl <u<
< m+4m uz::l—kuq (because m —u < m for 1 <u < m)
o [ 1 : :
< m+4m? du  (because nonincreasing for u > 0)
0 1+uq 1+U/q
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Hence, as (o =)1 > (p+1)/2(= 8/2),

R 1 — 1 —
0.=0—0=— S — 0 with probability 1.
na;vk n;vk with probability
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e Suppose {v,} (in Example 1) is wide-sense stationary with bounded power
spectral density. Then, by denoting the bound for the power spectral density
by P,

E[|S; =S = Y > Elvw

k=i+1 {=i+1
= ZZE[UHJ@] (m:]—Z)ZZZRU(k_K)
k=1 (=1 k=1 (=1
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e Hence, fora=1>1/2= /2,

. 1 —
0.=0—0=— Z v — 0 with probability 1.
n
k=1
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Sy(w) = kZ R,[k]e ¥ Sy(f) = kz R, [k|e~t 2]
" 1/2
R, k] = %/ Sv(w)emkdw R, k] = /1/2 Sv(f)ez%kfdf




