Section 28

Infinitely Divisible Distributions

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.

Theorem 23.2 $Z_{n,1}, Z_{n,2}, \ldots, Z_{n,r_n}$ are independent random variables. $\Pr[Z_{n,k} = 1] = p_{n,k}$ and $\Pr[Z_{n,k} = 0] = 1 - p_{n,k}$. Then $(i) \lim_{n \to \infty} \sum_{k=1}^{r_n} p_{n,k} = \lambda$ $(ii) \lim_{n \to \infty} \max_{1 \le k \le r_n} p_{n,k} = 0$ $\Rightarrow \Pr\left[\sum_{k=1}^{r_n} Z_{n,k} = i\right] \rightarrow e^{-\lambda} \frac{\lambda^i}{i!} \text{ for } i = 0, 1, 2, \ldots$

Theorem 27.2 For an array of independent zero-mean random variables $X_{n,1}, \ldots, X_{n,r_n}$, if Lindeberg's condition holds for all positive ε , then

$$\frac{S_n}{s_n} \Rightarrow N$$

where $S_n = X_{n,1} + \dots + X_{n,r_n}$.

<u>Limit laws</u>

- We have learned thus far that Poisson and Normal are two limit laws for sum of independent array variables.
- Question: What are the class of all possible limit laws for sum of independent triangular array variables?

Definition (Infinitely divisible) A distribution F is *infinitely divisible* if for each n, there exists a distribution function F_n such that F is the n-fold convolution $\underbrace{F_n * \cdots * F_n}_{n \text{ copies}}$ of F_n .

- **Question:** What are the class of all possible limit laws for sum of independent triangular array variables?
- **Answer:** The class of possible limit laws consists of the infinitely divisible distributions.

Theorem 28.1 For any finite (non-negative) measure (not necessarily probability measure),

$$\varphi(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\}$$

is the characteristic function of an infinitely divisible distribution with mean 0 and variance $\mu(\Re)$.

- μ is named the *canonical measure*.
- $\exp\left\{\int_{\Re} \left(e^{itx} 1 itx\right) \frac{1}{x^2} \mu(dx)\right\}$ is named the *canonical representation* of infinitely divisible distributions (of zero mean and finite variance).

Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite variance is the limit law of $S_n = X_{n,1} + \cdots + X_{n,r_n}$ for some independent triangular array satisfying:

- 1. $E[X_{n,k}] = 0;$
- 2. $\lim_{n \to \infty} \max_{1 \le k \le r_n} E[X_{n,k}^2] = 0;$
- 3. $\sup_{n\geq 1} s_n^2 < \infty$, where $s_n^2 = \sum_{k=1}^{r_n} E[X_{n,k}^2]$.

Theorem 27.2 For an array of independent zero-mean random variables $X_{n,1}, \ldots, X_{n,r_n}$, if Lindeberg's condition holds for all positive ε , then

$$\frac{S_n}{s_n} \Rightarrow N,$$

where $S_n = X_{n,1} + \cdots + X_{n,r_n}$.

- The case considered in Theorem 27.2 is a special case among those considered in Theorem 28.2.
- Specifically, let $\tilde{X}_{n,k} = X_{n,k}/s_n$, where $X_{n,k}$ and s_n are defined in Theorem 27.2. Then the conditions considered in Theorem 28.2 becomes the limit of $\tilde{S}_n = \tilde{X}_{n,k} + \cdots + \tilde{X}_{n,r_n} = S_n/s_n$, and 1. $E[\tilde{X}_{n,k}] = E[X_{n,k}/s_n] = 0$; 2. $\lim_{n\to\infty} \max_{1\leq k\leq r_n} E[\tilde{X}_{n,k}^2] = \lim_{n\to\infty} \max_{1\leq k\leq r_n} \frac{E[X_{n,k}^2]}{s_n^2} = 0$; 3. $\sup_{n\geq 1} \tilde{s}_n^2 < \infty$, where $\tilde{s}_n^2 = \sum_{k=1}^{r_n} E[\tilde{X}_{n,k}^2] = \sum_{k=1}^{r_n} \frac{E[X_{n,k}^2]}{s_n^2} = 1$.

Example 28.1 μ is a point mass at the origin, and $\mu\{0\} = \sigma^2$.

$$\begin{split} \varphi(t) &= \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\} \\ &= \exp\left\{\sigma^2 \lim_{x \to 0} \frac{\left(e^{itx} - 1 - itx\right)}{x^2}\right\} \\ &= \exp\left\{\sigma^2 \lim_{x \to 0} \frac{\left(ite^{itx} - it\right)}{2x}\right\} \\ &= \exp\left\{\sigma^2 \lim_{x \to 0} \frac{\left((it)^2 e^{itx}\right)}{2}\right\} \\ &= \exp\left\{-\frac{\sigma^2 t^2}{2}\right\}. \end{split}$$

Hence, a central normal distribution with variance $\sigma^2 = \mu(\Re)$ is infinitely divisible.

Example 28.2 μ consists of a point mass λx^2 at some $x \neq 0$.

$$\begin{split} \varphi(t) &= \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\} \\ &= \exp\left\{\lambda \left(e^{itx} - 1 - itx\right)\right\}, \end{split}$$

which is the characteristic function of $x(Z_{\lambda} - \lambda)$, where Z_{λ} has Poisson distribution with mean λ .

Notably, the variance (2nd moment) of $x(Z_{\lambda} - \lambda)$ is equal to $\lambda x^2 = \mu(\Re)$.

For any n, its cdf F can be represented by the n-fold convolution of F_n for which F_n is the cdf of $x(Z_{\lambda/n} - \lambda/n)$.

Proof of Theorem 28.1

(Proof of $\varphi(t)$ is a characteristic function)

• For any **finite** measure μ , define a new measure μ_k which has point mass $\mu(j2^{-k}, (j+1)2^{-k}]$ at $j2^{-k}$ for $j = 0, \pm 1, \pm 2, \ldots, \pm 2^{2k}$.

Then μ_k converges to μ vaguely.

Here, **finite** is a key because this property may not be true for **infinite** measure.

Lemma Suppose that $\mu_n \xrightarrow{v} \mu$ and $\sup_{n\geq 1} \mu_n(\Re) < \infty$. Then $\lim_{n\to\infty} \int_{\Re} f(x)\mu_n(dx) = \int_{\Re} f(x)\mu(dx)$ for every continuous real f that satisfies $\lim_{|x|\to\infty} f(x) = 0$.

The above lemma proves that

$$\varphi_k(t) \xrightarrow{k \to \infty} \varphi(t),$$

where

$$\varphi_k(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu_k(dx)\right\}$$

and

$$\varphi(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\}.$$

Now you should see the reason why we put $1/x^2$ inside the integrand, because we require $f(x) = (e^{itx} - 1 - itx) \frac{1}{x^2} \to 0$ as $|x| \to \infty$.

Corollary 1 (cf. Slide 26-52) Suppose a sequence of characteristic functions $\{\varphi_n(t)\}_{n=1}^{\infty}$ has limits in every t, namely $\lim_{n\to\infty} \varphi_n(t)$ exists for every t. Define

$$g(t) = \lim_{n \to \infty} \varphi_n(t).$$

Then if g(t) is continuous at t = 0, then there exists a probability measure μ such that

 $\mu_n \Rightarrow \mu$, and μ has characteristic function g

where μ_n is the probability measure corresponding to characteristic function $\varphi_n(\cdot)$.

As seen from Examples 28.1 and 28.2, a single-point-mass finite measure, either at x = 0 or at $x \neq 0$, leads to a characteristic function of some random variable, and its second moment is equal to its measure value on the point.

A multiple-point-mass finite measure can be represented as sum of single-pointmass finite measures; hence, the resultant $\varphi_k(t)$ is a product of many characteristic functions, and is itself a characteristic function. The second moment of $\varphi_k(t)$ is therefore the sum of the second moments of individual characteristic functions.

The limit $\varphi(t)$ of $\varphi_k(t)$ is apparently continuous; thus, $\varphi(t)$ is a **characteristic** function for some probability measure.

(Proof of the random variable corresponding to characteristic function $\varphi(t)$ having mean zero and variance $\mu(\Re)$.)

Theorem 25.11 If $X_n \Rightarrow X$, then

 $E[|X|] \le \liminf_{n \to \infty} E[|X_n|].$

Examples 28.1 and 28.2 give that for point-mass measure μ_k , the corresponding variable has mean zero and second moment $E[X_k^2] = \mu_k(\Re)$. Hence, $E[X^2] \leq \lim_{k \to \infty} E[X_k^2] \leq \sup_{k \geq 1} \mu_k(\Re) \underbrace{\leq}_{\text{by definition of } \mu_k} \mu(\Re) < \infty$.

At this moment, we know the second moment of variable X corresponding to the limiting characteristic function $\varphi(\cdot)$ is finite. But, we still not yet know the values of its mean and second moment.

Lemma If $E[|X^n|] < \infty$, then

 $\varphi^{(n)}(0) = i^n E[X^n].$

So we can take the first and second derivatives of $\varphi(t)$ to obtain:

$$i \cdot \text{mean} = \varphi'(0)$$

= $\left(\int_{\Re} \left((ix)e^{itx} - ix \right) \frac{1}{x^2} \mu(dx) \right) \exp \left\{ \int_{\Re} \left(e^{itx} - 1 - itx \right) \frac{1}{x^2} \mu(dx) \right\} \Big|_{t=0}$
= 0

and

$$\begin{split} i^{2} \cdot (2nd \text{ moment}) &= \varphi''(0) \\ &= \left(\int_{\Re} \left((ix)^{2} e^{itx} \right) \frac{1}{x^{2}} \mu(dx) \right) \exp \left\{ \int_{\Re} \left(e^{itx} - 1 - itx \right) \frac{1}{x^{2}} \mu(dx) \right\} \Big|_{t=0} \\ &+ \left(\int_{\Re} \left((ix) e^{itx} - ix \right) \frac{1}{x^{2}} \mu(dx) \right)^{2} \exp \left\{ \int_{\Re} \left(e^{itx} - 1 - itx \right) \frac{1}{x^{2}} \mu(dx) \right\} \Big|_{t=0} \\ &= - \int_{\Re} \mu(dx) = -\mu(\Re). \end{split}$$

So $\varphi(t)$ corresponds to a distribution with mean 0 and finite variance $\mu(\Re)$.

(Proof of divisibility)

• Now let

$$\psi_n(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu_n(dx)\right\}$$

where $\mu_n = \mu/n$.

Then $\varphi(t) = [\psi_n(t)]^n$, which implies that the distribution corresponding to $\varphi(t)$ is indeed infinitely divisible.

Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite variance is the limit law of $S_n = X_{n,1} + \cdots + X_{n,r_n}$ for some independent triangular array satisfying:

- 1. $E[X_{n,k}] = 0;$
- 2. $\lim_{n \to \infty} \max_{1 \le k \le r_n} E[X_{n,k}^2] = 0;$
- 3. $\sup_{n\geq 1} s_n^2 < \infty$, where $s_n^2 = \sum_{k=1}^{r_n} E[X_{n,k}^2]$.

Proof of Theorem 28.2

• Claim: If $X \perp Y$ and $E[(X+Y)^2] < \infty$, then $E[X^2] < \infty$ and $E[Y^2] < \infty$. Proof: For any $x, |Y| \le |x| + |x+Y|$ implies $E[|Y|] \le |x| + E[|x+Y|]$. Hence, if $E[|Y|] = \infty$, then $E[|x+Y|] = \infty$ for every x, which implies $E[|X+Y|] = \infty$, a contradiciton to $E[(X+Y)^2] < \infty$.

We can similarly prove that $E[|X|] < \infty$.

Hence, by
$$x^2 + y^2 \le (x + y)^2 + 2|x||y|$$
, we obtain
 $E[X^2] + E[Y^2] \le E[(X + Y)^2] + 2E[|X|]E[|Y|] < \infty.$

• Now suppose F is a cdf corresponding to an infinitely divisible distribution with mean 0 and variance $\sigma^2 < \infty$.

If F is the n-fold convolution of F_n , then, by the previous claim, F_n must have finite mean and variance.

Under "finiteness", We can then (safely) induce that:

- 1. as *n* multiplying the variance of F_n is the variance of F, F_n has finite variance σ^2/n ;
- 2. as n multiplying the mean of F_n is the mean of F, F_n has mean 0.

Take $r_n = n$ and $X_{n,1}, \ldots, X_{n,n}$ be i.i.d. with distribution F_n . Then

$$E[X_{n,k}] = 0, \quad \max_{1 \le k \le n} E[X_{n,k}^2] = \frac{\sigma^2}{n} \to 0, \quad \text{and} \quad s_n^2 = \sum_{k=1}^n \frac{\sigma^2}{n} = \sigma^2 < \infty.$$

Consequently, Properties 1, 2 and 3 hold.

Theorem 28.1 For any finite measure (not necessarily probability measure) μ ,

$$\varphi(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\}$$

is the characteristic function of an infinitely divisible distribution with mean 0 and variance $\mu(\Re)$.

Theorem 28.3 If *F* is the limit law of $S_n = X_{n,1} + \cdots + X_{n,r_n}$ for an independent triangular array satisfying:

- 1. $E[X_{n,k}] = 0;$
- 2. $\lim_{n \to \infty} \max_{1 \le k \le r_n} E[X_{n,k}^2] = 0;$
- 3. $\sup_{n\geq 1} s_n^2 < \infty$, where $s_n^2 = \sum_{k=1}^{r_n} E[X_{n,k}^2]$,

then F has characteristic function of the form

$$\varphi(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\}$$

for some finite measure μ .

<u>Converse to Theorem 28.1</u>

In summary of Theorems 28.1, 28.2 and 28.3, for an independent triangular array satisfying:

- 1. $E[X_{n,k}] = 0;$
- 2. $\lim_{n \to \infty} \max_{1 \le k \le r_n} E[X_{n,k}^2] = 0;$
- 3. $\sup_{n\geq 1} s_n^2 < \infty$, where $s_n^2 = \sum_{k=1}^{r_n} E[X_{n,k}^2]$,

F is the limit law of $S_n = X_{n,1} + \cdots + X_{n,r_n}$ if, and only if, F has characteristic function of the form

$$\varphi(t) = \exp\left\{\int_{\Re} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\}$$

for some finite measure μ .

Proof of Theorem 28.3

- Let $\varphi_{X_{n,k}}(t)$ be the characteristic function of $X_{n,k}$. Let $\theta_{n,k}(t) = \varphi_{X_{n,k}}(t) - 1$.
- Since $E[X_{n,k}] = 0$,

$$|\theta_{n,k}(t)| = \left|\varphi_{X_{n,k}}(t) - 1\right| \leq \frac{1}{2}t^2 E[X_{n,k}^2].$$

Hence, Properties 2. and 3. respectively imply:

$$\lim_{n \to \infty} \max_{1 \le k \le r_n} |\theta_{n,k}(t)| \le \frac{1}{2} t^2 \lim_{n \to \infty} \max_{1 \le k \le r_n} E[X_{n,k}^2] = 0$$

and

$$\sup_{n \ge 1} \sum_{k=1}^{r_n} |\theta_{n,k}(t)| \le \frac{1}{2} t^2 \sup_{n \ge 1} \sum_{k=1}^{r_n} E[X_{n,k}^2] < \infty.$$

• Observe that

$$\left| \prod_{k=1}^{r_n} \varphi_{X_{n,k}}(t) - \exp\left\{ \sum_{k=1}^{r_n} \left(\varphi_{X_{n,k}}(t) - 1 \right) \right\} \right| \leq \sum_{k=1}^{r_n} \left| \varphi_{X_{n,k}}(t) - \exp\left\{ \varphi_{X_{n,k}}(t) - 1 \right\} \right|$$

 $|\varphi_{X_{n,k}}(t)| < 1$ implies that $(\varphi_{X_{n,k}} - 1) = -a + jb$ for some a > 0. Hence, $|\exp(\varphi_{X_{n,k}} - 1)| = e^{-a} < 1$

$$= \sum_{k=1}^{n} \left| 1 + \theta_{n,k}(t) - e^{\theta_{n,k}(t)} \right|$$

$$\leq \sum_{k=1}^{n} |\theta_{n,k}(t)|^2 e^{|\theta_{n,k}(t)|}$$

$$\leq e^{t^2 s_n^2/2} \sum_{k=1}^{n} |\theta_{n,k}(t)|^2$$

$$\leq e^{t^2 s_n^2/2} \left(\max_{1 \le k \le r_n} |\theta_{n,k}(t)| \right) \sum_{k=1}^{n} |\theta_{n,k}(t)|$$

$$\stackrel{n \to \infty}{\longrightarrow} 0.$$

For complex
$$z$$
, $|e^z - 1 - z| \le |z|^2 \sum_{k=2}^{\infty} \frac{|z|^{k-2}}{k!} \le |z|^2 \sum_{k=2}^{\infty} \frac{|z|^{k-2}}{(k-2)!} = |z|^2 e^{|z|}.$

Hence,

$$\varphi(t) = \lim_{n \to \infty} \varphi_{S_n}(t) = \lim_{n \to \infty} \exp\left\{\sum_{k=1}^{r_n} \left(\varphi_{X_{n,k}}(t) - 1\right)\right\}.$$

• Denote by $F_{n,k}$ the cdf of $X_{n,k}$, then

$$\sum_{k=1}^{r_n} \left(\varphi_{X_{n,k}}(t) - 1 \right) = \sum_{k=1}^{r_n} \int_{\Re} (e^{itx} - 1) dF_{n,k}(x)$$

$$= \sum_{k=1}^{r_n} \int_{\Re} (e^{itx} - 1 - itx) dF_{n,k}(x), \quad (\text{by } E[X_{n,k}] = 0)$$

$$= \int_{\Re} (e^{itx} - 1 - itx) \sum_{k=1}^{r_n} dF_{n,k}(x)$$

$$= \int_{\Re} (e^{itx} - 1 - itx) \frac{1}{x^2} \mu_n(dx),$$

where

$$\mu_n(-\infty, x] = \int_{-\infty}^x \mu_n(dy) = \int_{-\infty}^x \sum_{k=1}^{r_n} y^2 dF_{n,k}(y).$$

Notably, $\mu_n(\Re) = \sum_{k=1}^{r_n} E[X_{n,k}^2] = s_n^2$ is uniformly bounded in n. So, μ_n is a finite measure.

<u>Converse to Theorem 28.1</u>

28-21

Theorem 25.9 (Helly's theorem) For every sequence $\{F_n\}_{n=1}^{\infty}$ of distribution functions, there exists a subsequence $\{F_{n_k}\}_{k=1}^{\infty}$ and a non-decreasing, right-continuous function F (not necessarily a cdf) such that

$$\lim_{k \to \infty} F_{n_k}(x) = F(x)$$

for every continuous points of F.

Lemma Suppose that $\mu_n \xrightarrow{v} \mu$ and $\sup_{n\geq 1} \mu_n(\Re) < \infty$. Then $\lim_{n\to\infty} \int_{\Re} f(x)\mu_n(dx) = \int_{\Re} f(x)\mu(dx)$ for every continuous real f that satisfies $\lim_{|x|\to\infty} f(x) = 0$.

Helly's theorem can be applied to finite measures as well; hence, there exists μ and subsequence $\{n_j\}_{j=1}^{\infty}$ such that μ_{n_j} converges to μ vaguely.

Theorem 25.9 (Helly's theorem for finite measures) For every sequence finite measure $\{\mu_n\}_{n=1}^{\infty}$, there exists a subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$ such that

$$\lim_{k \to \infty} \mu_{n_k}(-\infty, x] = \mu(-\infty, x]$$

for every continuous points of $\mu(-\infty, x]$.

Since (by the 3rd assumption and the definition of μ_n on the bottom of Slide 28-20)

$$\sup_{j\geq 1}\mu_{n_j}(\Re) = \sup_{j\geq 1}s_{n_j}^2 \le \sup_{n\geq 1}s_n^2 < \infty$$

and

$$\lim_{|x| \to \infty} \left| e^{itx} - 1 - itx \right| \frac{1}{x^2} \le \lim_{|x| \to \infty} \min\left\{ \frac{|x|^2}{2!}, \frac{|x|}{1!} \right\} \frac{1}{x^2} = \lim_{|x| \to \infty} \min\left\{ \frac{1}{2}, \frac{1}{|x|} \right\} = 0,$$

we obtain

$$\lim_{j \to \infty} \int_{\Re} (e^{itx} - 1 - itx) \frac{1}{x^2} \mu_{n_j}(dx) = \int_{\Re} (e^{itx} - 1 - itx) \frac{1}{x^2} \mu(dx).$$

• But,

$$\lim_{n \to \infty} \int_{\Re} (e^{itx} - 1 - itx) \frac{1}{x^2} \mu_n(dx) = \varphi(t).$$

Consequently,

$$\varphi(t) = \int_{\Re} (e^{itx} - 1 - itx) \frac{1}{x^2} \mu(dx)$$

for the vague limit μ of μ_{n_j} , and $\mu(\Re) \leq \sup_n \mu_n(\Re) < \infty$ is a finite measure. \Box

Example of limit law

$$\begin{aligned} \mathbf{Double exponential:} \quad \boxed{\mathrm{pdf} \equiv \frac{1}{2} e^{-|x|} \text{ for } -\infty < x < \infty, \text{ and } \varphi(t) = \frac{1}{1+t^2}.} \\ \text{Define } \mu(-\infty, x] &= \int_{-\infty}^{x} |y| e^{-|y|} dy. \\ \text{Hence, } \mu(\Re) &= \int_{-\infty}^{\infty} |y| e^{-|y|} dy = 2, \text{ and} \\ \exp\left\{\int_{-\infty}^{\infty} (e^{itx} - 1 - itx) \frac{1}{x^2} |x| e^{-|x|} dx\right\} \\ &= \exp\left\{\int_{-\infty}^{\infty} (e^{itx} - 1 - itx) \frac{1}{|x|} e^{-|x|} dx\right\} \\ &= \exp\left\{\int_{-\infty}^{0} (e^{itx} - 1 - itx) \frac{1}{(-x)} e^x dx + \int_{0}^{\infty} (e^{itx} - 1 - itx) \frac{1}{x} e^{-x} dx\right\} \\ &= \exp\left\{\int_{0}^{\infty} (e^{-itx} - 1 + itx) \frac{1}{x} e^{-x} dx + \int_{0}^{\infty} (e^{itx} - 1 - itx) \frac{1}{x} e^{-x} dx\right\} \\ &= \exp\left\{\int_{0}^{\infty} \frac{2[\cos(tx) - 1]}{x} e^{-x} dx\right\} \\ &= \exp\left\{\int_{0}^{\infty} \frac{2[\cos(tx) - 1]}{x} e^{-x} dx\right\} \end{aligned}$$

ensity:
Let random variable Y have pdf
$$e^{-y}$$
 for $0 \le y < \infty$.

$$\int_{0}^{\infty} e^{ity} e^{-y} dy = \frac{1}{1 - it}.$$
Let $X = Y - 1$.
Hence, $E[e^{itX}] = E[e^{it(Y-1)}] = \frac{e^{-it}}{1 - it}.$

centered exponential density:

Let
$$\mu(dx) = xe^{-x}$$
 for $0 \le x < \infty$.
Then $\mu(\Re) = \int_0^\infty xe^{-x}dx = 1 < \infty$, and
 $\exp\left\{\int_0^\infty (e^{itx} - 1 - itx)\frac{1}{x^2}xe^{-x}dx\right\} = \exp\left\{\int_0^\infty (e^{itx} - 1 - itx)\frac{1}{x}e^{-x}dx\right\}$
 $= \exp\left\{\int_0^\infty (e^{itx} - 1)\frac{e^{-x}}{x}dx\right\}\exp\left\{-it\int_0^\infty e^{-x}dx\right\}$
 $= \frac{e^{-it}}{1 - it}$

Example of limit law

- centered gamma distribution is also infinitely divisible with $\mu(dx) = uxe^{-x}$ for $0 < x < \infty$.
- Cauchy distribution is an infinitely divisible distribution with infinite second moment. (So its canonical formula is a little different from the one shown in Theorem 28.1.)

$$\begin{split} \exp\left\{\int_{-\infty}^{\infty} \left(e^{itx} - 1\right) \mu(dx)\right\} \exp\left\{\int_{-\infty}^{\infty} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\} \\ &= \exp\left\{\int_{-\infty}^{\infty} \left(e^{itx} - 1\right) \mu(dx) + \int_{-\infty}^{\infty} \left(e^{itx} - 1 - itx\right) \frac{1}{x^2} \mu(dx)\right\} \\ &= \exp\left\{\int_{-\infty}^{\infty} \left(e^{itx} - 1 - \frac{itx}{1 + x^2}\right) \frac{1 + x^2}{x^2} \mu(dx)\right\} \\ &= e^{-|t|}, \end{split}$$

where $\mu(dx) = \frac{dx}{\pi(1+x^2)}$.

• The product of infinitely divisible characteristic functions is also an infinitely divisible characteristic function.