
Section 28

Infinitely Divisible Distributions

Po-Ning Chen, Professor

Institute of Communications Engineering

National Chiao Tung University

Hsin Chu, Taiwan 30010, R.O.C.



Poisson and Normal as two limit laws 28-1

Theorem 23.2 Zn,1, Zn,2, . . . , Zn,rn are independent random variables.

Pr[Zn,k = 1] = pn,k and Pr[Zn,k = 0] = 1− pn,k.

Then

(i) lim
n→∞

rn∑
k=1

pn,k = λ

(ii) lim
n→∞ max

1≤k≤rn
pn,k = 0


 ⇒ Pr

[
rn∑
k=1

Zn,k = i

]
→ e−λ

λi

i!
for i = 0, 1, 2, . . . .

Theorem 27.2 For an array of independent zero-mean random variables

Xn,1, . . . , Xn,rn, if Lindeberg’s condition holds for all positive ε, then

Sn
sn

⇒ N,

where Sn = Xn,1 + · · · +Xn,rn.



Limit laws 28-2

• We have learned thus far that Poisson and Normal are two limit laws for sum

of independent array variables.

• Question: What are the class of all possible limit laws for sum of independent

triangular array variables?



Infinitely divisible distribution 28-3

Definition (Infinitely divisible) A distribution F is infinitely divisible if for

each n, there exists a distribution function Fn such that F is the n-fold convolution

Fn ∗ · · · ∗ Fn︸ ︷︷ ︸
n copies

of Fn.

• Question: What are the class of all possible limit laws for sum of independent

triangular array variables?

• Answer: The class of possible limit laws consists of the infinitely divisible

distributions.



Infinitely divisible distribution 28-4

Theorem 28.1 For any finite (non-negative) measure (not necessarily probability

measure),

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
is the characteristic function of an infinitely divisible distribution with mean 0 and

variance µ(�).
• µ is named the canonical measure.

• exp
{∫

�
(
eitx − 1− itx

)
1
x2
µ(dx)

}
is named the canonical representation of

infinitely divisible distributions (of zero mean and finite variance).

Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite

variance is the limit law of Sn = Xn,1+ · · ·+Xn,rn for some independent triangular

array satisfying:

1. E[Xn,k] = 0;

2. limn→∞max1≤k≤rn E[X
2
n,k] = 0;

3. supn≥1 s
2
n <∞, where s2n =

∑rn
k=1E[X

2
n,k].
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Theorem 27.2 For an array of independent zero-mean random variables

Xn,1, . . . , Xn,rn, if Lindeberg’s condition holds for all positive ε, then

Sn
sn

⇒ N,

where Sn = Xn,1 + · · · +Xn,rn.

• The case considered in Theorem 27.2 is a special case among those considered

in Theorem 28.2.

• Specifically, let X̃n,k = Xn,k/sn, whereXn,k and sn are defined in Theorem 27.2.

Then the conditions considered in Theorem 28.2 becomes the limit of S̃n =

X̃n,k + · · · + X̃n,rn = Sn/sn, and

1. E[X̃n,k] = E[Xn,k/sn] = 0;

2. limn→∞max1≤k≤rn E[X̃
2
n,k] = limn→∞max1≤k≤rn

E[X2
n,k]

s2n
= 0;

3. supn≥1 s̃
2
n <∞, where s̃2n =

∑rn
k=1E[X̃

2
n,k] =

∑rn
k=1

E[X2
n,k]

s2n
= 1.
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Example 28.1 µ is a point mass at the origin, and µ{0} = σ2.

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}

= exp

{
σ2 lim

x→0

(
eitx − 1− itx

)
x2

}

= exp

{
σ2 lim

x→0

(
iteitx − it

)
2x

}

= exp

{
σ2 lim

x→0

(
(it)2eitx

)
2

}

= exp

{
−σ

2t2

2

}
.

Hence, a central normal distribution with variance σ2 = µ(�) is infinitely divisible.
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Example 28.2 µ consists of a point mass λx2 at some x �= 0.

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
= exp

{
λ
(
eitx − 1− itx

)}
,

which is the characteristic function of x(Zλ−λ), where Zλ has Poisson distribution

with mean λ.

Notably, the variance (2nd moment) of x(Zλ − λ) is equal to λx2 = µ(�).

For any n, its cdf F can be represented by the n-fold convolution of Fn for which

Fn is the cdf of x(Zλ/n − λ/n).
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Proof of Theorem 28.1

(Proof of ϕ(t) is a characteristic function)

• For any finite measure µ, define a new measure µk which has point mass

µ(j2−k, (j + 1)2−k] at j2−k for j = 0,±1,±2, . . . ,±22k.

Then µk converges to µ vaguely.

Here, finite is a key because this property may not be true for infinite mea-

sure.

•
Lemma Suppose that µn

v−→ µ and supn≥1 µn(�) < ∞. Then

limn→∞
∫
� f(x)µn(dx) =

∫
� f(x)µ(dx) for every continuous real f that satis-

fies lim|x|→∞ f(x) = 0.

The above lemma proves that

ϕk(t)
k→∞−→ ϕ(t),

where

ϕk(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µk(dx)

}
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and

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
.

Now you should see the reason why we put 1/x2 inside the integrand, because

we require f(x) =
(
eitx − 1− itx

)
1
x2

→ 0 as |x| → ∞.

•
Corollary 1 (cf. Slide 26-52) Suppose a sequence of characteristic functions

{ϕn(t)}∞n=1 has limits in every t, namely limn→∞ ϕn(t) exists for every t.

Define

g(t) = lim
n→∞

ϕn(t).

Then if g(t) is continuous at t = 0, then there exists a probability measure µ

such that

µn ⇒ µ, and µ has characteristic function g

where µn is the probability measure corresponding to characteristic function

ϕn(·).
As seen from Examples 28.1 and 28.2, a single-point-mass finite measure, either

at x = 0 or at x �= 0, leads to a characteristic function of some random variable,

and its second moment is equal to its measure value on the point.
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A multiple-point-mass finite measure can be represented as sum of single-point-

mass finite measures; hence, the resultant ϕk(t) is a product of many charac-

teristic functions, and is itself a characteristic function. The second moment of

ϕk(t) is therefore the sum of the second moments of individual characteristic

functions.

The limit ϕ(t) of ϕk(t) is apparently continuous; thus, ϕ(t) is a characteristic

function for some probability measure.
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(Proof of the random variable corresponding to characteristic function ϕ(t)

having mean zero and variance µ(�).)
•

Theorem 25.11 If Xn ⇒ X , then

E[|X|] ≤ lim inf
n→∞ E[|Xn|].

Examples 28.1 and 28.2 give that for point-mass measure µk, the corresponding

variable has mean zero and second moment E[X2
k ] = µk(�). Hence, E[X2] ≤

lim infk→∞E[X2
k ] ≤ supk≥1 µk(�) ≤︸︷︷︸

by definition of µk

µ(�) <∞.

At this moment, we know the second moment of variable X corresponding to

the limiting characteristic function ϕ(·) is finite. But, we still not yet know the

values of its mean and second moment.

Lemma If E[|Xn|] <∞, then

ϕ(n)(0) = inE[Xn].
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So we can take the first and second derivatives of ϕ(t) to obtain:

i ·mean = ϕ′(0)

=

(∫
�

(
(ix)eitx − ix

) 1

x2
µ(dx)

)
exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}∣∣∣∣
t=0

= 0

and

i2 · (2nd moment) = ϕ′′(0)

=

(∫
�

(
(ix)2eitx

) 1

x2
µ(dx)

)
exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}∣∣∣∣
t=0

+

(∫
�

(
(ix)eitx − ix

) 1

x2
µ(dx)

)2

exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}∣∣∣∣∣
t=0

= −
∫
�
µ(dx) = −µ(�).

So ϕ(t) corresponds to a distribution with mean 0 and finite variance µ(�).
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(Proof of divisibility)

• Now let

ψn(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µn(dx)

}
where µn = µ/n.

Then ϕ(t) = [ψn(t)]
n, which implies that the distribution corresponding to

ϕ(t) is indeed infinitely divisible. �
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Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite

variance is the limit law of Sn = Xn,1+ · · ·+Xn,rn for some independent triangular

array satisfying:

1. E[Xn,k] = 0;

2. limn→∞max1≤k≤rn E[X
2
n,k] = 0;

3. supn≥1 s
2
n <∞, where s2n =

∑rn
k=1E[X

2
n,k].

Proof of Theorem 28.2

• Claim: If X ⊥⊥ Y and E[(X +Y )2] <∞, then E[X2] < ∞ and E[Y 2] < ∞.

Proof: For any x, |Y | ≤ |x| + |x + Y | implies E[|Y |] ≤ |x| + E[|x + Y |].
Hence, if E[|Y |] = ∞, then E[|x + Y |] = ∞ for every x,

which implies E[|X + Y |] = ∞, a contradiciton to E[(X + Y )2] <∞.

We can similarly prove that E[|X|] <∞.

Hence, by x2 + y2 ≤ (x + y)2 + 2|x||y|, we obtain
E[X2] + E[Y 2] ≤ E[(X + Y )2] + 2E[|X|]E[|Y |] <∞.

�
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• Now suppose F is a cdf corresponding to an infinitely divisible distribution

with mean 0 and variance σ2 <∞.

If F is the n-fold convolution of Fn, then, by the previous claim, Fn must have

finite mean and variance.

Under “finiteness”, We can then (safely) induce that:

1. as n multiplying the variance of Fn is the variance of F , Fn has finite

variance σ2/n;

2. as n multiplying the mean of Fn is the mean of F , Fn has mean 0.

Take rn = n and Xn,1, . . . , Xn,n be i.i.d. with distribution Fn.

Then

E[Xn,k] = 0, max
1≤k≤n

E[X2
n,k] =

σ2

n
→ 0, and s2n =

n∑
k=1

σ2

n
= σ2 < ∞.

Consequently, Properties 1, 2 and 3 hold. �



Converse to Theorem 28.1 28-16

Theorem 28.1 For any finite measure (not necessarily probability measure) µ,

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
is the characteristic function of an infinitely divisible distribution with mean 0 and

variance µ(�).

Theorem 28.3 If F is the limit law of Sn = Xn,1+· · ·+Xn,rn for an independent

triangular array satisfying:

1. E[Xn,k] = 0;

2. limn→∞max1≤k≤rn E[X
2
n,k] = 0;

3. supn≥1 s
2
n <∞, where s2n =

∑rn
k=1E[X

2
n,k],

then F has characteristic function of the form

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
for some finite measure µ.
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In summary of Theorems 28.1, 28.2 and 28.3, for an independent triangular array

satisfying:

1. E[Xn,k] = 0;

2. limn→∞max1≤k≤rn E[X
2
n,k] = 0;

3. supn≥1 s
2
n < ∞, where s2n =

∑rn
k=1E[X

2
n,k],

F is the limit law of Sn = Xn,1 + · · · +Xn,rn if, and only if, F has characteristic

function of the form

ϕ(t) = exp

{∫
�

(
eitx − 1− itx

) 1

x2
µ(dx)

}
for some finite measure µ.
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Proof of Theorem 28.3

• Let ϕXn,k
(t) be the characteristic function of Xn,k.

Let θn,k(t) = ϕXn,k
(t)− 1.

• Since E[Xn,k] = 0,

|θn,k(t)| =
∣∣∣ϕXn,k

(t)− 1
∣∣∣ ≤ 1

2
t2E[X2

n,k].

Hence, Properties 2. and 3. respectively imply:

lim
n→∞ max

1≤k≤rn
|θn,k(t)| ≤ 1

2
t2 lim

n→∞ max
1≤k≤rn

E[X2
n,k] = 0

and

sup
n≥1

rn∑
k=1

|θn,k(t)| ≤ 1

2
t2 sup

n≥1

rn∑
k=1

E[X2
n,k] <∞.
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• Observe that∣∣∣∣∣
rn∏
k=1

ϕXn,k
(t)− exp

{
rn∑
k=1

(
ϕXn,k

(t)− 1
)}∣∣∣∣∣ ≤

rn∑
k=1

∣∣∣ϕXn,k
(t)− exp

{
ϕXn,k

(t)− 1
}∣∣∣

=

rn∑
k=1

∣∣∣1 + θn,k(t)− eθn,k(t)
∣∣∣

≤
rn∑
k=1

|θn,k(t)|2e|θn,k(t)|

≤ et
2s2n/2

rn∑
k=1

|θn,k(t)|2

≤ et
2s2n/2

(
max

1≤k≤rn
|θn,k(t)|

) rn∑
k=1

|θn,k(t)|
n→∞−→ 0.

|ϕXn,k
(t)| < 1 implies that (ϕXn,k

− 1) = −a+ jb

for some a > 0. Hence,
∣∣exp (ϕXn,k

− 1
)∣∣ = e−a < 1

For complex z, |ez − 1− z| ≤ |z|2
∞∑
k=2

|z|k−2

k!
≤ |z|2

∞∑
k=2

|z|k−2

(k − 2)!
= |z|2e|z|.
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Hence,

ϕ(t) = lim
n→∞ϕSn(t) = lim

n→∞ exp

{
rn∑
k=1

(
ϕXn,k

(t)− 1
)}

.

• Denote by Fn,k the cdf of Xn,k, then

rn∑
k=1

(
ϕXn,k

(t)− 1
)

=

rn∑
k=1

∫
�
(eitx − 1)dFn,k(x)

=

rn∑
k=1

∫
�
(eitx − 1− itx)dFn,k(x), (by E[Xn,k] = 0)

=

∫
�
(eitx − 1− itx)

rn∑
k=1

dFn,k(x)

=

∫
�
(eitx − 1− itx)

1

x2
µn(dx),

where

µn(−∞, x] =

∫ x

−∞
µn(dy) =

∫ x

−∞

rn∑
k=1

y2dFn,k(y).

Notably, µn(�) =
∑rn

k=1E[X
2
n,k] = s2n is uniformly bounded in n. So, µn is a

finite measure.
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•
Theorem 25.9 (Helly’s theorem) For every sequence {Fn}∞n=1 of distri-

bution functions, there exists a subsequence {Fnk}∞k=1 and a non-decreasing,

right-continuous function F (not necessarily a cdf) such that

lim
k→∞

Fnk(x) = F (x)

for every continuous points of F .

Lemma Suppose that µn
v−→ µ and supn≥1 µn(�) < ∞. Then

limn→∞
∫
� f(x)µn(dx) =

∫
� f(x)µ(dx) for every continuous real f that satis-

fies lim|x|→∞ f(x) = 0.

Helly’s theorem can be applied to finite measures as well; hence, there exists µ

and subsequence {nj}∞j=1 such that µnj converges to µ vaguely.

Theorem 25.9 (Helly’s theorem for finite measures) For every se-

quence finite measure {µn}∞n=1, there exists a subsequence {µnk}∞k=1 such that

lim
k→∞

µnk(−∞, x] = µ(−∞, x]

for every continuous points of µ(−∞, x].



Converse to Theorem 28.1 28-22

Since (by the 3rd assumption and the definition of µn on the bottom of Slide

28-20)

sup
j≥1

µnj(�) = sup
j≥1

s2nj ≤ sup
n≥1

s2n <∞

and

lim
|x|→∞

∣∣eitx − 1− itx
∣∣ 1

x2
≤ lim

|x|→∞
min

{|x|2
2!
,
|x|
1!

}
1

x2
= lim

|x|→∞
min

{
1

2
,
1

|x|
}

= 0,

we obtain

lim
j→∞

∫
�
(eitx − 1− itx)

1

x2
µnj(dx) =

∫
�
(eitx − 1− itx)

1

x2
µ(dx).

• But,

lim
n→∞

∫
�
(eitx − 1− itx)

1

x2
µn(dx) = ϕ(t).

Consequently,

ϕ(t) =

∫
�
(eitx − 1− itx)

1

x2
µ(dx)

for the vague limit µ of µnj , and µ(�) ≤ supn µn(�) <∞ is a finite measure.

�
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Double exponential: pdf ≡ 1

2
e−|x| for −∞ < x <∞, and ϕ(t) =

1

1 + t2
.

Define µ(−∞, x] =

∫ x

−∞
|y|e−|y|dy.

Hence, µ(�) =
∫ ∞

−∞
|y|e−|y|dy = 2, and

exp

{∫ ∞

−∞
(eitx − 1− itx)

1

x2
|x|e−|x|dx

}
= exp

{∫ ∞

−∞
(eitx − 1− itx)

1

|x|e
−|x|dx

}

= exp

{∫ 0

−∞
(eitx − 1− itx)

1

(−x)e
xdx +

∫ ∞

0

(eitx − 1− itx)
1

x
e−xdx

}
= exp

{∫ ∞

0

(e−itx − 1 + itx)
1

x
e−xdx +

∫ ∞

0

(eitx − 1− itx)
1

x
e−xdx

}
= exp

{∫ ∞

0

2[cos(tx)− 1]

x
e−xdx

}
= exp{− log(1 + t2)} =

1

1 + t2
.
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centered exponential density:

Let random variable Y have pdf e−y for 0 ≤ y <∞.∫ ∞

0

eitye−ydy =
1

1− it
.

Let X = Y − 1.

Hence, E[eitX ] = E[eit(Y −1)] =
e−it

1− it
.

Let µ(dx) = xe−x for 0 ≤ x <∞.

Then µ(�) =
∫ ∞

0

xe−xdx = 1 <∞, and

exp

{∫ ∞

0

(eitx − 1− itx)
1

x2
xe−xdx

}
= exp

{∫ ∞

0

(eitx − 1− itx)
1

x
e−xdx

}
= exp

{∫ ∞

0

(eitx − 1)
e−x

x
dx

}
exp

{
−it

∫ ∞

0

e−xdx
}

=
e−it

1− it



Example of limit law 28-25

• centered gamma distribution is also infinitely divisible with µ(dx) =

uxe−x for 0 < x < ∞.

• Cauchy distribution is an infinitely divisible distribution with infinite

second moment. (So its canonical formula is a little different from the one

shown in Theorem 28.1.)

exp

{∫ ∞

−∞

(
eitx − 1

)
µ(dx)

}
exp

{∫ ∞

−∞

(
eitx − 1− itx

) 1

x2
µ(dx)

}
= exp

{∫ ∞

−∞

(
eitx − 1

)
µ(dx) +

∫ ∞

−∞

(
eitx − 1− itx

) 1

x2
µ(dx)

}
= exp

{∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
µ(dx)

}
= e−|t|,

where µ(dx) =
dx

π(1 + x2)
.

• The product of infinitely divisible characteristic functions is also an infinitely

divisible characteristic function.


