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Poisson and Normal as two limit laws 28-1

Theorem 23.2 7,1, 2,,», ..., Z,,, are independent random variables.
Pl”[Zn’k = 1] = Pn.k and Pl"[ZnJ€ = 0] =1-— Pn k-
Then
T )
(2) lim Pnk = A n \
”—mkz:; > = Pr ZZn,k:i %e_kﬁfori:(),l,z....
(¢7) lim max pn; =0 k=1 '
n—o0 1<k<rp

/

Theorem 27.2 For an array of independent zero-mean random variables
Xnis---,Xpnr,, i Lindeberg’s condition holds for all positive €, then

Sh
= = N,
S

where S, = Xp1+ -+ Xp




lelt 1&WS 28-2

e We have learned thus far that Poisson and Normal are two limit laws for sum
of independent array variables.

e Question: What are the class of all possible limit laws for sum of independent
triangular array variables?
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Definition (Infinitely divisible) A distribution F'is infinitely divisible if for
each n, there exists a distribution function F;, such that F' is the n-fold convolution
Fox---x F, of F,.

TV .
n copies

e Question: What are the class of all possible limit laws for sum of independent
triangular array variables?

e Answer: The class of possible limit laws consists of the infinitely divisible
distributions.
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Theorem 28.1 For any finite (non-negative) measure (not necessarily probability
measure),

o(t) = exp { /3{E (¢ — 1 — itz) %,u(dw)}

is the characteristic function of an infinitely divisible distribution with mean 0 and
variance p(R).

e /i is named the canonical measure.

® exXp {fa% (em —1 - z'tx) x—gu(d:ﬁ)} is named the canonical representation of
infinitely divisible distributions (of zero mean and finite variance).

Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite
variance is the limit law of S,, = X, 1+ - -4+ X, for some independent triangular
array satisfying:

1. E[Xn’k] = 0;
2. limy, 00 MaX] <<y, E[ng] = 0;

2 2 r 2
3. sup,,>1 s;, < 00, where s i1 BIX ]

w
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Theorem 27.2 For an array of independent zero-mean random variables
Xni,...,Xnp,, i Lindeberg’s condition holds for all positive €, then

S
= N,
Sn

where Sp, = Xp1+ -+ Xo

e The case considered in Theorem 27.2 is a special case among those considered
in Theorem 28.2.

e Specifically, let Xnk = X1/ Sn, where X,  and s, are defined in Theorem 27.2.
Then the conditions considered in Theorem 28.2 becomes the limit of S, =
Xn,k: Tt Xn,rn — Sn/sna and

1. BE[Xoi] = E[X,1/5:] = 0;
E[X7,]

) 9 :
2. hmn—)oo maxi<g<r, E[Xn,k] - hmn—>oo maxij<g<r,

22 22 ™ 72 1 — Nn LA
3. sup,,>1 5, < 0o, where 3 i BIXG =200 =1

n —
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Example 28.1 p is a point mass at the origin, and u{0} = o

olt) — exp{ /3{t (¢ — 1 itz) %,u(dx)}
’ (e —1 — itx) }

— exp? o lim
x—0 2

ite™ — it
:exp<a2lim( >}
x—0 2x

\

\

’ .
it 2€ztx
= exp{ o” lim —(( ) ) }
x—0 2

\

-
= exXp —T .

Hence, a central normal distribution with variance o = p(R) is infinitely divisible.
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Example 28.2 p consists of a point mass A\z? at some x # 0.
: 1
e(t) = exp {/ (e" — 1 —itx) —2,u(dx)}
R X
= exp {)\ (e“‘” —1- @ta:)} :

which is the characteristic function of z(Z) — ), where Z) has Poisson distribution
with mean A.

Notably, the variance (2nd moment) of z(Z) — ) is equal to Az* = p(R).

For any n, its cdf F' can be represented by the n-fold convolution of F;, for which

F, is the cdf of (2, — A/n).
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Proof of Theorem 28.1
(Proof of ¢(t) is a characteristic function)

e For any finite measure p, define a new measure p; which has point mass
w(j27F (5 +1)27F at j27% for j =0, £1, £2,..., £22%

Then py converges to u vaguely.

Here, finite is a key because this property may not be true for infinite mea-
sure.

Lemma Suppose that g, L> pand sup,sq pun(R) < oo.  Then
lim,, o0 f% x) o (dx) fé)% p(dz) for every continuous real f that satis-

fies lim,) 00 f(2) = 0.

The above lemma proves that

where
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and

o(t) = exp{ /% (¢ — 1~ itz) %,u(da:)}.

Now you should see the reason why we put 1/z? inside the integrand, because
we require f(z) = (e" — 1 —itz) -5 — 0 as |z| — oo.

Corollary 1 (cf. Slide 26-52) Suppose a sequence of characteristic functions
{©n(t)}>2; has limits in every ¢, namely lim,,_,~, @, (t) exists for every t.
Define

g(t) = lim @,(t).

n—o0
Then if g(¢) is continuous at ¢ = 0, then there exists a probability measure p
such that
b, = 1, and p has characteristic function g

where p,, is the probability measure corresponding to characteristic function
©n(").

As seen from Examples 28.1 and 28.2, a single-point-mass finite measure, either
at x = 0 or at x # 0, leads to a characteristic function of some random variable,
and its second moment is equal to its measure value on the point.
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A multiple-point-mass finite measure can be represented as sum of single-point-
mass finite measures; hence, the resultant ¢ () is a product of many charac-
teristic functions, and is itself a characteristic function. The second moment of
@k (t) is therefore the sum of the second moments of individual characteristic
functions.

The limit ¢(t) of py(t) is apparently continuous; thus, ¢(t) is a characteristic
function for some probability measure.
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(Proof of the random variable corresponding to characteristic function p(t)
having mean zero and variance p(R).)

Theorem 25.11 If X,, = X, then
E[|X]] < liminf E[|X,].

n—oo

Examples 28.1 and 28.2 give that for point-mass measure ., the corresponding
variable has mean zero and second moment E[X?] = p(R). Hence, E[X?| <
lim infj o0 E[X7?] < supjs; pe(R) < pu(R) < oo.

by definition of s,

At this moment, we know the second moment of variable X corresponding to
the limiting characteristic function (+) is finite. But, we still not yet know the
values of its mean and second moment.

Lemma If E[|X"|] < oo, then

0™(0) = i"E[X").
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So we can take the first and second derivatives of () to obtain:

i -mean = ¢'(0)
_ (/% (i)™ — ix) %M(dl’)) exp {/a% (e —1 —itz) %M(dﬂf)} »
~ 0
and
i* - (2nd moment) = ¢"(0)
= ([ e Yoo { [ 1) )|
. (/% (i)™ — iz) %M(dx))zexp {/gce (e"" — 1 —itx) %M(dx)} )
_ /% u(dz) = —p(R)

So p(t) corresponds to a distribution with mean 0 and finite variance p(3R).
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(Proof of divisibility)
e Now let

thn(t) = exp { /3{E (" —1—itx) %,u,n(d:c)}

where p, = j/n.
Then ¢(t) = [¢,(¢)]", which implies that the distribution corresponding to
©(t) is indeed infinitely divisible. O
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Theorem 28.2 Every infinitely divisible distribution with mean 0 and finite
variance is the limit law of S,, = X, 1+ - -+ X, for some independent triangular

array satisfying:
1. B[ X,k =0;
2. limy, 0o Maxy <<y, E[ng] = 0;

2 2 _ N\n 2
3. sup,>1 85, < 00, where s = ;" | B[X7].

Proof of Theorem 28.2
e Claim: If X 1L Y and E[(X +Y)?] < oo, then E[X?] < 0o and E[Y?] < co.

Proof: For any x, |Y| < |z| + |z + Y| implies F[|Y|] < |z| + E[|lz + Y]].
Hence, if E[|Y|] = oo, then E||xz + Y|| = oo for every =,
which implies E[|X + Y] = oo, a contradiciton to E[(X + Y)?] < oo.

We can similarly prove that E[|X|] < oc.

Hence, by 2% 4+ y* < (z + y)? + 2|z||y|, we obtain
EXY ] +EYY < E[(X +Y)]+2E|X||E[]Y]] < cc.
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e Now suppose F'is a cdf corresponding to an infinitely divisible distribution
with mean 0 and variance o < oo.

If F'is the n-fold convolution of F;,, then, by the previous claim, F,, must have
finite mean and variance.

Under “finiteness”, We can then (safely) induce that:
1. as n multiplying the variance of Fj, is the variance of F', F;, has finite
variance o2 /n;

2. as n multiplying the mean of F;, is the mean of F', F}, has mean 0.

Take r, = n and X, 1,..., X, be i.i.d. with distribution Fj,.
Then

2 n 2

o) o)
E[X, ] =0 E[X?]="— >0 d s = — S .
X =0, e (X n G S kz_; n 0=

Consequently, Properties 1, 2 and 3 hold. O
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Theorem 28.1 For any finite measure (not necessarily probability measure) u,

) = evp { /3{E (¢ — 1 — itz) %,u(d:c)}

is the characteristic function of an infinitely divisible distribution with mean 0 and
variance p(R).

Theorem 28.3 If I is the limit law of S;, = X,, 1 +- - -+ X, for an independent
triangular array satisfying:

1. B[ Xk =0;
2. limy, 00 maxy <<r, B[X7 ] = 0;
3. sup,>; S5 < 0o, where s3 = > ", E[beak],

then F' has characteristic function of the form

o(t) = exp { /3{E (¢ — 1 — itz) %M(dx)}

for some finite measure p.




Converse to Theorem 28.1 2817

In summary of Theorems 28.1, 28.2 and 28.3, for an independent triangular array
satisfying:

1. E[Xn,k] = O;

2. limy, 00 maxy <<y, E[ng] = 0;

3. sup,>; 5, < 00, where s, = " E[X7 ],
F'is the limit law of S, = X, 1 +--- + X,,,, if, and only if, F' has characteristic
function of the form

(t) = exp { /3{E (¢ — 1~ itz) %,u,(d:c)}

for some finite measure f.
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Proof of Theorem 28.3

o Let ¢x (t) be the characteristic function of X, .
Let Hnjk(t) = SOXn,k(t) — 1.

e Since F[X,, ;| =0,
L, 2
00 (8)] = |ox, () = 1| < SEEIX]
Hence, Properties 2. and 3. respectively imply:

1
lim max [0,x(t)] < =t* lim max E[Xflk] =0

n—o00 1<k<r, 2 n—oo 1<k<ry,

and

'n 1 n
supz 10,0:(t)] < §t2 supz E[X;,] < cc.
k=1 k=1

n>1"7_ n>1 "7
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e Observe that

H Xk (t) — EXp {
k=1

n

k=1 k=1
n
_ E — k()
IQQXM (t)] <1 implies that (¢x,, —1) = —a + jb - 1 + en,k(t) e
for some a > 0. Hence, ’exp ((an‘k — 1)’ =e %<1 k=1
: Y
2 10, 1(t
< 16,,.5(2)] !0k ()]
k=1

[\
Q)
~
)
V)
3N
~
[\»}
B
3
N
—~
~
==

(wxn,k(t) - 1) H < Px, (1) — exp {wxn,k(t) - 1}|

VA
)
H~l\')
Va)
3N
~
[\
VRN
Qo
~
=
3
T
—~
~
-
~__
=
3
T
—~
~
-

For complex z, [ — 1 — z| < !Z\QZ
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Hence,

n—o0 n—o0

p(t) = lim g, (t) = lim eXp{ S (wxn,k(t) - 1)}

e Denote by F), ;. the cdf of X, ., then

Tn

CHIEDEDS [ (€ = 0dFiz)

k=1

= kzn; /%(ez'tx —1— ZtI)an’k(ﬂi’), (by E[Xn,k] - O)

where

ml=oo.al = [ uldy) = [ im0

Tn

Notably, r,(R) = >~ E[Xflk] — 52 is uniformly bounded in n. So, u, is a

n
finite measure.
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Theorem 25.9 (Helly’s theorem) For every sequence {F,}>°; of distri-
bution functions, there exists a subsequence {F), }7°, and a non-decreasing,
right-continuous function F' (not necessarily a cdf) such that

lim F, (z) = F(x)

k—o0

for every continuous points of F'.

Lemma Suppose that g, L> pand sup,s; pun(R) < oo.  Then
lim,, o0 f% x) o (dx) f% p(dz) for every continuous real f that satis-

fies hm|x|_>oo f( ) 0.

Helly’s theorem can be applied to finite measures as well; hence, there exists
and subsequence {n;}72; such that p,; converges to p vaguely.

Theorem 25.9 (Helly’s theorem for finite measures) For every se-

quence finite measure {1, }7° |, there exists a subsequence {f,, }7°, such that

n=1»

lim ,Lbnk( OO,-T] - M(_Oo7x]
k—o0

for every continuous points of p(—oo, .




Converse to Theorem 28.1 28.22

Since (by the 3rd assumption and the definition of u, on the bottom of Slide

28-20)

2

sup fi,,(R) = sup s, < sup 52 < 00

j>1 i>1 7 >l
and
1 2 1 1
lim ’em—l—ztaz‘—< lim min ﬂ,m = lim min< —=,— » =0,
we obtain
lim /(em —1- z't:r:)i,u (dx) = /(em —1- itx)i,u(dx)
J—=0 JRp x? " R 22 .
e But,
1
lim /( 1 —dtx) Q,LLn(d:U) o(t).
n—o0 R
Consequently,

o) = [ (@ =1 = ito)utde)

for the vague limit g of g, and p(¥) < sup,, p,(R) < oo is a finite measure.
[l



Example of limit law

28-23
) 1 2 1
Double exponential: |pdf = 5¢ for —oo < o < 00, and p(t) = e
Define pu(—o0, ] —/ lyle ¥ldy.

Hence, p(R) = / lyle ldy = 2, and

—00

exp {/ (e —1— ita:)p]x]exdx}
= exp {/ (" —1— itx)ﬁexda:}
o T
_|_

0 ‘ 1
= exp {/ (e —1 — itx) e’dx

—00 (—33)

= exp {/ (e7™ — 1 +itx)—e “dx +/
0 L 0

. { /O > 2[008(765) — 1 j dx}

= exp{—log(1 + %)} =

1+



Example of limit law

28-24

centered exponential density:

Let random variable Y have pdf e for 0 < y < o0.

Let p(dx) = xe™ for 0 < z < 0.

Then pu(R) = / re “dr =1 < oo, and
0

exp {/ (e —1— itx)—za:e‘”dx} =
0 X

/OO eWe Vdy = ! :
! 1 — it
Let X =Y — 1. .t
Hence, E[e™X] = E[e(Y 1] = S
11—t
e 1 —x
exp ("™ —1—itx)—e “dx
x

of o)
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e centered gamma distribution is also infinitely divisible with p(dx) =
xe " for 0 < z < oo.

e Cauchy distribution is an infinitely divisible distribution with infinite
second moment. (So its canonical formula is a little different from the one
shown in Theorem 28.1.)

exp{ / et 1) }exp{ /Z(em—l—im)%u(d:ﬁ)}
—exp{ /OO e _ 1) u(da) + /Z(e““”—l—z’m)%u(dm)}
By

et
)

88

dx
(14 22)

e The product of infinitely divisible characteristic functions is also an infinitely

where p(dx) =

divisible characteristic function.



