
Introduction to Combinatorics Lecture 8

An Introduction of Extremal Set Theory

Research Problem. Under a constraint or a collection of constraints, find the maximum

number of sets satisfying the given constraints.

Clearly, the collection of sets, B, from X is also a design (X,B).

Notation.

• [n] = {1, 2, ..., n}.

•
(

[n]

k

)
=def the collection of (all) k-subsets of [n].

•
(
n

k

)
= |
(

[n]

k

)
|.

Definition 8.1 (Partial ordered set). X = {x1, x2, ..., xn} is a set of n elements and ’≤’

is a partial order defined on X. 〈X,≤〉 is called a partial order set, Poset in short.

Definition 8.2 (Partial order). ’≤’ is a partial order of X if

1. Reflexivity: a ≤ a ∀a ∈ X

2. Anti-symmetry: a ≤ b and b ≤ a imply a = b ∀a, b ∈ X, and

3. Transitivity: a ≤ b, b ≤ c imply a ≤ c ∀a, b, c ∈ X.

Definition 8.3 (Total order). ’≤’ is a total order of Y provided any two distinct elements

in Y, yi and yj, either yi ≤ yj or yj ≤ yi. (yi and yj are comparable.)

We may use a graph to depict a partial ordered set (Poset), 〈S,≤〉. It is known as the

Hasse-diagram. Mainly, if a, b ∈ S and a ≤ b, then the vertex representing b is higher

than a as: .
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For example, 〈2[4],⊆〉 can be represented as follows.

Figure 8.1: Hasse-diagram of 〈2[4],⊆〉.

For convenience, this diagram can be considered as a graph (in Figure 8.2) and only the

structure will be studied.

Figure 8.2

Definition 8.4 (Anti-chain, Chain). A subset of a poset in which no two distinct elements

are comparable is called an anti-chain. On the other hand, a totally ordered set is called

a chain.

Example. The blue vertices are an anti-chain and the orange path is a chain.
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Figure 8.3: Poset with set-containment.

Extremal set problem.

Given a configuration of posets, say I = P2 : (y ≤ x), find the maximum number

of sets in 2[n] such that the induced partial ordered set contains no sub-poset which is

given, i.e., contains no P2.

We can change I = P2 to any kinds of sub-poset. For example, P3 : or S3 (star of

order 3): . T he result solving case I = P2 is known as the Sperner’s theorem.

Theorem 8.1 (Sperner’s theorem). Consider the collection of all subsets of [n]. The

maximum number of subsets which do not contain each other is equal to

(
n

bn
2
c

)
. (The

maximum anti-chain problem.)

Proof. Let B be a collection of subsets which do not contain each other and attains the

maximum. Furthermore, let ak be the number of sets in B whose size is k. Hence, |B| =
n∑

k=0

ak. Note that ai’s may be zero. Since

(
[n]

bn
2
c

)
is clearly an anti-chain, |B| ≥

(
n

bn
2
c

)
.

So, it is suffices to prove |B| ≤
(
n

bn
2
c

)
.

Claim (Lubell-Yamamoto-Meshalkin, LYM inequality).
n∑

k=0

ak/

(
n

k

)
≤ 1.
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Consider the set of permutations of [n]. Clearly, there are n! permutations. Now, for

each set S = {s1, s2, ..., sk} in B, we associate this set with |S|!(n−|S|)! permutations by

taking the maximum chain passing s1s2 · · · sk. (∅− s′1− s′1s′2− s′1s′2s′3− · · ·− s1s2 · · · sk−
s1s2 · · · sks′k+1 − · · · − [n] where s′i ∈ {s1, s2, ..., sk} for 1 ≤ i ≤ k.) Note that each

permutation can only be associated with a single set in B. Two sets in B do not contain

each other. Now we have

∑
S∈B

|S|!(n− |S|)! =
n∑

k=0

ak · k!(n− k)! ≤ n!

Hence,
n∑

k=0

ak ·
k!(n− k)!

n!
≤ 1.

Since 1 ≥
n∑

k=0

ak/

(
n

k

)
≥

n∑
k=0

ak/

(
n

bn
2
c

)
,

(
n

bn
2
c

)
≥

n∑
k=0

ak = |B|. The proof follows.

Example. n = 5.

Figure 8.4: (5− 3)! · 3! maximum chains.

Problem. Find the maximum number of subsets in 2[n] such that their induced poset

does not contain P3. A good guess is

(
n

bn
2
c

)
+

(
n

bn
2
c+ 1

)
. But is it true? Try it!

Problem. Find the maximum collection of sets Bn,r of size r which are mutually in-

tersection, that is, ∀S1, S2 ∈ Bn,r, S1 ∩ S2 6= ∅. Bn,r is called an r-uniform intersection

family defined on [n]. The following theorem is a beautiful result of this problem.
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Theorem 8.2 (Erdös-Ko-Rado, EKR theorem). |Bn,r| =
(
n− 1

r − 1

)
n ∈ N.

Proof. Let B = {S ∪ {n} | S ∈
(

[n− 1]

r − 1

)
}. Then, B is an intersection family of [n]

since each set contains the element n. Hence, |Bn,r| ≥
(
n− 1

r − 1

)
. Next, we prove that

|Bn,r| ≤
(
n− 1

r − 1

)
.

Observe that if we let (a1, a2, ..., an) be a cyclic permutation of [n], then this cycle contains

at most r sets of Bn,r. For example, when n = 8 and r = 3, let (3, 1, 8, 2, 7, 5, 6, 4)

be an arbitrary cyclic permutation. Now, if {8, 2, 7} ∈ B8,3, then we have two more

possible sets {1, 8, 2} and {2, 7, 4}. So, for general n, we have at most r · (n − 1)! sets

for intersecting family. By the same idea in Sperner’s theorem, each set in Bn,r can be

associated with r!(n− r)! permutations. Hence, |Bn,r| ·r!(n− r)! ≤ r · (n−1)!. Therefore,

|Bn,r| ≤
(n− 1)!

(r − 1)!(n− r)!
=

(
n− 1

r − 1

)
.

Example. |B7,3| =
(

6

2

)
= 15.

Another good problem to study related to sets.

Let n = 2t+ 1. We may define a graph G as follows: V (G) =

(
[n]

t

)
and two vertices are

adjacent if and only if their intersection is an empty set. The graph G is known as an

odd graph of order n, denoted by On.

Example. O5 (n = 5, t = 2). It is in fact the Petersen graph.

Figure 8.5: O5.
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Study the structure of On is an important problem in both Graph Theory and Design

Theory.

If we further require that any two r-sets in 2[n] can have at most one element in common,

thus exactly one element in common, then the collection of such r-sets, denoted by B(1)
n,r

has at most
n(n− 1)

r(r − 1)
sets.

To see this, we notice that any pair of elements in [n] can occur in at most one r-set

of B(1)
n,r. Hence, the pairs we have in total is

n(n− 1)

2
=

(
n

2

)
and each r-set can use(

r

2

)
=
r(r − 1)

2
pairs, this implies that |B(1)

n,r| ≤
(
n

2

)
/

(
r

2

)
.

For some n and r, the equality does hold. For example, B
(1)
7,3 = {124, 235, 346, 457, 672, 713}

(Fano plane), and B
(1)
13,4 = {{0, 1, 3, 9}+ i | i ∈ Z13} (|B(1)

13,4| =
13× 12

4× 3
= 13).

Figure 8.6: B
(1)
13,4
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Block Design

The study of the incidence structures between finite sets is one of the most important

topics in Combinatorial Theory. There are three basic directions: (1) Finite Geometry,

(2) Block Design, and (3) Hypergraph. It is not easy to describe the difference between

them. In general, ’Finite Geometry’ cares more about the property related to the geom-

etry on a plane, ’Block Design’ emphasizes on numerical relationship, and ’Hypergraph’

focuses on arbitrarily given edges (finite subsets).

Therefore, to study Block Design, we start with the construction of designs of small order.

We also find the necessary conditions for the existence of the kind of designs we would like

to obtain. Following that, we then put forth to prove the necessary conditions are also

sufficient by constructing all such designs. In general, the part on necessary conditions is

comparatively easier. As to construction part, some of the design does not exist even we

know the necessary conditions. We shall see that in next section.

Definition 8.5 (Block design). (X,B) is a design if X is a non-empty set and B is a

collection of subsets of X. If all the subsets are of the same cardinality, then (X,B) is

called a block design. For convenience, all the sets in B are referred as blocks in X.

Definition 8.6 (Simple design). If all the subsets of a design (X,B) are all distinct, then

it is a simple design. Note that B can be a multi-set in a design, the blocks with repeated

occurrence is known as repeated blocks.

Definition 8.7 (Representation of design). Let X = {x1, x2, ..., xv} be the set of ’varieties’

and B = {B1, B2, ..., Bb} be the set of blocks. Then, we can define a variety-block

incidence matrix to represent the design, say A, and also a bipartite graph to represent

(X,B), say GX,B. A =
[
ai,j

]
v×b

where ai,j =

1 if xi ∈ Bj, and

0 otherwise.

Therefore, A is a (0, 1)-matrix.
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Definition 8.8 (Pairwise balanced design, PBD). An (X,B) is called a pairwise balanced

design (PBD for short) if for any pair of elements in

(
X
2

)
, they occur together in exactly

λ blocks of B. Notice that in PBD, the blocks are not necessarily be of the same. So, it

is denoted by 2− (v,K, λ) design where |X| = v.

Example.

1. A 2− (6, {2, 5}, 1) design: X = Z6 and B = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5},
{1, 2, 3, 4, 5}}.

2. X = Zv and B =

(
Zv

k

)
, k ≥ 2. Then, (X,B) is a 2− (v, k, λ) design where

λ =
r(k − 1)

v − 1
.

Note that r =

(
v − 1

k − 1

)
=

(v − 1)!

(k − 1)!(v − k)!
=

(v − 1)(v − 2) · · · (v − k + 1)

(k − 1)!
,

hence λ =
(v − 1)(v − 2) · · · (v − k + 1)

(k − 1)!
· k − 1

v − 1
=

(
v − 2

k − 2

)
.

Remark. (X,B) is also a t− (v, k, λ) design for all 2 ≤ t ≤ k < v.

The following notions are not related to vector spaces.

Definition 8.9 (Partial linear space, Linear space). An (X,B) is called a partial linear

space if any two blocks of B contains at most one common element. If, indeed, any two

elements (varieties) of a partial linear space occur together in a block of B, then (X,B)

is a linear space with index 1.

Remark. We can use ’Geometry’ to refer the above definitions:

• Partial linear space: Any two lines intersect at most one point.

• Linear space: Any two points lie on a line (some line) of a partial linear space.

Basic properties of a design.

1. If (X,B) is a 2− (v, k, λ) design, then we have

(a) for each x ∈ X, rx = r =
λ(v − 1)

k − 1
or r(k − 1) = λ(v − 1).

(b) b = |B| = λv(v − 1)

k(k − 1)
or bk = rv.
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Proof. Since x occurs with (each of) all the other v−1 elements exactly in λ blocks,

rx is equal to λ(v − 1) possible such pairs divided by the k − 1 pairs which can be

obtained from a block. (The second equality is a consequence of the above idea by

using two-way counting.) This concludes the proof of (a).

As to (b), it is a direct counting of the number of pairs occur in B via the number

of pairs occur in a block. Therefore |B| =
λ
(
v
2

)(
k
2

) . The second identity comes from

the (total) occurrence of elements.

2. (Fisher’s inequality) If (X,B) is a 2− (v, k, λ) design, then |X| ≤ |B|.

Proof. Let A be the incident matrix of (X,B). Then, AAT = (r − λ)I + λJ , i.e.,

AAT is a v× v matrix such that each entry in the diagonal is r and each entry out

side diagonal is λ.

AAT =


B1 B2 · · · Bb

x1

...

xv v × b




b× v


Note that AAT (i, j) is the inner product of the ith row and the jth row. So, if

i = j, it is the occurrence of xi (rxi
= r) in the blocks of B, and if i 6= j, it is the

number of blocks in which xi and xj occur together in the blocks, λ.

Now, we can find det(AAT ) = k · r · (r − λ)v−1. (Gaussian elimination.) Since

v > k, λ < r. This concludes that AAT is non-singular, i.e., rank(AAT ) = v.

Furthermore, rank(AAT ) ≤ rank(A) ≤ min{v, b}, hence b ≥ v.

In what follows, we find det(AAT ) by using its eigenvalues. Since AAT = (r−λ)I+

λJ , an eigenvalue µ satisfies (AAT )x = µx = (r−λ)x+λJx = (r−λ)x+λµ′x where
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µ′ is an eigenvalue of J . By the fact that J is of rank 1, the set of eigenvalues of J are

{v, 0, 0, ..., 0} (0 with multiplicity v−1). Hence, µx = ((r−λ)+λµ′)x. This implies

that µ = r−λ (v−1 of them) and µ = r−λ+λv = r+λ(v−1) = r+(k−1)r = kr.

Thus, det(AAT ) = k · r · (r − λ)v−1.

(Note here that using the spectrum of an adjacency matrix of a graph is one of the

main subjects of Algebraic Graph Theory.)

Theorem 8.3. If (X,B) is a linear space, then |X| ≤ |B|.

Proof. Again, let |X| = {x1, x2, ..., xv} and B = {B1, B2, ..., Bb}. Since (X,B) is a linear

space, any two elements in X occur together in a block of B. Assume that b ≤ v. Here is

an important observation: If x 6∈ Bi, then rx ≥ |Bi| since each element of Bi is going to

occur together with x in some other blocks in B.

Now, we are ready for the following statements.

1 =
∑
B∈B

1

b
=
∑
B∈B

(
∑
x 6∈B

1

b(v − |B|)
) (1)

1 =
∑
x∈X

1

v
=
∑
x∈X

(
∑
B 63x

1

v(b− rx)
) (2)

vrx ≥ b|B| for each x 6∈ B (v ≥ b). (3)

By (1), (2) and (3),
1

b
=
∑
x 6∈B

1

b(v − |B|)
≤
∑
B 63x

1

v(b− rx)
=

1

v

we have b ≥ v, a contradiction. Hence, b ≥ v.

Remark. The equality v = b also shows that rx = |B| for each x ∈ X and B ∈ B.

The implication of this fact is that any two blocks intersect at exactly one element, i.e.,

|Bi ∩Bj| = 1 for all 1 ≤ i 6= j ≤ b.
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Definition 8.10 (Projective plane). (X,B) is a projective plane if (|X| = |B|) and (X,B)

is a linear space.

Definition 8.11 (SBIBD). A BIBD is a square BIBD, denoted by SBIBD, if v = b.

The following Theorem is well-known, we state it and omit the proof here. (It is a

’necessary condition’ for the existence of an SBIBD.)

Theorem 8.4 (Bruck-Ryser-Chowla, 1949-1950). If a 2 − (v, k, λ) design is a square

BIBD, then

1. k − λ is a square of an integer when v is even; and

2. z2 = (k − λ)x2 + (−1)
v−1
2 · λy2 has a nonzero integral solution when v is odd.

Remark. (1) is easy to see: det(AAT ) = det(A)2 = kr(r − λ)v−1 = k2(k − λ)v−1 (v = b

implies r = k). However, the proof of (2) is quite complicate, we omit it.

Special designs related to Geometry.

Definition 8.12 (Projective plane and Affine plane). A Steiner 2-design S(2, n+ 1, n2 +

n + 1) is called a projective plane of order n, denoted by PG(2, n). A Steiner 2-design

S(2, n, n2) is an affine plane of order n, denoted by AG(2, n).

Facts.

1. The existence of a PG(2, n) is ’equivalent’ to the existence of an AG(2, n).

Proof. (More details will be given later.)

PG(2, n)
deleting a block

=⇒ AG(2, n)

AG(2, n)
adding a line at infinity

=⇒ PG(2, n)

2. A PG(2, n) does exist for each n when n is a prime power.
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3. No other kind of PG(2, n) has been founded.

4. A PG(2, n) does not exist for n = 1, 2, 6, 10 and possibly others.

5. We can extend AG(2, n) and PG(2, n) to AG(d, n) and PG(d, n) for d ≥ 3 respec-

tively. But, the constructions are getting harder.

Example.

1. n = 2, AG(2, 2) : X = Z4, B = {{0, 1}, {2, 3}, {1, 2}, {0, 3}, {1, 3}, {0, 2}}︸ ︷︷ ︸
parallel classes

}.

2. n = 2, PG(2, 2) : X = Z7, B = {{0, 1, 4}, {2, 3, 4}, {0, 2, 5}, {1, 3, 5}, {0, 3, 6},
{1, 2, 6}, {4, 5, 6}}.

Figure 8.7: (a) AG(2, 2). (b) PG(2, 2).

Remark.

• A PG(2, n) is a symmetric design, i.e., |X| = |B|.

• An AG(2, n) contains parallel classes, each has n blocks. In fact, there are n + 1

parallel classes.

• A parallel class of a design is a collection of blocks B1, B2, ..., Bt such that ∪ti=1Bi =

X.
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