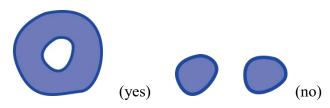
§16.3 The Fundamental Theorem for Line Integrals

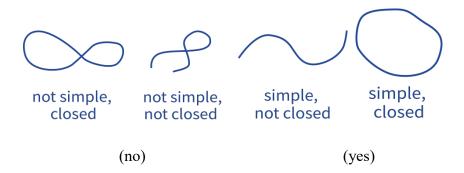
*名詞介紹:

- (i) smooth curves; piecewise smooth curves (= paths).
- (ii) closed curves: initial point = terminal point.
- (iii) open region:

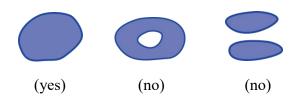
(iv) connected:



(v) simple curve : a curve that does not intersect itself anywhere between its endpoints.



(vi) Simply connected region : No hole + No separate pieces.



(vii) $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is independent of path: $\int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r} \text{ for any } C_{1}, C_{2} \text{ having the}$ same initial points and the same terminal points.

Line integral 的基本定理

Recall:

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$
 (微積分基本定理, FTC)

Theorem (16.3.2)(梯度定理) Let $\mathbf{F} = \langle P, Q \rangle$.

已知: (i) $\mathbf{F} = \nabla f$ (保守場).

(ii) ∇f is continuous on C.

(iii) C: (piecewise) smooth curve $\mathbf{r}(t)$, $a \le t \le b$.

結論:
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Proof:
$$n = 3$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$
$$= \int_{a}^{b} \left[f_{x} \frac{dx}{dt} + f_{y} \frac{dy}{dt} + f_{z} \frac{dz}{dt} \right] dt$$
$$= \int_{a}^{b} \frac{d}{dt} (f(\mathbf{r}(t))) dt$$
$$= f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

n = 2: Similar.

Example 1:
$$\mathbf{F}(x,y) = \left\langle \frac{1}{2}xy, \frac{1}{4}x^2 \right\rangle \ C_1 : y = x; \ C_2 : x = y^2; \ C_3 : y = x^3;$$

 \mathbf{E} \mathbf{E} \mathbf{E} : $(0,0)$, \mathbf{E} \mathbf{E} : $(1,1)$ Compute $\int_C \mathbf{F} \cdot d\mathbf{r}, \ i = 1,2,3$.

Solution:
$$\mathbf{F} = \nabla f$$
, where $f(x, y) = \frac{x^2}{4}y$.

$$\Rightarrow \int_{C_i} \mathbf{F} \cdot d\mathbf{r} = f(1, 1) - f(0, 0) = \frac{1}{4} \text{ for } i = 1, 2, 3.$$

Theorem (16.3.3) $\int_{C} \mathbf{F} \cdot d\mathbf{r} \text{ is independent of path in } D \iff \int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

Theorem (16.3.4) 己知: (i) $\mathbf{F}: D \subset \mathbb{R}^n \to \mathbb{R}^n$, n = 2, 3, D: open and connected.

(ii) \mathbf{F} : continuous on D.

結論: $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D.

1

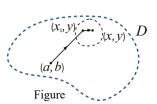
F is conservative.

Proof: (\Leftarrow) Trivial.

(⇒) Constructive proof: 實際找一個 potential function f s.t. $\nabla f = \mathbf{F}$.

(i) n = 2 (n = 3 can be similarly proved): Let $f(x, y) = \int_C \mathbf{F} \cdot d\mathbf{r}$, where C is a path in D with a fixed initial point (a, b)

where C is a path in D with a fixed initial point (a,b) and terminal point (x,y).



- (ii) f(x, y) is well-defined. (What? and Why?)
- (iii) Find a particular C:

Since *D* is open, $\exists (x_1, y) \in D \text{ with } x_1 < x$. Let

 $C = \text{a path } C_1 \in D \text{ from } (a,b) \text{ to} (x_1,y) \text{ followed by the horizontal}$ line segment C_2 from (x_1,y) to(x,y) (See above Figure).

(iv) Claim $\nabla f = \mathbf{F}$. Let $\mathbf{F} = \langle M, N \rangle$.

$$f(x,y) = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r}$$

$$= \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} M dx + N dy \qquad x = t$$

$$= \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{x_{1}}^{x} M(t,y) dt. \quad \text{Here } dy = 0 \ (C_{2} : 水平線段)$$

$$\frac{\partial f}{\partial x} = 0 + M(x,y). \ (\int_{C} \mathbf{F} \cdot d\mathbf{r} \ \mathbb{E} \pi x \text{ m is in } h \text{ is } h \text$$

Similar Construction (how?), we have

$$\frac{\partial f}{\partial v} = N(x, y).$$

有無檢查 F 是否保守場的方法:

$$n=2$$

已知: (i) D(定義域): open simply-connected region.

(ii) $\mathbf{F} = \langle M, N \rangle$: M, N: continuous first-order partial derivatives.

結論: **F** is conservative on $D \Leftrightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

(⇒) Clairaut's Theorem.

 (\Leftarrow) Green's Theorem (§16.4).

$$n=3$$
 $\mathbf{F} = \langle M, N, P \rangle$

同n=2 類似的已知.

結論: **F** is conservative on $D \Leftrightarrow \text{Curl } \mathbf{F} = \mathbf{0}$ for all points in D.

Theorem (Conservation of Energy): In a conservative vector field, the sum of its potential energy and its kinetic energy remains a constant at any point. This is the reason why the vector field is called conservative.

Proof:

(i) Let
$$\mathbf{F} = \nabla f$$

$$P(A) = 位能 \text{ at } A \hspace{1mm} = -f(A) \text{ (why?)}$$

$$K(A) = 動能 \text{ at } A \hspace{1mm} = \frac{1}{2} m \|\mathbf{r}'(A)\|^2.$$

$$\mathbf{F} = \text{Gravitaional field}$$

Wanted:
$$P(A) + K(A) = P(B) + K(B)$$
.

$$\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A) = P(A) - P(B). \qquad \mathbf{F} = m\mathbf{a} = m\mathbf{r}''(t.)$$

$$\parallel$$

$$\int_{A}^{B} m\mathbf{r}'' \cdot \mathbf{r}' dt = \frac{1}{2} m \int_{A}^{B} \frac{d}{dt} \|\mathbf{r}'(t)\|^{2} = \frac{1}{2} m (\|\mathbf{r}'(B)\|^{2} - \|\mathbf{r}'(A)\|^{2}) = K(B) - K(A).$$

$$\Rightarrow P(A) + K(A) = P(B) + K(B).$$