Hw6

1. Let
$$x(n) = \begin{cases} 1/4, & n = 0, 1, 2, 3 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the DTFT of x(n).
- (b) Find the N-point DFT of x(n) for N = 4.
- (c) For N = 4, determine the periodic extension $\tilde{x}(n)$ and it's DFS coefficients.
- (d) Find $\tilde{X}(e^{j\omega})$, the Fourier transform of $\tilde{x}(n)$ in (c). How is $\tilde{X}(e^{j\omega})$ related to $X(e^{j\omega})$.
- (e) Repeat (b)-(d) for N = 8.
- 2. Suppose $x(n) = \begin{cases} 1/4, & n = -1, 1, \\ 0, & \text{otherwise.} \end{cases}$ Let x(n) be a sequence with DTFT $X(e^{j\omega})$ and $X(k) = X(e^{j2\pi k/M})$, for $k = 0, 1, \cdots, M - 1$, where M is some positive integer. Let z(n) be the M-point IDFT of X(k) for $n = 0, 1, \cdots, M - 1$.
 - (a) Compute X(k) for M = 4.
 - (b) Compute z(n), for n = 0, 1, 2, 3.
 - (c) Find z(n) for n = 0, 1, 2, 3 and M = 4 when $x(-1) = c_1, x(1) = c_2$ and x(n) = 0 otherwise.
 - (d) Determine z(n) in (c) for a general M.
- 3. * Let x(n) be a discrete time sequence and y(n) be given by y(n) = x(n) * s(n), where $s(n) = \sum_{\ell=-\infty}^{\infty} \delta(n - \ell N)$ for some integer N. Determine the discrete time Fourier transform of y(n) in terms of $X(e^{j\omega})$