Hw5

1. Consider the following system.

The input $x_c(t) = w_c(t) + q_c(t)$ is a sum of the desired signal $w_c(t)$ and noise $q_c(t)$, where $w_c(t)$ is band limited to $|\Omega| < \Omega_c$ as shown in (b) of the above figure. The anti-aliasing filter $H_{aa}(j\Omega)$ is a lowpass filter as shown in (c) of the above figure and $\Omega_s = 4\Omega_c$.

- (a) Plot $X_a(j\Omega)$ and $X(e^{j\omega})$.
- (b) Determine $H(e^{j\omega})$ so that $y_r(t) = w_c(t)$.
- (c) Is it possible to use a smaller sampling frequency for the given $H_{aa}(j\Omega)$ so that $y_r(t) = w_c(t)$? What is $H(e^{j\omega})$ in this case?
- (d) Suppose the sampling frequency is increased by a factor of 4. Design $H_{aa}(j\Omega)$ and $H(e^{j\omega})$ so that $y_r(t) = w_c(t)$? Are there different solutions?
- 2. Let x be a random variable satisfying 0 < x < 2. Design a 2-bit uniform quantizer Q for x. Let \hat{x} be the quantizer output $\hat{x} = Q(x)$.
 - (a) Plot Q(y) for 0 < y < 2.
 - (b) Find the quantization error $e = \hat{x} x$ when x = 0.2 and x = 1.4.
 - (c) Determine the variance of e when x is uniformly distributed over the interval (0, 2).
- 3. * Consider the system in problem 1. Suppose the sampling frequency is increased by a factor of 4. Replace the discrete time system h(n) by a sampling rate reduction system (i.e., a lowpass filter followed by a decimator). Design $H_{aa}(j\Omega)$ and change the sampling period of the D/C so that $y_r(t) = w_c(t)$ and $H_{aa}(\Omega)$ has the largest possible transition band.