Hw 3 Nov. 26, '15

Answers without justifications will not be given credits

- 1. Let $h(n) = (\frac{1}{2})^n u(n) + (\frac{1}{3})^n u(n)$ be the impulse response of an LTI system, the input be $x(n) = \delta(n) \frac{1}{3}\delta(n-1)$ and the output be y(n).
 - (a) Determine H(z) and its ROC.
 - (b) Plot the pole-zero diagram of H(z).
 - (c) Determine the stability of the system from the location of it poles and ROC.
 - (d) Find Y(z) and its ROC.
 - (e) Apply inverse z-transform on Y(z) to obtain y(n).
 - (f) Find an input x(n) such that the output has finitely many nonzero samples.
- 2. Let h(n) be the impulse response of an 8-point moving average system.
 - (a) Determine H(z) and its ROC.
 - (b) Plot pole-zero diagram of H(z).
- 3. *Let h(n) be the impulse response of an LTI system with z-transform $H(z) = \sum_{n=0}^{L} h(n)z^{-n}$ and h(n) is complex in general. Suppose H(z) has zeros z_1 , z_2, \dots, z_L . Let $g(n) = h^*(n)$.
 - (a) Express G(z) in terms of H(z). Determine the zeros of G(z).
 - (b) What can we say about the zeros of H(z) when h(n) is real?