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1. Let

H(z) =
1� 2z�2
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)

.

(a) Draw a signal flow graph for the direct form II implementation of H(z).

(b) Draw a signal flow graph implementing H(z) as a cascade of 2nd order

direct form II sections using only real multipliers.

2. Let H(z) = a0 + a1z
�1

+ a2z
�2

+ a3z
�3

+ a2z
�4

+ a1z
�5

+ a0z
�6
. Draw a signal

flow graph for for H(z) using as few multipliers as possible.

3. Find the system function H(z) from x(n) to y(n) and find the system function

G(z) from x(n) to w(n), where c = r cos ✓ and d = tan ✓.762 PROCEEDINGS OF THE IEEE, VOL. 70, NO. 7, JULY 1982 

nodes be constant. In effect, a  constant  electric  field is required b e  
tween  points  at which the magnetic fidd is defined. A constant  electric 
field has a  linearly varying magnetic field associated with it in accor- 
dance with (2). Thus in the tranmission-line  analogy, the second 
derivative of the magnetic field at a  node is equivalent to  the second- 
order  central  difference  approximation to any higher order  field varia- 
tion. Conversely, the second-order central  difference  approximation 
implicitly  represents the field quantity  that has been  eliminated  from 
Maxwell's equations as a piecewise constant  function. 

The CFD approximation has been developed for layered medii with 
an  arbitrary  layer thickness  It is an  approximation of higher order 
than the second-order central  difference  or  network  solutions in  that 
both field quantities are continuous  thIoughout themedium, as required 
by Maxwell's equations. The improvement in accuracy  of the CFD 
approximation is significant. The straightforward way in which internal 
boundaries  between  layers of different  conductivity  are  treated  and the 
simplicity of the resulting algorithm warrant its application to  medii of 
more  complex  geometry. While the application of the CFD approxi- 
mation to twodimensional conductivity structures is straightforward 
conceptually, in practice the symbolic inversion of a 12 X 12 matrix 
will result  in the analogous expressions for the twodimensional CFD 
approximation. 

This short  letter is presented as an interim report with the hope that 
others may become aware of the potential usefulness of the CFD 
approximation. 
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M o d i f i d  Coupled-Form Digital-Filter Structures 
GONGTAO YAN AND SANJIT K. MITRA 

Abmucf-Two variations of the weU-known coupled form are pro- 
These new digital filte-r structures have lower pole sensitivitieu 

and roundoff noise vnipnces than those of the coupled form and have 
been d e e d  using the network  transformation approach of Szczlrplk 

INTRODUCTION 
A simple approach to  the generation  of  equivalent digital filter  struc- 

tures is via network  transformation which replaces the delay variable 
z4 by a  function of z-' , r a i n g  the  modifed transfer  function, and 
then replacing the delay element  in the modified  realization by a  struc- 
ture  implementing the inverse transformation. This approach was first 
suggested by Szczupak and Mitra [ 11 to develop low-sensitivity struc- 
tures In particular,  they showed that  the direct-form  realization of the 
second-order all-pole transfer  function 

andMitn [l]. 

associated with high pole sensitivities for small pole angle and/or pole 
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Fig. 1. Modified coupled  form  structures. (a) First structure. (b) Sec- 

ond structure. 

radius, can be transformed to the  coupled  form [ 21, well known for  its 
general low-sensitivity features, using the  transformation 

if the parameters of the  transformation  are  chosen as c = l / r  sin e and 
d = r cos e. However, the  coupled  form s t i l l  exhibits very lugh angle 
sensitivity for  poles near the origin and near the real or imaginary axis. 

In this  letter, we propose two alternate  network  transformations 
which yield modified  coupled-form  structures that  do  not exhibit  the 
above characteristics. 

FIRST TluNSFORMATION 
The  transformation 

transforms the direct-form  realization of (1)  to  the  structure of Fig. 
I(a)  (to be called the  modified  coupled  form 1) for c = r cos e and 
d = tan e. The  corresponding  pole sensitivities are given by 

ar a r  

ac ad 
s , '= -= l / cose   &=- - - r s inecose .  

It is seen from (4) that  the pole sensitivities of the new structure  are 
quite  low  for small pole angle and pole  radius. Since radius r does not 
appear m the  denominator of (4), the pole sensitivities are also very 
low  for small pole angle and any radius. However, SE is quite large for 
e close to 80". In order to solve this problem, we propose  an  alternate 
transformation. 

SWOND TRANSFORMATION 
The  transformation 

transforms the direct-form  realization  of (1) to  the structure of  Fig. 
l(b) (to be called the  modified  coupled  form 2) for c = r sin e and 
d = cot e. The  corresponding  pole  sensitivities  are 

s," = 0 ,$=-.&e 
ST =  sin e S; = r sin e cos e. (6 ) 

It is seen from above that  the pole sensitivities of this second struc- 
ture  are very low for small pole  radius  and large pole angle. In addition, 
the angle sensitivities  are very low for large pole angle and any radius. 
But S,' is quite large for e close to 0" or 180". 

PReFERReD POLE POSITIONS 

An examination of the sensitivity  expressions of (4) and (6 )  indicates 
that  the first  structure is preferable  for  poles  located m the cross- 
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4. * Let

H(z) =
a2 + a1z

�1
+ z�2

1 + a1z�1
+ a2z�2

be a causal and stable second-order allpass filter. Implement H(z) using as

few multipliers as possible. Is the system still allpass after the multipliers are

quantized?

y(n)

w(n)

x(n)


